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We present a theoretical and numerical study of the decay of an internal wave caused
by scattering at undulating sea-floor topography, with an eye towards building a
simple model in which the decay of internal tides in the ocean can be estimated.
As is well known, the interactions of internal waves with irregular boundary shapes
lead to a mathematically ill-posed problem, so care needs to be taken to extract
meaningful information from this problem. Here, we restrict the problem to two
spatial dimensions and build a numerical tool that combines a real-space computation
based on the characteristics of the underlying partial differential equation with a
spectral computation that satisfies the relevant radiation conditions. Our tool works
for finite-amplitude topography but is restricted to subcritical topography slopes.
Detailed results are presented for the decay of the gravest vertical internal wave
mode as it encounters finite stretches of either sinusoidal topography or random
topography defined as a Gaussian random process with a simple power spectrum.
A number of scaling laws are identified and a simple expression for the decay rate
in terms of the power spectrum is given. Finally, the resulting formulae are applied
to an idealized model of sea-floor topography in the ocean, which seems to indicate
that this scattering process can provide a rapid decay mechanism for internal tides.
However, the present results are restricted to linear fluid dynamics in two spatial
dimensions and to uniform stratification, which restricts their direct application to
the real ocean.
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1. Introduction
1.1. Internal tides in the ocean

Internal gravity waves are an essential component of the dynamics of the ocean.
Not only are they the most energetic form of fluid motion at small scales, but
they also provide an important contribution to small-scale mixing, especially in the
vertical, via the three-dimensional (3D) turbulence that is induced in localized regions
where the waves are unstable and break. Broadly speaking, such turbulent vertical
mixing across the stable stratification surfaces of constant density, say, is vital for
the functioning of a global ocean overturning circulation, in which particles must
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be allowed to cross these density surfaces. It is believed that the breaking of small-
scale internal waves in the ocean interior, together with cross-stratification mixing at
outcropping stratification surfaces at the ocean surface and the sea floor, is the major
agent for ‘lubricating’ the vertical branches of the global overturning circulation (e.g.
Kunze & Llewellyn Smith 2004; Wunsch & Ferrari 2004). The details of the interplay
between wave-induced small-scale mixing and the large-scale ocean circulation are
still actively debated today, but certainly all current numerical ocean models include
a parameterization of such wave-induced interior vertical mixing in order to be able
to simulate a realistic ocean circulation.

In this area much recent research has been devoted to the role of internal tides,
i.e. internal waves connected to the lunar or solar gravitational tidal forcing. Here
the emphasis has been on the semi-diurnal, M2 tide and especially on the process
of so-called tidal conversion, in which the barotropic, depth-independent M2 tide
generates new internal tides with non-zero vertical wavenumbers via interaction with
undulating sea-floor topography (e.g. Balmforth, Ierley & Young 2002; Garrett 2003;
Llewellyn Smith & Young 2003; Petrelis, Smith & Young 2006; Bühler & Muller
2007; Garrett & Kunze 2007; Balmforth & Peacock 2009; Muller & Bühler 2009).
The concomitant conversion of barotropic tidal energy into wave energy at smaller
scales is viewed as a first step in a cascade of energy to smaller scales that ultimately
provides the turbulent energy required for the vertical mixing.

Theoretical and observational studies of tidal conversion at isolated large
topography features such as the Hawaiian ridge have suggested that a large fraction
of the internal tide energy so generated propagates away from the feature in the form
of modes with very low vertical wavenumber (e.g. St Laurent & Garrett 2002). This
raises the question of how far these low-wavenumber modes can propagate in the
horizontal before they have lost their energy to other forms of motion (e.g. Alford
2003; Zhao et al. 2010). This is an important question not least because it is a central
tenet of wave–mean interaction theory that the mean circulation typically ‘feels’ the
presence of waves not at their generation site, but at their dissipation site (e.g. Bühler
2009). So it makes a difference whether such low-wavenumber tides can propagate a
few hundred or tens of thousands of kilometres away from their site of generation.

There are a number of dynamical mechanisms that can draw energy from an
internal wave, for example nonlinear wave–wave interactions with other internal
waves, or nonlinear interactions between the waves and the slower mean circulation.
However, in this paper we are looking at a linear mechanism, namely the interactions
of a propagating wave mode with rough sea-floor topography that we model as
a random function. The rough topography scatters the incoming wave into other
spectral components and by this simple process draws energy away from the primary
wave. Our aim is to show that this provides a surprisingly efficient decay mechanism
even for random, irregular topography.

1.2. Modelling wave interactions with sea-floor topography

This would appear to be a standard wave problem that should hold no surprises,
but the mathematical problem for studying this scattering process involving internal
waves is actually very unusual, because it involves solving a hyperbolic partial
differential equation (PDE) for the spatial structure of the waves. Indeed, in two
spatial dimensions, which is the idealized case we look at here, the governing PDE can
be solved formally using the method of characteristics. This leads to the well-known
fact that the problem of computing the spatial structure of internal wave in bounded
domains is an ill-posed mathematical problem, a fact that has been discovered and
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rediscovered numerous times in the fluid literature; for example, Sobolev noted it
in the context of the mathematically analogous problem of wave motion in rotating
containers such as fuel tanks for rockets (see p. 335ff. in Arnold & Khesin 1998, who
gave the reference Sobolev 1954). The physical manifestation of the ill-posedness is
the focusing of wave energy in small regions, which then become the natural seeds
for wave instability and breaking. Under suitable conditions the location of the wave
focusing regions can be analysed using dynamical systems methods and by now this
is a well-understood problem (e.g. Maas & Lam 1995).

