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Two-dimensional isotropic inertia–gravity
wave turbulence

Jin-Han Xie1,† and Oliver Bühler1

1Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA

(Received 21 December 2018; revised 8 May 2019; accepted 9 May 2019)

We present an idealized study of rotating stratified wave turbulence in a two-
dimensional vertical slice model of the Boussinesq equations, focusing on the peculiar
case of equal Coriolis and buoyancy frequencies. In this case the fully nonlinear
fluid dynamics can be shown to be isotropic in the vertical plane, which allows
the classical methods of isotropic turbulence to be applied. Contrary to ordinary
two-dimensional turbulence, here a robust downscale flux of total energy is observed
in numerical simulations that span the full parameter regime between Ozmidov and
forcing scales. Notably, this robust downscale flux of the total energy does not hold
separately for its various kinetic and potential components, which can exhibit both
upscale and downscale fluxes, depending on the parameter regime. Using a suitable
extension of the classical Kármán–Howarth–Monin equation, exact expressions that
link third-order structure functions and the spectral energy flux are derived and tested
against numerical results. These expressions make obvious that even though the
total energy is robustly transferred downscale, the third-order structure functions are
sign indefinite, which illustrates that the sign and the form of measured third-order
structure functions are both crucially important in determining the direction of the
spectral energy transfer.

Key words: isotropic turbulence, rotating turbulence, stratified turbulence

1. Introduction
As is well known, strong stratification and rotation are the key ingredients of the

geophysical fluid dynamics underlying atmospheric and oceanic flows. In general, such
flows involve a complex intermingling of fast inertia–gravity waves on top of a much
slower evolving balanced vortical flow. That balanced flow is essentially controlled by
the three-dimensional spatial distribution of the Rossby–Ertel potential vorticity (PV),
which is a scalar material invariant in idealized flow and therefore evolves relatively
slowly (e.g. Charney 1971; Salmon 1982). Dispersive inertia–gravity waves, on the
other hand, evolve quickly and can propagate rapidly, especially in the vertical, and
this time scale separation leads to the familiar stiffness of the governing equations of
motion. Whilst the linear aspects of this scenario are well understood, its nonlinear
and turbulent aspects continue to challenge simple understanding, and controversy
persists even in the interpretation of very well established observational facts. An
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Two-dimensional isotropic inertia–gravity wave turbulence 753

example of this is the atmospheric Nastrom–Gage spectrum (Nastrom & Gage 1985),
which has a scaling behaviour that differs from both three-dimensional (Kolmogorov
1941) and two-dimensional (Kraichnan 1982) turbulence. Many theories to explain
this spectrum have been proposed, among them are versions of two-dimensional
turbulence (Lilly 1989; Lindborg 1999), quasi-geostrophic (QG) theory (Tung &
Orlando 2003), its surface version (Tulloch & Smith 2006, 2009), stratified turbulence
(Lindborg 2006), rotating stratified turbulence (Lindborg 2005; Deusebio, Vallgren &
Lindborg 2013) and explanations based on superpositions of QG motions at large
scales and internal gravity waves at small scales (e.g. Dewan 1979; Bühler, Callies &
Ferrari 2014; Callies, Ferrari & Bühler 2014; Callies, Bühler & Ferrari 2016). Still,
controversies persist and a unifying theoretical framework is lacking.

One approach has been to focus on the nonlinear dynamics of the fast inertia–
gravity waves whilst ignoring the PV distribution. Methods in this approach can be
borrowed, for example, from weak turbulence theory (Majda, McLaughlin & Tabak
1997; Nazarenko 2011; Zakharov, L’vov & Falkovich 2012), or large-magnitude
critical balance theory (e.g. Nazarenko & Schekochihin 2011). Such an approach
would be natural in the context of small-scale oceanic internal waves, for example,
which are believed to contribute significantly to downscale energy fluxes and vertical
diffusion in the deep ocean (e.g. Wunsch & Ferrari 2004). Complementary to such
wave-centred studies are investigations such as that of Vallgren & Lindborg (2010),
which focuses entirely on the slow balanced vortical component. Other research
concerns wave–vortex decompositions applied in simulations of the full rotating
stratified system in order to distinguish the effects from different components and
to study their interactions (Bartello 1995; Smith & Waleffe 2002; Deusebio et al.
2013; Hernandez-Duenas, Smith & Stechmann 2014; Marino et al. 2015b; Oks
et al. 2017). Idealized studies of rotating stratified fluid turbulence per se have
illuminated questions about the direction of spectral fluxes of energy and enstrophy
(where applicable) in numerical simulations. This is a subtle question. For example,
Bartello (1995), Métais et al. (1996), Kurien, Wingate & Taylor (2008), Marino et al.
(2013), Dritschel & McKiver (2015) report inverse cascades of energy whereas in
Marino, Pouquet & Rosenberg (2015a), Pouquet et al. (2017) energy transfers in both
directions are found to co-exist, and the dependence of the strength of upscale and
downscale energy transfer on the Prandtl ratio is studied. Presumably, the last word
has not been spoken yet in this area.

In our opinion, a promising tool in this situation is the classical Kármán–Howarth–
Monin (KHM) equation (cf. Kolmogorov 1941; Monin & Yaglom 1975), which
initially described how measurable third-order structure functions can be linked to
inertial-range energy fluxes in three-dimensional isotropic turbulence. Related theories
for inertial ranges have since been developed for two-dimensional turbulence (Bernard
1999; Lindborg 1999; Yakhot 1999; Cerbus & Chakraborty 2017), turbulence with
helicity (Chkhetiani 1996; Gomez, Politano & Pouquet 2000; Kurien 2003), QG flow
(Lindborg 2007), stratified flow (Augier, Galtier & Billant 2012) and rotating stratified
flow (Lindborg & Cho 2000; Cho & Lindborg 2001; Lindborg & Cho 2001; Kurien,
Smith & Wingate 2006; Deusebio, Augier & Lindborg 2014a). Our own recent work
in Xie & Bühler (2018) showed how to extend these inertial-range theories to cover
the entire non-dissipative range of scales, including the forcing scales. However,
rotating stratified turbulence is typically strongly anisotropic, and so far diagnostic
relations between structure functions and energy fluxes for anisotropic flows have
not been derived yet without the need for ad hoc closure assumptions. This is the
theoretical bottleneck we are facing today: developing third-order structure function
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theory to the point where it becomes directly applicable to rotating and stratified
flows.

In the present paper, we are seeking to make progress on this problem by making
three severe simplifying assumptions that lead to a solvable model problem. First,
we are restricting to inertia–gravity wave turbulence by keeping the PV equal
to its undisturbed background value throughout the domain. By definition, this
eliminates any PV-controlled balanced flow. Second, we restrict the fluid dynamics to
a two-dimensional vertical slice domain with periodic boundary conditions. Because
of Coriolis forces, the velocity field in this model is still three-dimensional even
though the flow variables depend only on two spatial coordinates. This allows for
simple numerical simulation as well as easy access to forcing fields that do not
project onto the PV even at the nonlinear level. Third, and most peculiarly, we study
a setting in which the Coriolis frequency equals the buoyancy frequency. We are
not aware of any direct practical application of this setting in atmospheric or ocean
flows, rather we pursue it because it offers a radical simplification of the dynamical
situation, as it can be shown that the resulting rotating stratified dynamics is isotropic
in the vertical plane. This fact, which is not immediately obvious from the governing
equations, then allows the machinery of classical isotropic turbulence theory to be
applied to this wave system. Thus, we obtain a solvable isotropic wave turbulence toy
model, which yields a number of explicit and exact results about energy fluxes and
structure functions that are not available in the general case of unequal Coriolis and
buoyancy frequencies. For example, the Coriolis effect in the present two-dimensional
model is distinct from that in a three-dimensional system, where columnar cyclonic
vortices are observed in experiments and numerical simulations (e.g. Biferale et al.
2016). Of course, a future complete theory of rotating stratified turbulence should
recover our results as a special limiting case. We therefore hope that our results
in this paper will stimulate further research into the structure function approach to
rotating stratified turbulence.

The structure of the paper is as follows: § 2 gives the governing equations, § 3
contains a heuristic argument for a downscale cascade, § 4 provides the third-order
structure function theory, § 5 contains numerical simulations and in § 6 the structure
function theory is applied to an idealized three-scale forcing example. Finally,
concluding remarks are offered in § 7.

2. Governing equations

The unforced inviscid two-dimensional rotating stratified Boussinesq fluid equations
in the vertical xz-plane are obtained from the three-dimensional equations by setting
∂y = 0, which yields

ut + uux +wuz − fv =−px, (2.1a)
vt + uvx +wvz + fu= 0, (2.1b)

wt + uwx +wwz − b=−pz, (2.1c)
bt + ubx +wbz +N2w= 0, (2.1d)

ux +wz = 0. (2.1e)

Here u, v and w are velocity fields in the x, y and z directions, respectively, b is
the buoyancy, f is the Coriolis frequency and N is the buoyancy (Brunt–Väisälä)
frequency. Both frequencies are assumed constant. Now, as is well known, the
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buoyancy equation is equivalent to the materially invariance of a vertical stratification
variable

S=N2z+ b, (2.2)

say, a fact that also holds in the three-dimensional case. However, in the present two-
dimensional case the same interpretation can also be given for the y-component of the
momentum equation, which expresses the material invariance of

M = f 2x+ fv. (2.3)

This new field M can be viewed as a horizontal stratification and indeed the field
fv enters the x-momentum equation in the same way as the buoyancy b enters the
z-momentum equation. Thus, we have a pair of buoyancy type fields fv and b and if
f =N this will enable us to construct an isotropic system (shown in § 2.1). Hereafter
we call u and w the in-plane velocities, or velocities for simplicity, and refer to fv
and b as buoyancy scalars. A similar viewpoint is adopted in the astrophysical context,
where the background rotation contributes to the angular momentum stratification (cf.
Knobloch 1982).

The Rossby–Ertel PV of the system (2.1) can be expressed as the Jacobian between
M and S, i.e.

q=
1

fN2
J(M, S)= f + vx +

fbz

N2
+ (vxbz − vzbx)

1
N2
. (2.4)

This yields a peculiar geometric interpretation of q in the present two-dimensional
case: it measures the area content of the curvilinear coordinate mesh induced by the
advected fields M and S. In this interpretation q is materially invariant because the
flow is area-preserving in the xz-plane. We will assume throughout that the PV is
equal to its background value, i.e.

q= f ⇔ vx +
fbz

N2
+ (vxbz − vzbx)

1
N2
= 0. (2.5)

Notably, the in-plane velocity field (u, w) makes no contribution to q and is hence
purely wave related. The precise association of these velocity components with the
waves does not hold in three-dimensional flow, and it is the key to forcing only the
wave field later on. The total energy preserved by (2.1) is

Etot =
1
2

∫ (
u2
+w2

+
1
f 2
( fv)2 +

1
N2

b2

)
dx dz, (2.6)

where we highlighted the functional similarity of fv and b. The linear dispersion
relation for inertia–gravity waves is

ω2
=

N2k2
+ f 2m2

k2 +m2
, (2.7)

where ω is the frequency, and k and m are the horizontal and vertical wavenumbers,
respectively. The third eigenvector of the linearized system has zero frequency and
describes the balanced vortical flow component, which satisfies

u=w= 0, fv = px, b= pz, and pxx +
f 2

N2
pzz = f (q− f ). (2.8a−d)

These steady linear states are in fact steady in the nonlinear system as well,
which is another aspect of the two-dimensional situation that does not hold for
three-dimensional flow. For us the balanced state will be zero throughout because
of (2.5).
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2.1. Isotropic system if f =N
In the peculiar special case f = N the exact rotating stratified two-dimensional
dynamics is isotropic in the xz-plane, but this fact is not immediately obvious from
the equations. A hint that this is true comes from the linear dispersion relation (2.7),
which for f = N reduces to the monochromatic ω2

= N2 for all wavenumbers (k, m).
Here we show that this isotropy also holds for the full nonlinear dynamics. First, by
defining θ = b/N we rewrite (2.1) in the more symmetric form

ut + uux +wuz − fv =−px, (2.9a)
vt + uvx +wvz + fu= 0, (2.9b)

wt + uwx +wwz −Nθ =−pz, (2.9c)
θt + uθx +wθz +Nw= 0, (2.9d)

ux +wz = 0. (2.9e)

If f =N then time can be rescaled by the common time scale 1/f = 1/N, which sets
both N and f to unity in (2.9) and therefore ω2

= 1 in (2.7). Note also that M= x+ v
and S= z+ θ in this scaling. Introducing a streamfunction ψ such that (u, w)=∇⊥ψ
with ∇⊥ = (−∂z, ∂x) yields

∇
2ψt + J(ψ,∇2ψ)− θx + vz = 0, (2.10a)

vt + J(ψ, v)+ u= 0, (2.10b)
θt + J(ψ, θ)+w= 0. (2.10c)

The Laplacian and Jacobian operators have no dependence on the orientation of the
xz-coordinate system, but the remaining terms involve specific x and z derivatives, so
at first sight this system is not isotropic. Indeed, if we rotate the xz-coordinates by
some angle α via the transformation

x′ = x cos α − z sin α and z′ = x sin α + z cos α (2.11a,b)

and then let

ψ ′(x′, z′)=ψ(x, z) (2.12)

then the resulting equations will differ from the original equations. However, we can
also form linear combinations of v and θ and define new buoyancy scalars as

v′ = v cos α − θ sin α and θ ′ = v sin α + θ cos α, (2.13a,b)

in terms of which we obtain the new material invariants M′ = x′ + v′ and S′ = z′ +
θ ′. After these steps we find that the system (2.10) is invariant under the rotation of
coordinates with newly defined material invariants, so we claim the isotropy in the
xz-plane of this nonlinear system.