Earlier work directly related to this problem in oceanography includes the study
of wave-beam reflection by Longuet-Higgins (1969) and the papers by Muller &
Xu (1992) and Muller & Liu (2000a ,b) on oceanic internal wave scattering. In the
present paper, we combine and slightly extend techniques from these papers to build
a numerical tool with which we can study the decay of a mode-one internal tide due
to interactions with sea-floor topography over a substantial length of propagation.
As is clearly laid out in Muller & Liu (2000a), this requires combining the method
of characteristics with a spectral method in order to satisfy the horizontal radiation
conditions for the scattering problem.

To make progress, we make a number of simplifying assumptions, namely we
restrict to two dimensions (one horizontal and the other vertical), we ignore other
fluid motion apart from the linear waves, and we treat the Coriolis frequency f and
the buoyancy frequency N as constants. Treating f as a constant is quite realistic
for the small-scale problem we are looking at, but N is a strong function of depth z

in the real ocean, with very low values in the thin mixed layer on top of the ocean,
higher values of N in the upper ocean, and then again much reduced values in the
deep, abyssal ocean. In principle, this could lead to important wave reflection effects
in regions of strong gradients of N . However, previous experience with variable N

in studies of tidal conversion has indicated that very often allowing for variable N

gently modifies but does not change in a fundamental way the results for constant
N . Moreover, a recent study by Grimshaw, Pelinovsky & Talipova (2010) shows that
there are realistic-looking profiles of N(z) that are entirely reflection-free, i.e. for these
profiles reflectionless Wentzel–Kramers–Brillouin (WKB)-theory for internal waves
gives exactly the right answer. Still, it would of course be very useful to extend our
results towards realistic profile for N . This is particularly important for comparison
with observational ocean case studies.

Another simplifying assumption is that we assume that the topography is subcritical
throughout, i.e. the topography slope is everywhere less than the natural propagation
angle of the internal waves at the sea floor. This is a reasonable though not perfect
assumption for ocean topography away from major ridges and isolated features.
Notably, for our numerical tool we do not assume that the topography is small, just
that its slope is less than a certain O(1) value.

We applied our numerical tool to two kinds of topography: a stretch of deterministic
sinusoidal topography and a stretch of random topography with specified covariance
structure. In the first case, we obtain strong wave focusing if the wavenumber of
the topography matches the wavenumber of a freely propagating internal mode in
a finite-depth ocean. This is as expected from the previous work on wave focusing
in bounded containers, to which the present situation is analogous in this case. This
part of the paper is also well suited for comparisons with laboratory experiments.

In the case of random topography, which is the suitable case for the ocean
application, we obtain scaling results for the exponential decay of the expected wave
energy flux, at least in a certain limit of uncorrelated small-amplitude topography.
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This leads to a very surprising expression for the exponential decay rate, because
the decay rate appears to be independent of the values of N and f and even of
the frequency of the primary tide. This surprising result could not have been derived
using dimensional analysis.

We then apply our scheme to a simplified model spectrum for sea-floor topography
in the ocean, for which we obtain a quantitative estimate for the exponential decay
length that indicates that the scattering off the sea floor is a very efficient decay
mechanism for the mode-one tide.

The outline of the paper is as follows. In § 2, the governing equations are formulated
and the solution method is outlined in detail. In §§ 3 and 4, the wave focusing
is examined for deterministic and random topography and is followed in § 5 by a
detailed examination of the scaling laws for the decay rate in the random case. The
application to the ocean spectrum is given in § 6 and concluding comments are offered
in § 7.

2. Governing equations and solution method
2.1. Governing equations

We model the problem with the two-dimensional (2D) rotating linear Boussinesq
system in a vertical slice geometry, in which all fields depend on the horizontal and
vertical coordinates x and z only. Although the fields are independent of the other
horizontal coordinate y, there is a non-zero velocity in the y-direction due to the
Coriolis force. The governing equations for the velocity u = (u, v, w), buoyancy b and
scaled perturbation pressure P are

ut − f v + Px = 0, vt + f u = 0, wt + Pz = b, bt + N2w = 0, (2.1)

and the incompressibility constraint ux+wz =0. Here the Coriolis parameter f and the
buoyancy frequency N are both taken to be constant and we neglect ‘non-traditional’
vertical Coriolis forces.

Using a streamfunction ψ(x, z, t) such that u = ∂zψ , w = −∂xψ reduces (2.1) to

(N2 + ∂tt )∂xxψ + (∂tt + f 2)∂zzψ = 0. (2.2)

This omits a steady balanced vortical solution described by the linear potential
vorticity q = vx + f bz/N

2, which satisfies qt = 0. However, for internal waves q = 0
everywhere and then (2.2) captures all the dynamics. We use a channel geometry
with unbounded extent in the x-direction and rigid top and bottom boundaries at
the ocean surface z = H and the ocean floor z = h(x). The no-normal-flow boundary
conditions are

ψ(x, H, t) = ψ(x, h(x), t) = 0, (2.3)

which excludes any net current along the channel. The sea-floor topography h(x)
is taken to be zero outside of a compact region x ∈ [0, L], see figure 1. We do not
require h(x)/H to be infinitesimal, although we do assume that the slope dh(x)/dx is
subcritical in the sense defined below (2.6). We loosely call the domain of the problem
a region whose horizontal extent is slightly larger than the region where h(x) may
vary, and speak of waves ‘entering’ or ‘exiting’ this domain in the sense of group
velocity. The waves which enter the domain on the left are specified in advance while
the transmitted waves on the right-hand boundary and the reflected waves on the
left-hand boundary must then obey a horizontal radiation condition, which requires
that any additional energy flux be directed away from the topography.
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Figure 1. Geometry of the problem and boundary conditions. The domain is enclosed by
a dashed line. The primary wave is incident from the left and scattering at the topography
creates transmitted and reflected waves to the right and the left, respectively.