3. Heuristic argument for direction of spectral energy transfer

For our peculiar isotropic system (2.10) the direction of the spectral energy transfer
is not clear. We are not aware of a rigorous method to decide this question, but we
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Two-dimensional isotropic inertia–gravity wave turbulence 757

are able to give a heuristic argument as follows. For (2.10) the preserved total energy
Etot is

Etot =

∫
1
2

(
|∇ψ |2 + |v|2 + |θ |2

)
dx dz. (3.1)

By defining

B1 =∇
⊥v and B2 =∇

⊥θ (3.2a,b)

and taking the operator ∇⊥ = (−∂z, ∂x) to both (2.10b) and (2.10c) we obtain

B1t + u · ∇B1 −B1 · ∇u+∇⊥u= 0, (3.3a)
B2t + u · ∇B2 −B2 · ∇u+∇⊥w= 0. (3.3b)

The definitions of B follow the idea of divorticity for two-dimensional turbulence
(Kida 1985; Kuznetsov et al. 2007). Then, ∇2ψ (2.10a)+B1· (3.3a)+B2· (3.3b)
becomes

1
2

d
dt

(
|∇

2ψ |2 + |B1|
2
+ |B2|

2
)

=B1 · S ·B1 +B2 · S ·B2 −∇v · ∇u−∇w · ∇θ −∇2ψ(θx − vz), (3.4)

where S = (∇u + (∇u)T)/2 is the strain tensor. Taking the domain integration we
obtain

d
dt
Z =

1
2

d
dt

∫ (
|∇

2ψ |2 + |B1|
2
+ |B2|

2
)

dx dz

=

∫
(B1 · S ·B1 +B2 · S ·B2) dx dz, (3.5)

where the term −∇v · ∇u−∇w · ∇θ −∇2ψ(θx− vz) has zero domain integration. We
call Z > 0 the rotating–stratified enstrophy. Its evolution law (3.5) is exact and does
not predict whether Z will grow or decay in time, but nevertheless its functional
form suggests that it will grow in time because of the natural alignment of B1,2
with the principal axis of the strain tensor (cf. Bühler & McIntyre (2005)). Indeed,
equation (3.5) indicates that the time evolution of the rotating–stratified enstrophy, Z ,
is controlled by the strain of the flow, which mimics the evolution enstrophy equation
of three-dimensional Navier–Stokes equation, therefore by assuming a random strain
field the rotating–stratified enstrophy increases on average. We will assume that this
is indeed the case and base a heuristic argument for the energy transfer on this
assumption.

Combining enstrophy growth with the preserved total energy (cf. (3.1)), which
has two degree less gradients compared with Z , the pair of total energy Etot
and rotating–stratified enstrophy Z resemble the pair of energy and enstrophy of
three-dimensional turbulence, so we conclude that the system (2.10) tends to generate
small-scale energy-containing structures and a downscale energy flux towards smaller
scales is expected. Of course, other heuristic arguments could be applied to the
present system, e.g. by following the arguments based on absolute equilibrium
statistical mechanics in Salmon (1998), or their combination with weakly nonlinear
triad interaction arguments in Bartello (1995). However, it is not immediately clear
what these arguments would predict in the present restriction to a two-dimensional
flow with zero PV, strong waves and f = N, so this remains an interesting open
question.
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FIGURE 1. Evolution of the energy and rotating–stratified enstrophy of the free-decay
simulation.

3.1. Free-decay numerical illustration
In this section, we present the results of a free-decay simulation in a box of
size 2π × 2π to show the generation of small-scale structures. The numerical
simulation uses a Fourier pseudospectral method with 2/3 dealiasing in space, a
resolution 512 × 512 and a fourth-order explicit Runge–Kutta scheme in time, in
which the nonlinear terms are treated explicitly and linear terms implicitly using an
integrating factor method. Both f and N are equal to unity and the initial condition is
ψ = cos(x) cos(z) and v = θ = 0. The evolutions of the energy and rotating–stratified
enstrophy are shown in figure 1 where here and below time is measured in units of
1/N = 1. We observe a clear and robust enstrophy increase. At later time because of
the generation of small-scale structures dissipation is not negligible, so the total energy
decreases monotonously, but the rotating–stratified enstrophy increases intermittently.
The snapshots of ω = ∇2ψ and θ at t = 30 and 60 are shown in figure 2. Because
of the wave nature of the rotating stratified system, oscillations are seen in both the
energy evolutions and the snapshots.

4. Structure function
The direction of the energy flux can be measured from the third-order structure

functions based on the classical Kármán–Howarth–Monin (KHM) equation. For
the most part, the correlation-function equations to be derived are not restricted to
the special case f = N, so in this section we derive the KHM equations for the
general two-dimensional rotating stratified system, starting from the dimensional
forced–dissipative equations

ut + uux +wuz − fv =−px + Fu + ν∇
2u, (4.1a)

vt + uvx +wvz + fu= Fv + ν∇2v, (4.1b)
wt + uwx +wwz − b=−pz + Fw + ν∇

2w, (4.1c)
bt + ubx +wbz +N2w= Fb +µ∇

2b, (4.1d)
ux +wz = 0. (4.1e)

Here, F are the external forcings, and the dissipative terms are the standard viscous
and diffusive terms with viscosity ν and diffusivity µ. Different from the forced–
dissipative two-dimensional turbulence, where the existence of a statistically steady
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FIGURE 2. Free-decay snapshots of ω and θ at t= 30 and 60.

state requires large-scale damping, we anticipate that in the present rotating stratified
fluid system (4.1) small-scale dissipation will be sufficient, based on our heuristic
downscale energy flux theory in § 3.

To derive the KHM equation we consider the fields evaluated at two positions
x1 and x2 and denote them with subindices 1 and 2, respectively (cf. Xie &
Bühler (2018)). This means, for example, that u1 = u(x1, t) and u2 = u(x2, t). Then
homogeneity implies that the covariance

u(x1, t)u(x2, t)= u1u2(x, t), (4.2)

where the overbar denotes statistical averaging, depends only on the separation vector
x= x2 − x1. By construction, gradients of any mean field with respect to x, x1 and x2
obey

∇=−∇1 =∇2. (4.3)

Evaluating the governing equation (4.1) at x1 and x2, multiplying u, v, w and b at the
conjugate locations, adding and averaging (cf. Monin & Yaglom 1975; Frisch 1995)
yields

1
2
∂tu1u2 −

1
4
∇ · δuδu2 −

f
2

u1v2 + u2v1

=
1
2

p1ux2 − p2u1x +
1
2

Fu1u2 + Fu2u1 + ν∇
2u1u2, (4.4a)
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1
2
∂tv1v2 −

1
4
∇ · δuδv2 +

f
2

u1v2 + u2v =
1
2

Fv1v2 + Fv2v + ν∇
2v1v2, (4.4b)

1
2
∂tw1w2 −

1
4
∇ · δuδw2 −

1
2

w1b2 +w2b1

=
1
2

p1uz2 − p2uz1 +
1
2

Fw1w2 + Fw2w+ ν∇2w1w2, (4.4c)

1
2N2

∂tb1b2 −
1

4N2
∇ · δuδb2 +

1
2

w1b2 +w2b1

=
1

2N2
Fb1b2 + Fb2b1 +

µ

N2
∇

2b1b2. (4.4d)

Here the difference operator δ means δu = u2 − u1, etc. Adding (4.4a) and (4.4c)
cancels the pressure terms via incompressibility (4.1e), and we obtain

1
2
∂t (u1u2 +w1w2)−

1
4
∇ · δu

(
δu2 + δw2

)
−

f
2

u1v2 + u2v1 −
1
2

w1b2 +w2b1

=
1
2

Fu1u2 + Fu2u1 +
1
2

Fw1w2 + Fw2w1 + ν∇
2u1u2 + ν∇

2w1w2. (4.5)

Similarly, adding (4.4b) and (4.4d) results in

1
2
∂t

(
v1v2 +

b1b2

N2

)
−

1
4
∇ · δu

(
δv2 +

δb2

N2

)
+

f
2

u1v2 + u2v1 +
1
2

w1b2 +w2b1

=
1
2

Fv1v2 + Fv2v1 +
1

2N2
Fb1b2 + Fb2b1 + ν∇

2v1v2 +
µ

N2
∇

2b1b2. (4.6)

We name these equations the KHM equations for the kinetic and effective potential
energy, respectively, where the effective potential energy also contains the scalar v.
Considering the opposite signs of the conversion terms in (4.5) and (4.6), by adding
them we cancel the conversion term and obtain the KHM equation for the total
energy,

1
2
∂t

(
u1u2 +w1w2 + v1v2 +

b1b2

N2

)
−

1
4
∇ · δu

(
δu2 + δw2 + δv2 +

δb2

N2

)
= P(x)+D(x), (4.7)

where

P(x) =
1
2

Fu1u2 + Fu2u1 +
1
2

Fw1w2 + Fw2w1

+
1
2

Fv1v2 + Fv2v1 +
1

2N2
Fb1b2 + Fb2b1 (4.8a)

and D(x)= ν∇2u1u2 + ν∇
2w1w2 + ν∇

2v1v2 +
µ

N2
∇

2b1b2, (4.8b)

are the total energy input and total energy dissipation functions, respectively. Finally,

ε = P(0) (4.9)

is the mean energy input rate per unit time and mass.
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4.1. Special case f =N and µ= ν
We now restrict to f = N and ν = µ, make time non-dimensional with 1/N and use
θ = b/N, as before. This yields

1
2
∂t (u1u2 +w1w2)−

1
4
∇ · δu

(
δu2 + δw2

)
−

1
2

u1v2 + u2v1 −
1
2

w1θ2 +w2θ1

=
1
2

Fu1u2 + Fu2u1 +
1
2

Fw1w2 + Fw2w1 + ν∇
2u1u2 + ν∇

2w1w2 (4.10)

and
1
2
∂t
(
v1v2 + θ1θ2

)
−

1
4
∇ · δu

(
δv2 + δθ 2

)
+

1
2

u1v2 + u2v1 +
1
2

w1θ2 +w2θ1

=
1
2

Fv1v2 + Fv2v1 +
1
2

Fθ1θ2 + Fθ2θ1 + ν∇
2v1v2 + ν∇

2θ1θ2. (4.11)

Adding (4.10) and (4.11) we obtain the KHM equation corresponding to (4.5),

1
2
∂t
(
u1u2 +w1w2 + v1v2 + θ1θ2

)
−

1
4
∇ · δu

(
δu2 + δw2 + δv2 + δθ 2

)
= P(x)+D(x), (4.12)

where

P(x) =
1
2

Fu1u2 + Fu2u1 +
1
2

Fw1w2 + Fw2w1

+
1
2

Fv1v2 + Fv2v1 +
1
2

Fθ1θ2 + Fθ2θ1, (4.13a)

and
D(x)= ν∇2

(
u1u2 +w1w2 + v1v2 + θ1θ2

)
. (4.13b)

4.2. Structure functions for isotropic turbulence
We now assume that the forcing and dissipation functions are isotropic, i.e. both P
and D depend only on r= |x|. In this isotropic set-up the conversion term,

1
2

u1v2 + u2v1 +
1
2

w1θ2 +w2θ1, (4.14)

is also invariant under the coordinates rotation (2.11), (2.13) and (2.12), so not only
the third-order structure functions in the KHM equation (4.12) but also those in (4.10)
and (4.11) are isotropic. This means we can express them as

δu
(
δu2 + δw2

)
=VK = VK(r)

x
r
, (4.15a)

δu
(
δv2 + δθ 2

)
=VP = VP(r)

x
r
, (4.15b)

δu
(
δu2 + δw2 + δv2 + δθ 2

)
= V = V(r)

x
r
, (4.15c)

where V = VK + VP. All three structure functions are interesting, but at present we
only have a systematic strategy for computing their sum, the total V(r).
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762 J.-H. Xie and O. Bühler

4.3. Exact non-dissipative results
By assuming a downscale energy cascade a statistically steady state, i.e. ∂t= 0, can be
reached with small-scale dissipation only, as in the familiar case of three-dimensional
turbulence. Hence we obtain

−
1
4
∇ ·V = P(r)+ ν∇2

(
u1u2 +w1w2 + v1v2 + θ1θ2

)
, (4.16)

which, using ∇ δu2 =−2∇ u1u2 and V(0)= 0, can be integrated to obtain

V(r)=−
4
r

∫ r

0
P(s)s ds+ 2ν

d
dr

(
δu2 + δv2 + δw2 + δθ 2

)
. (4.17)

This equation is the two-dimensional counterpart of (2.17) in Xie & Bühler (2018).
In the inertial range we ignore the dissipation term and obtain

V(r)=−
4
r

∫ r

0
P(s)s ds. (4.18)

Even though the system (4.1) is two-dimensional, because of downscale energy
transfer its third-order structure function theory is more similar to that of three-
dimensional turbulence (Kolmogorov 1941) than that of two-dimensional turbulence
(Bernard 1999; Lindborg 1999; Yakhot 1999; Xie & Bühler 2018).

For a temporal white-noise external force P(r) is proportional to the spatial structure
functions of the external force (Bernard 1999), and if the forcing in spectral space is
δ-centred at some forcing wavenumber kf , say, then

P(r)= εJ0(kf r), (4.19)

with J0 the zeroth-order Bessel function (cf. Xie & Bühler (2018)). Substituting in
(4.18) we obtain

V(r)=−4
ε

kf
J1(kf r). (4.20)

When kf r � 1, we asymptotically obtain V ∼ −2εr. Unsurprisingly, this asymptotic
result is identical to that of Grossmann & Mertens (1992), which is obtained by
assuming a downscale energy flux in standard two-dimensional turbulence. It remains
to be checked that energy indeed flows downscale, as suggested by our heuristic
argument in § 3. To establish this we turn to direct numerical simulations.

5. Numerical simulations
In this section we present the numerical results of the forced–dissipative rotating

stratified fluid system (4.1) in a doubly periodic domain of size 2π× 2π with external
forcing that is a temporal white noise with energy input rate ε and a spatial structure
given by a delta function at some kf in wavenumber space, so (4.20) applies. To
maintain a uniform PV q= f , the external forcing is restricted to the xz-momentum
equations, i.e. Fv = Fθ = 0. Thus we only force the wave component whilst the
potential vorticity q and the associated balanced components are not forced. However,
the dissipation terms create a small amount of PV spontaneously, so the PV does
not remain exactly zero. We checked numerically that this small amount of PV is
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Two-dimensional isotropic inertia–gravity wave turbulence 763

ε kf kO kν f =N

§ 5.1, strong forcing (lO� lf ) 0.01 64 10 200 1
§ 5.2, intermediate forcing (lO ∼ lf ) 0.01 8 10 150 1
§ 5.3, weak forcing (lO� lf ) 0.0001 8 100 150 1

TABLE 1. Parameters used in the numerical simulations.

not relevant by performing test simulations where the PV is set to zero at each time
step.