We look for time-periodic solutions with a given frequency such as the frequency
of the M2 internal tide, which we assume is above f and below N . Therefore, we fix
ω > 0 such that N >ω > f and look for solutions of the form

ψ(x, z, t) = ReΨ (x, z) e−iωt (2.4)

with the complex-valued function Ψ (x, z) to be found. Notably, although the wave
field is periodic in time, the horizontal radiation conditions provide a causal structure
to the problem, so that we can think of waves entering from the left and decaying
as they propagate to the right and so on, as in the usual construction of a causal
solution to a dispersive wave problem.

All such internal waves travel at the same fixed angle with the vertical, which we
scale to be 45◦, and additionally we scale the ocean to have a depth of π over flat,
zero topography. If we write non-dimensional variables with a prime then

(z, h) =
H

π
(z′, h′), x =

1

µ

H

π
x ′, where µ(ω) =

√
ω2 − f 2

N2 − ω2
(2.5)

is the slope of the waves. We assume that the topography is subcritical relative
to the wave slope µ(ω) in (2.5), i.e. the non-dimensional topography slope obeys
|dh(x)/dx| < 1 for all x.

The non-dimensional equation for Ψ becomes, dropping the primes,

Ψxx − Ψzz = 0 and Ψ (x, π) = Ψ (x, h(x)) = 0. (2.6)

Equation (2.6) is the one-dimensional (1D) wave equation, but with the twist that
there is no time-like variable. In other words, the spatial structure of time-periodic
internal waves is governed by a hyperbolic equation, as was noted a long time ago
(Sobolev 1954).

Before moving on, we briefly discuss the typical values of µ for the M2 tide in the
ocean. Using a latitude of 30◦ the corresponding values for µ range from 0.04 to 0.2,
with the low values found in the upper ocean where N is large (at about 1000 m
depth, say), and the high values found near the sea floor where N is small. The
higher local value of µ at the sea floor would be the relevant value to judge whether
the topography is supercritical, whilst the smaller local value in the upper ocean is
relevant to estimate the horizontal wavelength. The fact that these two different local
values must be fused into one is an obvious shortcoming of the present model, which
is restricted to constant stratification N . Incidentally, for the realistic-looking profiles
of N(z) considered in Grimshaw et al. (2010), it turns out that after a WKB-style
rescaling of z and ψ the governing equation again has constant coefficients, but with
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Figure 2. Characteristics and the horizontal shift ∆ induced by undulating topography. As
indicated, information travels in both directions along the characteristics. The shift function
∆(x) quantifies the horizontal shift of the reflection point compared to where it would have
been if the topography were flat. Negative topography implies a positive shift and vice versa.
By assumption all reflections are subcritical. Note that information flows in both directions
along the characteristics.

an additional term in (2.6a) that is proportional to the streamfunction. Presumably,
as the wave field develops smaller scales, the new term would become negligible
compared to the derivatives term.

2.2. Using characteristics, but not ray tracing

Different analytical and numerical solution methods can be applied to (2.6). For
example, for infinitesimal topography one can work with a wave-field expansion in
terms of the propagating modes for zero topography. For finite-amplitude topography,
an attractive numerical alternative is using a Green’s function approach in which
suitable sources are distributed along the topography (e.g. Petrelis et al. 2006;
Echeverri & Peacock 2010). Here we choose to follow Muller & Liu (2000a) and
use a combination of the method of characteristics plus a spectral scheme to satisfy
the horizontal radiation condition for the scattered waves. Mathematically, this should
lead to equivalent results as the Green’s function method, but it is psychologically
very different. At this stage, it is worth pointing out explicitly that using the method
of characteristics for (2.6) is not the same as using group-velocity concepts and ray
tracing. Indeed, here we do not make the assumption that the wave field can be
described by a slowly varying wavetrain. This is a potentially confusing situation (e.g.
Longuet-Higgins 1969) because the characteristic lines are identical to group-velocity
rays in this problem, i.e. the characteristic slope µ(ω) coincides with the group-velocity
angle of plane internal waves with that frequency. The important difference is that
there is a crucial two-way flow of information and energy along the characteristics
but not along the one-way group-velocity rays (see figure 2). It is because of this
two-way flow of information that the horizontal radiation conditions at both ends of
the domain are important.

Now, the characteristics of (2.6) are the lines along which x ± z is constant and the
general solution can then be written as

Ψ (x, z) = f (x + z − π) − f (x − z + π), (2.7)

where use has been made of the homogeneous boundary condition at z = π. Clearly,
the solution is determined everywhere once we know the complex-valued function
f (x) for all x ∈ R. Physically, 2f ′(x) = Ψz = u at the ocean surface z = π.
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It is useful to think of f (x) as being defined along the ocean surface and then (2.7)
expresses that the value of Ψ (x, z) at any interior location can be found by tracing
the leftward and rightward characteristics back up to the ocean surface and then
subtracting the values of f that are found there. This puts non-trivial conditions on
the functions f (x) that correspond to solutions of this equation (e.g. Harlander &
Maas 2007). Specifically, at the seafloor z = h(x) we have Ψ = 0 and therefore the
condition

f (x + h(x) − π) = f (x − h(x) + π) (2.8)

must hold for all x ∈ R. Thus, if one follows a characteristic from left to right as it
bounces up and down the ocean, then (2.8) implies that the same value of f recurs
at every intersection of the chosen characteristic with the ocean surface. Clearly, over
zero topography this means that f (x) is periodic with period 2π and can hence be
represented by a Fourier series with terms such as f (x) ∝ exp(inx), where n is an
integer. It then follows from (2.7) that to the right and to the left of the topography
region the solution can be written in terms of discrete propagating modes of the form
Ψ = sin(nz) exp(inx). Here n> 0 corresponds to a rightward-propagating mode and
vice versa, so the radiation condition for the scattered waves is that only n> 0 modes
are allowed for x > L and only n< 0 modes are allowed for x < 0.