Because of the incompressibility, Fu and Fw are calculated through a scalar field Ψ
such that (Fu, Fw)=∇

⊥Ψ . At each time step, the forcing is defined in Fourier space
by

Ψ̂ =−C
ε1/2

kf
e−(K−kf )

2/21KG(k, l), (5.1)

where ·̂ denotes the Fourier transform, C is a normalization constant, K =
√

k2 +m2,
1K measures the concentration of forcing in the spectral space and G is a unit
variance Gaussian random variable, which is designed to ensure a real ψ . In our
simulations 1K = 1 and C is a chosen number which makes the total energy input
rate equals ε.

From dimensional analysis, we define the usual Ozmidov scale

lO = 1/kO = ε
1/2/N3/2

= ε1/2/f 3/2 (5.2)

as the scale at which the nonlinear time scale matches the linear, wave time scale.
Basically, the size of lO measures the strength of the forcing, i.e. the stronger
the forcing the larger lO will be. The overall dynamics of the turbulent system is
controlled by the relative size of lf and lO. We explore the range of possibilities by
showing three simulations with lO � lf , lO ∼ lf and lO � lf , respectively. We name
these three regimes the strong forcing regime, intermediate forcing regime and weak
forcing regime. It will be seen that in each case the downscale total energy flux
predicted in § 3 is verified and the corresponding structure functions agree with the
theory.

We apply hyperviscosity operators νh∇
6 to all fields, which by dimensional analysis

introduces the dissipation scale lν = 1/kν = (ν3
h/ε)

1/16. With adjusted coefficients
νh = 10−13, 5 × 10−13 and 10−13 for the three simulations, the dissipation scales
are lν ≈ 0.005, 0.0067 and 0.0067, which correspond to kν ≈ 200, 150 and 150,
respectively. We chose a smaller dissipation scale for the first simulation because we
want to observe a clear downscale energy flux when the forcing is strong. The initial
conditions are zero in each run. The parameters used in the three simulations in the
following subsections are shown in table 1. Notably, lO is smaller than the domain
size in all cases.

5.1. Strong forcing regime (lO� lf )
In this section we show the result of a simulation with lO� lf by choosing kf = 64
and ε = 0.01 in (5.1), therefore the Ozmidov wavenumber kO ≈ 10 and the Ozmidov
scale is much larger than the forcing scale. We show the energy evolution in figure 3.
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FIGURE 3. Energy evolution of u- and w-kinetic energy Eψ , v-potential energy Ev and
potential energy Eθ for the strong forcing regime simulation.

At the final state the kinetic energy Eψ =
∫
(u2
+ w2) dx/2, the v-‘potential energy’

Ev =
∫
v2 dx/2 and the buoyancy potential energy Eθ =

∫
θ 2 dx/2 are all statistically

steady. The steadiness combined with the ergodicity assumption enable us to replace
ensemble averaging by time averaging, and all statistical quantities are obtained by
time averaging over the interval t∈ [40, 100]. It is clear from figure 3 that the kinetic
energy is much larger than the potential energy, but nevertheless the potential energy
turns out to be crucial for the overall energy dynamics. In figure 4 we show snapshots
of u, w, M = x + v and S = z + θ at time t = 100. The u and w figures show
that they separately have patterns with directionality, but we will show later that the
combinations of them in the third-order structure functions become isotropic. We also
observe the similarity of the patterns and the matching magnitudes between v and
θ . These images show very strong deformations and curdling of the material lines of
constant M or S at the forcing scale lf , where the excess of the kinetic energy over
the potential energy is somewhat akin to a pendulum going over the top. However, at
scales lO or above the restoring effect of the waves becomes important and changes
the dynamics.

5.1.1. Spectral energy-flux diagnostics
The azimuthally integrated kinetic and effective potential energy spectral equations

are

d
dt

∫ 2π

0

1
2
{|û|2 + |ŵ|2}K dα +

d
dK

FK +C= forcing + dissipation, (5.3a)

d
dt

∫ 2π

0

1
2
{|v̂|2 + |θ̂ |2}K dα +

d
dK

FP −C= dissipation, (5.3b)

where

FK =

∫ K

0

∫ 2π

0

1
2

(
û∗u · ∇u
∧

+ ŵ∗u · ∇w
∧

+ c.c.
)
κ dκ dα, (5.4a)
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FIGURE 4. Snapshots of u, w, M = x + v and S = z + θ at time t = 100 for the strong
forcing simulation.

and

FP =

∫ K

0

∫ 2π

0

1
2

(
v̂∗u · ∇v
∧

+ θ̂∗u · ∇θ
∧

+ c.c.
)
κ dκ dα (5.4b)

are the kinetic and effective potential energy fluxes, respectively,

C=−
∫ 2π

0

1
2

(
û∗v̂ + ŵ∗θ̂ + c.c.

)
K dα (5.5)

is the conversion term, K =
√

k2 +m2, α = arctan(m/k) and c.c. denotes the complex
conjugate. We show the energy fluxes in figure 5 and the story is as follows. The
energy is injected as kinetic energy at the forcing scale, and then it is first transferred
to larger scale as indicated by the negative value of the blue curve in the regime
K < kf . This upscale energy transfer is expected since the buoyancy terms are weak
compared with the kinetic terms when the considered wavenumber is larger than
the Ozmidov wavenumber, so in this wavenumber regime, the dynamics is expected
to be dominated by the inverse kinetic energy cascade of standard two-dimensional
turbulence. The inverse kinetic energy flux stops at the Ozmidov wavenumber kO≈ 10,
where the kinetic energy is converted into the effective potential energy of v and θ .
Thereafter, the effective potential energy moves downscale and is finally dissipated
around the dissipation scale. Arguably, the downscale effective potential energy
transfer at large wavenumbers could be expected because when k> kO the buoyancy
scalars behave like passive scalars, which naturally follow downscale cascade (cf.
Warhaft 2000). This process is illustrated by the positive red curve.
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FIGURE 5. Kinetic (FK), effective potential (FP) and total (Ftot = FK + FP) energy
fluxes for the strong forcing regime simulation. The dashed line is the 0-line which is
plotted for a reference. The circle and cross mark the forcing and Ozmidov wavenumbers,
respectively.
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FIGURE 6. Energy budget (5.4) for the strong forcing regime simulation. The dashed lines
are the residues ‘forcing+ dissipation− dFK − C’ and ‘dissipation− dFP + C’ in the two
panels, respectively.