We now establish the connection between f (x) on the left and the right of the
topography and then solve the full problem using the radiation condition.

2.3. The characteristic map

A rightward-moving characteristic emanating from a surface point reflects off the
bottom with a slope of +1 and continues rightward, hitting the surface again some
distance away from its starting location. This defines the characteristic map Rn(x) such
that if x is the initial horizontal position of a characteristic on the surface, then Rn(x)
is the horizontal position where it hits the surface again after n bounces. The interval
between successive hitting points defines a characteristic period, whose length we
abbreviate as the period. A single characteristic decomposes the domain into a disjoint
sequence of characteristic periods. The map of a characteristic starting anywhere in
the domain can be determined once we know the map of a single characteristic
period, since each Rn is an order-preserving bijection from one characteristic period
onto another.

The characteristic map after one rightward bounce is given by

R1(x) = x + 2π + 2∆(x), (2.9)

where the horizontal shift function ∆(x) captures the change in the map due to
non-zero topography (see figure 2). By inspection, we see that for subcritical h(x) the
shift function ∆(x) is the unique solution to the nonlinear equation

h(x + π + ∆(x)) + ∆(x) = 0. (2.10)

The map after n rightward bounces can be obtained inductively and is

Rn+1(x) = Rn(x) + 2∆(Rn(x)) + 2π. (2.11)

As noted earlier, the top and bottom boundary conditions imply that f (x) = f (R1(x)),
so by induction for any n,

f (Rn(x)) = f (x), f
(
R−1

n (x)
)

= f (x). (2.12)

Here R−1
n (x) denotes the inverse map, which corresponds to n leftward bounces.
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For future reference, if we consider two neighbouring characteristics at xn and
xn + δn and compute from (2.9–2.10) how their infinitesimal separation δn evolves we
find that

δn+1 = δn R′
1(xn) = δn

1 − s

1 + s
, (2.13)

where s is the value of h′ at the intersect with the topography. For example, if s > 0
then neighbouring characteristics contract. This relation is useful for understanding
how the gradients of Ψ evolve and also for the consideration of random topography
in § 4.2.

2.4. Solution for the Fourier coefficients in terms of the characteristic map

Let D0 and D1 be characteristic periods of period 2π to the far left and far right of
the topography, respectively, such that Rn(D0) = D1 for some n. The function f can
be written as a Fourier series on each interval. Because of the horizontal radiation
condition it has the form

f (x) = f0(x) + fr (x), x ∈ D0, f (x) = ft (x), x ∈ D1, (2.14)

where f0(x) =
∑∞

k = 1 a0
k eikx, x ∈ D0 are the prescribed incoming waves, ft (x) =∑∞

k = 0 at
k eikx, x ∈ D1 are the transmitted waves, and fr (x) =

∑∞
k = 0 ar

k e−ikx, x ∈ D0 are
the reflected waves.

Without loss of generality, we can set at
0 = 0, since this constant can be absorbed

into ar
0. Substituting (2.14) into (2.12) and projecting onto the mth Fourier mode

yields a system of equations for the coefficients of the waves (Muller & Liu 2000a):

at − Dar = Sa0,

ar = Bat ,

a0 =
(
a0

k

)∞
k=1

,

at =
(
at

k

)∞
k=1

,

ar =
(
ar

k

)∞
k=0

,

⎫⎪⎬
⎪⎭ (2.15)

where

D = (Dmk)m=1,...,∞;k=0,...,∞, Dmk =
1

2π

∫
D1

e−ikR−1
n (x) e−imx dx,

B = (Bmk)m=0,...,∞;k=1,...,∞, Bmk =
1

2π

∫
D0

eikRn(x) eimx dx,

S = (Smk)m=1,...,∞;k=1,...,∞, Smk =
1

2π

∫
D1

eikR−1
n (x) e−imx dx.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.16)

By truncating the system after a certain number of modes, a solution is found
numerically once the characteristic map Rn(x) is known.

The PDE (2.6) conserves the vertically integrated energy flux, and in our scaled
system k|ak|2 is the magnitude of the energy flux of a single plane wave over flat
topography. Energy conservation together with orthogonality implies

∞∑
k=1

k|a0
k |2 =

∞∑
k=1

k|at
k|2 +

∞∑
k=1

k|ar
k |2, (2.17)

which says that the energy that enters the domain on the left is partially transmitted
and partially reflected back. We used (2.17) as a convenient check on the convergence
of our numerical method.

2.5. Numerical implementation

Both steps of the solution procedure were implemented numerically using Matlab.
The first step computes the characteristic map by tracing a finite number of initially
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uniformly spaced characteristics from the left interval D0 to the right interval D1 by
computing each of the maps Rn(x) in succession. This procedure includes an accurate
nonlinear computation of the reflection in (2.10) for finite-amplitude topography. We
found it convenient to define a function g(x) = h(x)+x and compute its inverse g−1(x)
(which exists since the topography is subcritical), so that the characteristic map starting
at xi ∈ D0 is given inductively by Rn+1(xi) = Rn(xi)+2π+2(g−1(Rn(xi)+π)−(Rn(xi)+π)).