In summary, the effective potential energy flux and the kinetic energy flux oppose
each in other in spectral space, but the total energy transfer (yellow curve) is purely
downscale due to the remarkable cancellation between the FK and FP in the regime
of K< kf , justifying that we did not need a large-scale damping to ensure the system
(4.1) reaches a statistically steady state. Thus, figure 5 provides direct evidence for
the downscale total energy transfer, which is consistent with our heuristic argument
in § 3. Combining the saturated kinetic and potential energy ratio (cf. figure 3), it
is remarkable to observe that only a relatively small amount of potential energy is
required to produce a net positive total energy transfer to small scales. The detailed
kinetic and effective potential energy budgets (5.4) are shown in figure 6 and the
illustrative figure 7 gives a cartoon of the energy-flux loop in the system. The
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Forcing
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FK

FP

KE
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K

K

FIGURE 7. Illustration of the flux-loop energy transfer processes. The upper level
represents kinetic energy and the lower level represents effective potential energy; FK and
FP denote the kinetic and effective potential energy transfer flux. Wavenumber increases
to the right. Conversion occurs around the Ozmidov wavenumber.
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FIGURE 8. Two-dimensional ∇ ·VK and ∇ ·VP averaged over t∈ [40, 100] for the strong
forcing regime simulation.

above picture is clearest when discussed in terms of kinetic energy and effective
potential energy, as the latter includes both v2 and b2 and those fields both follow a
downscale cascade in our two-dimensional system. If instead the standard potential
energy definition were used, then v2 would count in the kinetic energy budget, which
therefore contains a mixture of terms that move upscale as well as downscale. We
checked that this would not change the qualitative picture in figure 5.

5.1.2. Isotropic structure function diagnostics
We show ∇ ·VK and ∇ ·VP in figure 8 to validate the isotropy assumption.
In figure 9 we show the one-dimensional ‘measurement’ along the x-axis of

V1D(x)= δu(x)
(
δu(x)2 + δw(x)2 + δv(x)2 + δθ(x)2

)
(5.6)

and compare it with the theoretical result (4.20). Even though the measurement and
the theoretical results have a big discrepancy at large x, where the convergence of the
statistical quantities would require a much longer integration time, the inset shows
very good matching in the region of moderate x. Indeed, the black dashed line in
the inset indicates that this matching range is much larger than that of the classic
asymptotic result V1D = −2εx, which is merely a small x approximation of our full
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FIGURE 9. Comparison between the one-dimensional measurement (5.6) and the
theoretical result (4.20) for the strong forcing simulation. Panel (b) zooms in on the
interval of x∈ [−0.4, 0.4], where the black dashed line represents the local approximation
V1D ≈−2εx for small x.
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FIGURE 10. One-dimensional V(x) along the x-axis and its decompositions VK and VP.

expression (4.20). In addition, we verify that the observable structure function is not
sign definite and sign reversals persists for a long range compared with the forcing
scale without significant magnitude decrease. As mentioned before, this indicates
caution for attempts to diagnose the direction of energy flux based just on the sign
of an observed third-order structure function.

In figure 10 we show the decomposition of V into the kinetic and effective potential
parts, VK and VP, respectively. We find that VP and VK are much larger than their
summation V , which consists with the flux-loop scenario that the total energy transfer
to small scales is the subtraction of upscale kinetic energy transfer from the downscale
potential energy transfer. Clearly, measuring one component is not enough to imply
the total energy transfer.

We now demonstrate the key result from an observational point of view: the
spectral energy flux F(K) can be recovered accurately from observations of the
one-dimensional function V(x). Theoretically, we can obtain F(K) from a measured
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FIGURE 11. Comparison between the spectral total energy flux recovered from the
structure function V using (5.8) F(5.8) and that obtained from direct statistics FDS in the
strong forcing regime. The red line marks the level of ε = 0.01, the circle marks the
forcing scale and the black dashed line is the 0-line for reference.

V(x) through (e.g. Frisch 1995)

F(K)=−
1

16π2

∫ K

0
κ dκ

∫ 2π

0
dα
{∫

∞

−∞

∫
∞

−∞

∇ ·Ve−ik·rdx dy
}
, (5.7)

where we first take the Fourier transform of ∇ ·V to obtain the spectral energy transfer
function and then integrate it within a disk of radius K. After integrating by parts and
simplification, (5.7) becomes (cf. (5.8) in Xie & Bühler (2018))

F(K)=−
K2

4

∫
∞

0
V(r)J2(Kr) dr. (5.8)

In figure 11 we compare the recovered F(K) against the exact solution, and clearly
both the forcing scale and total energy transfer rate are recovered with acceptable
accuracy. In calculating the integration in (5.8) we simply applied the trapezoidal
method. Since we know that the Bessel functions are oscillatory, a better algorithm
will give us better results. But this simple integration implies that applying expression
(5.8) is robust.

5.2. Intermediate forcing regime (lO ∼ lf )
In this section we show the results of a simulation with in kf = 8 and ε = 0.01 in
(5.1). Therefore the Ozmidov wavenumber is kO ≈ 10, which is comparable with kf .
We show the energy evolution in figure 12. At the final state the kinetic energy, the
v-potential energy Ev and the potential energy Eθ are statistically steady. In figure 13
we show the snapshots of ∇ψ , u, M= x+ v and S= z+ θ at time t= 100. The figures
are similar to figure 4, but since we have more wavenumber space below the forcing
scale, we see finer small-scale structures. We show the kinetic (FK), effective potential
(FP) and total (Ftot = FK + FP) energy fluxes flux in figure 14. The potential energy
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FIGURE 12. Evolution of the kinetic energy Eψ , v-potential energy Ev and potential
energy Eθ for the intermediate regime.
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FIGURE 13. Snapshots of u, w, M = x + v and S = z + θ at time t = 100 for the
intermediate regime.

is transferred downscale (red curve); the kinetic energy is mainly transferred upscale
with a small amount of downscale transfer at small scales. The total energy – potential
plus kinetic energies – transfer shows a clear plateau associated with a downscale flux
(yellow curve).
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FIGURE 14. Kinetic (FK), effective potential (FP) and total (Ftot) energy fluxes for the
intermediate regime. The dashed line is the 0-line which is plotted for reference, while
the circle and cross mark the forcing and Ozmidov wavenumbers, respectively.

Based on figure 7, we can describe the energy path. The energy is injected as
kinetic energy, but, since the Ozmidov scale is comparable with the forcing scale,
conversion into effective potential energy takes place immediately, and indeed the
location of the peak of the conversion term is at K = kf = 8. The total energy flux
is robustly downscale and dominated by the effective potential energy. The kinetic
energy follows the downscale transfer somewhat reluctantly, as its own contribution to
the energy flux is robustly negative. Interestingly, as indicated by the non-constancy
of both fluxes, conversion from effective potential to kinetic energy takes place at all
wavenumbers larger than kO but less than the dissipation range.

With regard to the structure function, we have checked the isotropy of ∇ · VK
and ∇ · VP, but since they do not provide us much more information compared
with the ones shown in the first numerical simulation (cf. figures 6 and 8.), we do
not show them. The comparison between the one-dimensional measurement (5.6)
with the theoretical result (4.20) is shown in figure 15. Panel (a), we show that the
measurement and the theoretical results match well for several oscillations of the
Bessel function, and the panel (b) presents the limiting V ∼−2εr behaviour for small
r in a log–log coordinate. We stress that the relation (4.20) provides us more than
the commonly used asymptotic linear dependence of V on r and we should consider
the Bessel function structure if the real space measurement is considered. In figure 16
we show the decomposition of V into VK and VP. We find that VP is dominant and
VK presents a opposite sign compared with V and VP for small x. This implies that
if we use only the kinetic component to detect the total energy flux, we obtain a
qualitatively wrong result. Finally, in figure 17 we show the recovered spectral total
energy flux. Both the forcing scale and total energy transfer rate are recovered with
acceptable accuracy.

5.3. Weak forcing regime (lO� lf )

Here kf = 8 and ε = 10−4 in (5.1), therefore the Ozmidov wavenumber is kO = 100,
which is much larger than the forcing wavenumber. We show the energy evolution in
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FIGURE 15. Comparison between the numerical and theoretical results of the one-
dimensional V(x) expression along the x-axis for the intermediate regime. Panel (b) shows
a log–log coordinate plot. The red and blue colours denote the negative and positive
values, respectively. The black line has the same slope as x.
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FIGURE 16. One-dimensional V(x) along the x-axis and its decompositions VK and VP
for the intermediate regime.

figure 18. A major difference between this simulation and the previous two is the clear
appearance of linear inertia–gravity oscillation at the only available linear frequency,
which is ω= 1. This manifests as oscillations between the various energy components
at a period around π, corresponding to twice the wave frequency. Essentially, in this
case the forcing is so weak that conversion takes place immediately, and the flow
near the forcing scales consists of nearly linear inertia–gravity waves. This is also
borne out by the apparent equipartition of energy in figure 18, i.e. Eψ ≈ Ev + Eθ
holds, which is consistent with linear waves. In figure 19 we show snapshots of u, w,
x+ v and z+ θ at time t= 250 and the energy fluxes are depicted in figure 20. The
effective potential energy is again transferred downscale (red curve), but the direction
of the kinetic energy change now depends on wavenumber (blue curve). A heuristic
explanation for this is as follows. Far below the Ozmidov wavenumber weakly
nonlinear wave dynamics is dominant and the fluxes of both potential and kinetic
energy are therefore synchronized and downscale. Then, as the Ozmidov wavenumber
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FIGURE 17. Comparison between the spectral total energy flux recovered from the
structure function V using (5.8) F(5.8) and that obtained from direct statistics FDS in the
intermediate regime. The red line marks the level of ε= 0.01, the circle marks the forcing
scale and the black dashed line is the 0-line for reference.

is approached, the flow loses its nearly linear synchronization and the previously
observed intrinsic upscale flux tendency of the kinetic energy can manifest itself.
The comparison between the one-dimensional measurement (5.6) with the theoretical
result (4.20) is shown in figure 21. Since we only measure the total energy flux,
based on (4.20) the results are identical to those of the lO ∼ lf case (cf. figure 15),
but of a different magnitude. Figure 22 shows the decomposition of V into the kinetic
and effective potential parts, VK and VP, respectively.

In figure 23 we show the recovered spectral total energy flux.

5.4. Control run with PV forcing
In the previous three simulations we did not force the PV, so the flow regimes were all
versions of wave turbulence. Forcing the PV in a three-dimensional simulation would
greatly affect the solution, but, as discussed before, in the two-dimensional case the
balanced flow has essentially no intrinsic dynamic evolution of its own. The robustness
of the two-dimensional wave turbulence picture is confirmed here with a simulation
that allows for additional forcing of PV. We illustrate that the downward total energy
transfer remains robust, and occurs regardless of the specific forcing components. This
simulation uses all the parameters of the strong forcing regime experiment in § 5.1,
except that we add additional external buoyancy forcing Fv and Fb (cf. (4.1)) and set
the total potential energy input rate equals 0.005, one half of the kinetic energy input
rate ε = 0.01.

In figure 24 we show the spectral energy flux and one-dimensional structure
function V(x) in this simulation. In panel (a) we find that the energy flux-loop
scenario remains: the input kinetic energy is first transferred upscale, then it is
converted to the potential energy, which fluxes downscale. The conversion happens
around the Ozmidov scale, which should now be estimated using the kinetic energy
input rate and is therefore the same as that in the vortex experiment (kO ≈ 10).
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FIGURE 18. Evolution of the kinetic energy Eψ , v-potential energy Ev and potential
energy Eθ for the case with lO� lf .
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FIGURE 19. Snapshots of u, w, x+ v and z+ θ at time t= 100 for the case with lO� lf .

Below the forcing scale, the downscale potential energy flux consists of two part,
one is the converted kinetic energy and the other is the direct input of potential
energy from the external forcing. In the right panel we confirm that the theoretical
expression (4.20) remains valid due to the downscale total energy transfer. We also
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FIGURE 20. Kinetic (FK), effective potential (FP) and total (Ftot) energy fluxes. The
dashed line is the 0-line which is plotted for reference; the circle and cross mark the
forcing and Ozmidov wavenumbers, respectively.
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FIGURE 21. Comparison between the numerical and theoretical result of the one-
dimensional V(x) expression along the x-axis in the weak forcing regime. Panel (b) shows
a log–log coordinate plot. The red and blue colours denote the negative and positive
values, respectively. The black line has the same slope as r.

checked the intermediate and weak forcing regimes with additional buoyancy forcing,
and they both show total energy transfer downscales. But because that they are less
complicated compared with the flux-loop scenario, we do not show them in the text.

6. Multiple forcing scales

For standard two-dimensional isotropic turbulence Xie & Bühler (2018) showed
how to compute both the longitudinal and transversal third-order velocity structure
functions exactly, which when summed up yield the total V(r). This quite complete
theory allowed some simple robust diagnostics to be formulated that allowed
sharpening the estimates of spectral energy fluxes in the presence of multiple forcing
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FIGURE 22. One-dimensional V(x) along the x-axis and its decompositions VK and VP in
the weak forcing regime.
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FIGURE 23. Spectral total energy flux recovered from the structure function V using (5.8)
for the weak forcing regime simulation. The red line marks the level of ε = 10−4.

scales, in which case energy and enstrophy cascade regions can overlap. Essentially,
by using particular linear combinations of the longitudinal and transversal structure
functions it was possible to filter out the enstrophy flux terms and highlight the
energy flux terms.

In the present case there is no enstrophy flux, which simplifies the situation, but on
the other hand we do not have a theory for the individual constituents of V(r) in § 4,
which complicates matters. Still, we can make use of the exact Bessel function form
of V(r). Now, as shown in Xie & Bühler (2018), for scales larger than the forcing
scale in two-dimensional turbulence, the Bessel correction is of high order compared
with the r dependence due to the inverse cascade, however, in our present set-up the
Bessel function dominates the large scale, so making use of the Bessel function is
unavoidable. Here, we show two methods of determining the forcing scale and energy
input strength in the configuration space and spectral space, respectively.
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FIGURE 24. Energy fluxes (a) and the comparison between the numerical and theoretical
result of the one-dimensional V(x) expression along the x-axis (b) for the case with PV
forcing. The circle and the cross mark the forcing and Ozmidov scales, respectively.

6.1. Configuration space detection
We consider an idealized experiment with external forcing at three wavenumbers k1=

10, k2= 103 and k3= 105 with equal energy input rate ε1= ε2= ε3= 1. The theoretical
result (4.20) indicates that the forcing at each scale contribute to the structure function
by Vi =−4εiJ1(kix), so the total structure function can be expressed as V =

∑3
i=1 Vi.

Based on the expansion of J1 we plot ε̃ =−V/(2x) in figure 25, where the height of
plateaus indicates the energy input rate below this scale. e.g. in this figure we observe
four plateaus with height 3, 2, 1 and 0, and the second plateau implies that below this
scale the energy input rate is 2, which equals ε1 + ε2.