The second step solves a truncated version of (2.15) to obtain the spectral
coefficients. To obtain good convergence for the energy fluxes, we typically used
around 512 characteristics in the first step and around 1024 modes in the second
step. Once we know f (x) for x ∈ D0, we then use (2.12) to obtain f (x) at any desired
location, and from this we can compute the streamfunction at any point (x, z) in the
domain via (2.7).

3. Wave focusing
In all numerical experiments, we use a single mode-one wave with unit amplitude

as the incoming wave field from the left. Of primary interest is the attenuation of the
energy flux associated with this mode-one wave as the topography is crossed, which
can be interpreted as a degradation of this primary wave and is associated with an
energy flux cascade to higher modes. Importantly, the spatial structure of the higher
modes that are so generated is tightly focused in space, which leads to significant
velocity shears and increased local amplitudes of the wave field. In nature, this would
be the first step towards wave breaking and irreversible fluid mixing in the ocean
interior.

3.1. Resonant and non-resonant sinusoidal topography

In the idealized case of

h(x) = σ sin(khx) with σ � 1 (3.1)

in the domain, one can understand the cascade to higher wavenumbers via wave–wave
interactions in which the topography plays the role of a zero-frequency wave. Thus,
an incoming wave with wavenumber k encountering topography with wavenumber
kh gives rise to new waves with the same frequency but different wavenumbers k ± kh.
These new waves again interact with the topography and the cascade is underway.
This wave–wave cascade suggests that it is crucially important whether the topography
is resonant, i.e. whether kh is an integer such that the wave–wave interactions can
project onto propagating modes of the flat topography system. Indeed, in the resonant
case the periodic system resembles a closed container with irregular bottom shape,
with the well-known attendant focusing of the waves into narrow zones of attraction
(e.g. Maas & Lam 1995). This is because following any characteristic the resonant
topography repeats itself over and over, just as it does in a closed container.

This focusing effect is illustrated for the cases kh =1 and kh =2 in figures 3 and 4,
respectively. Both plots in each figure show the real and (minus) the imaginary parts
of Ψ , which correspond to increasing time by a quarter period. In both cases σ =0.1.
The kh = 1 case is special because for small-amplitude topography, it does not lead to
back-reflected waves, which are characterized by negative wavenumbers arising from
the wave–wave interactions (Chen 2009). This is because the interaction coefficient
to generate k = 0 modes turns out to be zero and hence if k = 1 and kh = 1 then no
k < 0 waves can ever be generated. This is not the case if kh = 2, where significant
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Figure 3. Snapshots at t = 0 (a) and t = π/2 (b) of ReΨ (x, z) e−it for resonant topography
h(x)= 0.1 sin x. The fixed-point focusing is evident. There is no back-reflection, and the
mode-one transmitted energy flux after 10 bounces is only 17% of the incoming flux.

back-reflection occurs immediately, which is visible in the difference between the two
phase-shifted snapshots in figure 4.

Following previous authors such as Maas & Lam (1995), we can understand the
focusing in the resonant case via the characteristic map, as this provides qualitative
insight into the geometric structure of the streamfunction. Let h(x) be periodic,
with period 2π. We will show that all characteristics are eventually mapped to the
same set of points, namely those points modulo 2π such that h̄(x) = 0, h̄′(x) > 0,
where h̄(x) = h(x + π). Indeed, let rn(x) = Rn(x) − 2πn describe the fluctuation of the
characteristic map about its value for flat topography. Since ∆(x) is also 2π periodic,
the fluctuation evolves according to the autonomous dynamical system

rn+1(x) = F (rn(x)), F (x) := x + 2∆(x). (3.2)

This has fixed points wherever ∆(x) = 0, i.e. wherever h̄(x) = 0. Assume that
there is at least one fixed point x̄. Differentiating (2.10) at this point yields
∆′(x̄) = −h̄′(x̄)/(1 + h̄′(x̄)). Therefore, |F ′(x̄)| < 1 ⇔ h̄′(x̄) > 0, so the fixed point is
locally stable exactly when the derivative of the topography at the place where
the characteristic reflects off the bottom is positive. This is clearly visible in the
figures.

The wave-focusing process is frustrated and essentially absent if the topography
is non-resonant. For example, figure 5(a) shows the case kh = 1.5, where there
is essentially no reflection and no attenuation. This can again be understood by
considering the path of a single characteristic, which now hits the topography twice
in different phase locations before it repeats the cycle. At each hit, the slope of the
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Figure 4. Snapshots at t = 0 (a) and t = π/2 (b) of ReΨ (x, z) e−it for resonant topography
h(x) = 0.1 sin 2x. There is significant back-reflection (about 30 %) of wave energy and the
transmitted mode-one energy flux is 7 % of the incoming flux.

topography changes sign and this frustrates the focusing. This is robust behaviour,
as can be seen in figure 5(b), where the sinusoidal topography has been replaced by
a wedge shape with the same period. Indeed, in this case (which could be relevant
for laboratory experiments) the characteristic map can be integrated by hand and is
precisely periodic, so no cascade can take place even for infinite topography extent.

Therefore, we can conclude that the occurrence of strong wave–topography
interactions and wave focusing is confined to resonant topography, i.e. to integer
wavenumbers kh. As an aside, we have experimented with near-resonant sinusoidal
topography such that kh = 1 + ε with small ε, for example. In such a case, we obtain
the same mode-one energy flux decay results as for resonant topography, but only
if the topography extent is short in the sense that the running length L � 1/ε. For
longer topography the energy flux decay disappears; more precisely, as a function of
L � 1/ε the energy flux then oscillates weakly just below its original value.

3.2. Energy flux decay

As a quantitative proxy for the wave focusing, we studied the decay of the energy flux
in mode one, the logarithm of which is plotted as a function of topography length in
a number of cases in figure 6. Here the topography support is much longer than in
the previous examples, with up to 100 bounces. Correspondingly, the decay of the
waves is much stronger, about three orders of magnitude, even though the topography
amplitudes are quite weak. Figure 6(a) also served as a useful test of our numerical
model because in this special, reflectionless case an analytical solution is available for
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Figure 5. (a) Snapshot at t = 0 of ReΨ (x, z) e−it for non-resonant topography h(x) =
0.1 sin 1.5x. There is no discernible reflection or attenuation of the mode-one energy flux.
(b) Same quantity for a wedge-shaped topography for the same period.
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Figure 6. Logarithm of energy flux E1 plotted as a function of topography length in nine
cases based on (3.1). (a–c) The topography wavenumber kh = {1, 2, 3} in the three plots, each
with the topography amplitude σ = {0.0025, 0.005, 0.01}. The curves for kh =1 in (a) agree
to plotting accuracy with an analytical solution that is available in this special case (see
Appendix).

comparison (see the Appendix); the corresponding curves are indistinguishable from
our numerical curves in this plot.

After a transient phase over the first 20 bounces or so, there is evidence of
exponential decay with bounce number, i.e. E1 ∝ exp(−λn) in terms of the bounce
number n= x/(2π) and a decay rate λ, say. From the numerics, it appears that λ∝ σ

in all cases, which is consistent with the idea of wave–wave interactions between
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an exponentially decaying mode-one wave and fixed topography with amplitude σ .
There seems to be only a weak dependence of λ on the topography wavenumber kh,
but we could not extract a clear scaling from our results.

It is important to note that the results from this section cannot be used to estimate
decay rates due to a superposition of sinusoidal topographies of the form (3.1). This
can be understood by considering the characteristic map and the attendant focusing
dynamics, which depend sensitively on the local details of the topography and not just
on some average amplitude given by its Fourier coefficients. This makes it obvious
that we need to consider more complicated model topographies if we want to derive a
meaningful result for the real ocean, whose topography is certainly not characterized
by a single wavenumber. We address this in the next section, which is devoted
to random topography. There, we will find that in a certain limit of uncorrelated
topography, one can again derive simple scaling relations for the decay rate based on
contributions from resonant wavenumbers to the random topography.

4. Random topography
4.1. Definition of random h(x)

We restrict ourselves to the simplest case of random topography by assuming that
h(x) for x ∈ [0, L] is a section of a zero-mean stationary Gaussian process defined on
the real line by its stationary covariance function C(x) such that

�h(x) = 0 and �h(x ′)h(x ′ + x) = C(x), (4.1)

where � denotes probabilistic expectation. The corresponding Fourier transform is

Ĉ(k) =

∫ ∞

−∞
C(x) exp(−ikx) dx and C(x) =

1

2π

∫ ∞

−∞
Ĉ(k) exp(+ikx) dk. (4.2)

Admissible covariance functions C(x) have real even positive Fourier transforms, e.g.

C(x) = σ 2 exp

(
− x2

2α2

)
⇔ Ĉ(k) =

√
2πσ 2α exp

(
−k2α2

2

)
. (4.3)

Here α > 0 is a length scale such that �h2 = σ 2 and �(h′2) = −C ′′(0) = σ 2/α2. We use
(4.3) and other simple choices and combine this with standard methods to generate a
stationary Gaussian random process on a long interval by using a Fourier series whose
coefficients are independent zero-mean Gaussian random variables (see Yaglom 1962;
for an application in a fluid’s setting see Bühler & Holmes-Cerfon 2009).

Notably, with a choice like (4.3), our topography is random but not rough, i.e.
the random function h(x) almost surely has infinitely many continuous derivatives.
Indeed, the derivatives of h are themselves zero-mean stationary Gaussian random
functions. Regarding the assumption of subcritical topography, we exploit that by
making �(h′2) = −C(0) small enough we can make the occurrence of supercritical
topography in x ∈ [0, L] for fixed L, an exponentially rare event. In addition, we
monitored the maximum of |h′(x)| and discarded topography samples that contained
supercritical regions. Expected values were then computed by averaging over 100
independent topography samples.

An important role is played by the correlation scale of the topography. Loosely,
we say the topography is uncorrelated if |C(x)| � C(0) for x � 2π, so that the
topography that a characteristic encounters on each bounce is uncorrelated with the
topography it encountered on previous bounces. We say the topography is correlated
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Figure 7. Snapshot at t = 0 of ReΨ (x, z) e−it for uncorrelated random topography using
(4.3) with σ = 0.1 and α = 1 over 25 bounces. The wave focusing is clearly visible.

if this condition does not hold. Broadly speaking, in (4.3) the uncorrelated regime
corresponds to α < 2π.

4.2. Random wave focusing

Figure 7 shows a run over 25 bounces of uncorrelated small-amplitude random
topography based on (4.3) with σ =0.1 and α = 1. This makes apparent that wave
focusing indeed persists for random topography, although the mechanism is somewhat
different from that in the previous case of resonant sinusoidal topography, where the
topography was of course completely correlated from bounce to bounce. There,
following the motion of a single characteristic led to an autonomous dynamical
system of the type (3.2) and to the convergence towards the stable fixed points of
that system.