However, it is not so easy to determine what is the forcing wavenumber (scale)
since the transitions between plateaus expand over a decade. Now the Bessel
oscillation gives us an advantage that it has zero points, based on which we propose to
use the value of the plateaus and the first zero of J1(x), x= a1= 3.8317, to determine
the forcing wavenumber: we extend the plateau value to its left and find the leftmost
intersection with the ε̃ curve, then we can calculate the forcing wavenumber using
the x value of the intersection point by a1/x. We check this approach in figure 25 by
the solo intersection of the blue, red and black curves.

We want to note that the negative value of ε̃ in figure 25 does not indicate a change
in the direction of energy flux, and, in fact, the direction of total energy transfer is
downscale for the whole range.

6.2. Spectral space detection
The advantage of detection in the configuration space is that we can use the directly
measurable quantities. However, due to the oscillatory nature of the Bessel function,
when two forcing scales are close it is hard to separate their effects on the measurable
third-order structure function V . In this section, we propose using (5.8) to detect
forcing scales and energy input rate in the spectral space. This method involves
processing the measured date with an integration, whose accuracy will depend on
the noise level of the measured data, but as we show in the numerical simulations,
equation (5.8) can robustly detect the forcing scale sharply, which enables us to deal
with the situations with close forcing scales.
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FIGURE 25. Log-normal plot of ε̃ = −V/(2x) for an equal-strength external forcing at
wavenumbers k1 = 10, k2 = 103 and k3 = 105. The red dashed lines have vertical values
equal to those of the plateaus. The vertical back lines have horizontal coordinates equal
to a1/ki with a1 the first non-zero zero of J1.
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FIGURE 26. Structure function for the toy model (6.1). The circles mark the forcing scales
1/10, 1/30 and 1/50. The inset in (a) zooms in on the region around forcing scales. In
panel (b) the blue and red curves mark the positive and negative values, respectively.

We consider an artificial forcing at three scales kf = 10, 30 and 50 with strength
ε, 2ε and 2ε, respectively. So the corresponding structure function is

V =−4ε 1
10 J1(10r)− 8ε 1

30 J1(30r)− 8ε 1
50 J1(50r). (6.1)

First, figure 26 shows that it is hard to determine the forcing scales and the
corresponding energy inputs by simply plotting (6.1) in the configuration space.
Even though in panel (b) we can find the total energy flux by matching the small-r
slope, but no detailed information of external forcing at each forcing scale can be
obtained.

In figure 27 we show that using (5.8) both the forcing scales and corresponding
energy inputs can be well detected. So we conclude that if the accuracy of
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FIGURE 27. Energy flux of the toy model obtained from structure function. The red lines
mark energy-flux levels 1, 3 and 5; the circles mark the forcing scales 10, 30 and 50.

measurements permits, it is better to apply (5.8) to detect the external forcing
information from the spectral space.

7. Concluding comments
Our primary goal in this paper has been to extend the classical structure function

theory towards applicability in highly nonlinear rotating stratified flow, and we
achieved that goal within the confines of our peculiar two-dimensional isotropic
model of inertia–gravity wave turbulence. Despite its simplicity, this system exhibited
an interesting range of behaviours as a function of the forcing strength. Essentially, the
behaviour of the system was strongly nonlinear at wavenumbers above the Ozmidov
wavenumber kO, which in the strong forcing case allowed for significant upscale flux
of the in-plane kinetic energy. This occurred because of the approximate conservation
of y-vorticity at the strongly nonlinear wavenumbers above kO. This is of course very
different from the exact conservation of balanced PV in three-dimensional rotating
stratified turbulence (cf. Alexakis & Biferale 2018).

At and below kO the dynamics becomes increasingly more linear, and significant
conversion of kinetic to effective potential energy can take place. Once excited, the
effective potential energy flux was robustly downscale and that led to the overall
downscale flux of energy observed in all cases. This makes clear that a downscale
wave energy flux is not confined to small-amplitude weak wave turbulence, but occurs
at large amplitude as well, provided the domain is large enough to accommodate the
Ozmidov scale. Interestingly, our third simulation with weak forcing is close to the
regime of weak wave theory. Due to the peculiar dispersion relation ω2

= 1 there
can be no resonant triad interactions, but resonant quartets are plentiful, and could
presumably be studied using methods from weak surface wave turbulence.

From a theoretical point of view, we derived the exact inviscid solution

V(r)=−
4
r

∫ r

0
P(s)s ds (4.18)

for the third-order structure function away from the dissipation range. At first sight
this solution mimics the one obtained by Xie & Bühler (2018), but the opposite
directions of the energy flux distinguishes the two: in the range of scales larger than
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the forcing scale, the third-order structure function of two-dimensional turbulence
shows a linear dependence on the displacement r with small oscillations, while in the
two-dimensional rotating stratified turbulence, it is dominated by the Bessel function
and therefore is not sign definite, which is similar to that in the three-dimensional
turbulence. Such forcing-scale-resolving expressions are important for their potential
applications to geophysical flows, where the forcing scales vary a lot due to very
distinct mechanisms that are in play.

Here we feel that a crucial puzzle piece is given by the expression

F(K)=−
K2

4

∫
∞

0
V(r)J2(Kr) dr, (5.8)

which relates the spectral energy flux F(K) and the structure function V(r). In
principle, from this relation one can detect the scales of the external forcing and the
corresponding energy inputs based on using measured third-order structure functions.
It is interesting to note that (5.8) can be inverted exactly to yield

V(r)=−4r
∫
∞

0

1
K

F(K)J2(Kr) dK. (7.1)

So this equation enables the calculation of the structure function V(r) from a
prescribed energy flux F(K), albeit in a manifestly non-local manner. For example,
consider a situation with bidirectional energy transfer such that

F(K)=−εu + (εu + εd)H(K − kf ), (7.2)

where εu and εd are the magnitudes of the upscale and downscale energy fluxes and
kf is the forcing wavenumber. Then (7.1) gives

V(r)= 2εur− 4
εu + εd

kf
J1(kf r), (7.3)

which describes a reasonable form for the structure function in a two-dimensional
bidirectional energy transfer turbulence. And we can easily check that taking εu = 0
or εd = 0, equation (7.3) recovers the results of two limiting cases with unidirectional
energy transfer, which are studied in this present paper (cf. (4.20)) and Xie & Bühler
(2018) (cf. (4.9b) therein).

We want to stress again that expressions such as (5.8) and (7.1) are non-local in
K and r. They contrast to previous theories (cf. Kolmogorov 1941; Bernard 1999)
where the structure functions are described by a power function of the displacement
r in limiting inertial ranges, which makes it hard to glue the piecewise expressions in
different ranges together to obtain a global, uniformly valid expression. In application,
such an expression that applies to a wide range is useful: when the power laws are
not obvious, the obtained exponents depend on the measured range, but matching
a wide-range expression does not have this problem. In addition, it can make use
of the data between the power-law regions! For example, bidirectional total energy
transfer is observed in confined rotating turbulence (Deusebio et al. 2014b) and
magnetohydrodynamic turbulence (Marino et al. 2008, 2012; Seshasayana, Benavides
& Alexakis 2014; Seshasayana & Alexakis 2016) and ongoing work indicates that
(7.3) appears quantitatively useful in this application.
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