On the other hand, in the present random case the topography encountered by
following a single characteristic from bounce to bounce is uncorrelated, i.e. the
sequence of random topography values that the characteristic encounters at the sea
floor is essentially a sequence of identically distributed independent random numbers
with zero mean. The same is true for the sequence of values of the shift function,
which for small-amplitude topography is ∆ ≈ −h, and this makes it clear that the
characteristic undergoes a discrete random walk in the horizontal with drift 2π and
variance of the random step size approximately equal to �h2.

However, the same is not true for the motion of a pair of two nearby characteristics,
separated by a distance small compared to the correlation length α, say. Clearly, the
pair will encounter highly correlated values of h and will therefore move in a random
walk together. Moreover, should the two characteristics be brought closer together
by a random fluctuation, then their correlation will be increased in future bounces,
and this provides an irreversible, ratchet-like mechanism for the clustering of nearby
characteristics. This mechanism can be observed in figure 8, which illustrates the
emergence of steps in the characteristic map with increasing bounce number. These
steps are locations where many characteristics are clustered together. The point is that
whilst the location of these steps is random, their appearance is completely generic
and inevitable.

We can take several steps towards a simple mathematical model for this irreversible
process, at least for uncorrelated topography. First, using (2.13) for the evolution of



Decay of an internal tide due to random topography in the ocean 285

1 2 3 4 5 60

1

2

3

4

5

6

7

(a) (b) (c)Bounce 1

x
1 2 3 4 5 60

1

2

3

4

5

6

7

x
1 2 3 4 5 60

1

2

3

4

5

6

7

x

r(
x)

Bounce 10 Bounce 25

Figure 8. (a–c) The characteristic map Rn(x) after n= {1, 10, 25} bounces for an example
based on (4.3) with σ = 0.1 and α = 0.4. After a small number of bounces, the map is a
small perturbation of the identity, but after many bounces the map becomes step-like, which
indicates that the characteristics are clustered in discrete locations. As the number of bounces
increases, the clustering becomes very pronounced, so that there are only a few points that
contain almost all of the characteristics. These points move around as random walks, and
when they collide they become a single point, until eventually there is only one clustering
point left: all the characteristics are mapped onto virtually the same location.

the separation δn of neighbouring characteristics leads to

ln δn = ln δ0 +

n∑
m=1

Zm, where Zm
d ln

(
1 − s

1 + s

)
(4.4)

and s is the topography slope h′ at a bounce location, which for uncorrelated
topography has the same distribution at every bounce as indicated by the equality
in distribution. Clearly, Zm are independent identically distributed random numbers
and therefore (4.4) describes a random walk of ln δn in the bounce number n.

Now, if the slope at a bounce location were distributed like the slope at an arbitrary
point, then at this stage the distribution of s would be that of a zero-mean Gaussian
variable and hence the expected value of the odd function Zm(s) would then be zero,
i.e. �Zm = 0. In this case, ln δn would perform a random walk with zero drift, which
means that as a function of n the separation δn would forever alternate between
values above or below its original value. So there would be no irreversible focusing.

However, it turns out that h′ at a bounce location is not equal in distribution to h′

at an arbitrary point. For small-amplitude topography, this can be seen from the shift
function ∆ in (2.10), which implies that to first order in topography ∆ = −h(x + π),
where x + π is the x-location where the rightward characteristic would hit the sea
floor if the topography were flat (cf. figure 2). The slope at the bounce location is
therefore

s = h′(x + π + ∆) = h′(x + π) + ∆ h′′(x + π) = h′(x + π) − h(x + π)h′′(x + π) (4.5)

correct to second order. The last term has non-zero expectation; in fact, we have

�s = �h′(x + π) − �h(x + π)h′′(x + π) = 0 + �h′2 � 0 (4.6)

for any stationary h′. This shows that �s > 0 at rightward bounce locations and
therefore presumably �Zw < 0 in (4.4). The implication is a negative drift in the
random walk of ln δn and therefore ln δn → −∞ almost surely as n → ∞. So, δn → 0 as
n → ∞ for almost all starting points, which is consistent with our numerical results.
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Figure 9. (a) E1(n) based on full radiation condition (solid), Ẽ1(n) based on naive specification
of incoming wave field (dashed); see text. Shaded area is ±1 standard deviation away from
E1(n) for each n. (a,b) Both plots use (4.3) with σ = 0.05, α = 0.5 and average over Ns =100
topography samples.

Interestingly, repeating this argument for leftward characteristics would lead to �s < 0
at leftward bounce locations, and again to the irreversible clustering of neighbouring
characteristics after many leftward bounces. This must be so because of the left–right
symmetry of the characteristic map.

5. Scaling laws for expected energy flux decay
A typical example of our numerical results for the expected value of the mode-one

energy flux is plotted in figure 9. In fact, this figure shows two computations, one
using the correct radiation condition and the other using the naive approach of
simply specifying the wave field on the left to consist of the incoming mode-one wave
only. The obvious error illustrates the essential importance of the correct radiation
condition.

The logarithmic plot shows clear evidence of exponential decay of the expected
energy flux; that this should be so at least initially appears plausible: when the energy
flux in the primary wave is large compared to the energy flux in the other modes, the
main flow of energy is from the mode-one wave to the higher modes, so the amount
transferred in each bounce is proportional to the energy flux in the primary wave.
Still, the variance around the exponential decay is quite large, as also indicated in the
figure, and individual topography samples can produce quite different decay profiles
for the energy flux. However, the exponential decay appears robust for the expected
value of the energy flux.

On the basis of this result, we define a statistical decay rate λ1 via

λ1 : E1(n) = �|at
1|2 = e−λ1n. (5.1)

We want to investigate how λ1 depends on the details of the covariance function
and for uncorrelated topography we expect the two important parameters to be the
variance of h and its slope h′. For the specific covariance in (4.3), we can adjust the
explicit parameters σ and α, and for any other choice of covariance function we can
achieve the same by scaling the random topography via

h(x) → σh(x/α), C(x) → σ 2C(x/α) (5.2)

and therefore �h2 → σ 2�h2 and �h′2 → σ 2α−2�h′2.
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Figure 10. (a) Mode-one decay rate λ1 as a function of σ , for (4.3) with three different values
of α. The slopes of the best-fit lines for all are very close to 2. (b) Mode-one decay rate λ1 for
a variety of covariance functions as a function of α, showing λ1 ∝ α−1 for small α and a sharp
drop off for α � 1, which corresponds to correlated topography. Details of the covariance
functions are given in the Appendix and all plots are ensemble averages with Ns =20 and
σ = 0.05.

5.1. Scaling of decay rate λ1 with σ and α

Figure 10(a) shows results for λ1 obtained by varying σ at fixed α. The logarithmic
plots show a clear slope of two, i.e. we have the quadratic scaling λ1 ∝ σ 2 for
uncorrelated random topography. This is clearly different from the linear scaling
λ∝ σ that we observed in the case of deterministic sinusoidal topography. The reason
is that at first order in σ the topography encountered along the characteristic map in
the random case simply fluctuates around zero. It is only at second order in σ that
the random walk of the foot point is felt.

Figure 10(b) also shows that there is a simple scaling with α for fixed σ , but only
in the regime of uncorrelated topography, i.e. for α not too large. In this regime,
we found that λ1 ∝ α−1, but we have no simple convincing theoretical argument in
its favour. Again, this scaling is very different from that of the case of sinusoidal
topography, where the decay rate was broadly independent of the wavenumber kh.
(As an aside, this scaling only holds when the radiation condition is implemented
correctly, otherwise the rates are significantly different.) Combining the two scalings
we can conclude that λ1 ∝ σ 2α−1 in the regime of uncorrelated random topography.
This can be written in terms of the standard deviations of the topography and its
derivative as

λ1 = Γ0σhβh, where σ 2
h = �|h|2, β2

h = �|h′|2, (5.3)

and Γ0 is the proportionality constant. The value of Γ0 depends on the shape of the
covariance function, but we found that it varies very little for reasonable functions;
this can be seen in figure 10. The discussion in § 5.3 suggests that Γ0 � π in general
and that Γ0 = 2.5 for a Gaussian covariance function.

For larger α the assumption of uncorrelated topography eventually breaks down,
and in this regime the rate drops off sharply, as can be seen in figure 10(b). Also, the
precise shape of the covariance function then begins to matter. We found no simple
scaling that applies to correlated random topography, but see § 5.3 for a more general
formula based on the Fourier transform of the covariance function.
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5.2. A surprising dimensional decay rate

The non-dimensional scaling (5.3) for uncorrelated topography has a surprising
physical implication when translated back into dimensional units. Using the ocean
depth H as before, writing the dimensional topography as h̃ = (H/π)h, and noting
that the dimensional length of a bounce is 2H/µ then gives a dimensional rate of
decay per unit length of topography of

λ̃1 =
πΓ0

2H 2

√
�|h̃|2�|h̃′|2. (5.4)

This means that the expected energy flux should decay as exp(−λ̃1x̃) along the
dimensional running length x̃ = xH/(πµ). The upshot of (5.4) is that if we know
that the topography is uncorrelated, then we can estimate the rate of mode-one
energy decay entirely from the point-wise statistics �|h̃|2, �|h̃′|2 and without knowing
anything else about the problem.

Now, this formula is very surprising because it contains neither of the three
frequencies N , f and ω that arise in the physical problem definition. Therefore,
the wave slope µ is also absent here. Thus, it appears that changing N or f or ω

does not affect the dimensional decay rate λ̃1.
This result could not have been guessed from dimensional analysis, because there

is no a priori argument to rule out a dependence of λ̃1 on the non-dimensional
parameters ω/f and f/N , say. Of course, this result does depend on the implicit
assumptions that have been made, namely that f � ω � N , that the topography
is subcritical, and that the topography is uncorrelated, but otherwise its scope is
considerable.

5.3. Towards an explicit formula for the damping rate

We have made several attempts to derive an analytic expression for the damping rate
λ1 in the case of infinitesimal topography. These attempts met with some success in
that we identified what seems to be the correct formula for λ1, but we cannot derive
it convincingly. Nevertheless, we hope our partial results are instructive and hence
present them briefly here.

One such attempt was based on an expansion of the streamfunction in vertical
modes with x-dependent amplitude coefficients an(x), say. The interaction with
infinitesimal random topography then leads to a system of differential evolution
equations in x for the modal amplitudes an(x). This random ODE system can then be
analysed for large x using a diffusion approximation for the amplitudes based on the
general theory for random ODEs laid out in Papanicolaou & Kohler (1974). This led
us to results similar in form to those of Nachbin & Papanicolaou (1992). A second
attempt was based on working in real space with the characteristic map by trying
to solve the joint evolution of many characteristics together with an approximate
treatment of the radiation condition.

We were not able to derive rigorously an asymptotic formula for λ1 using either
approach, but we can report on a partial result, namely that both approaches suggested
an expression for λ1 of the form

λ1 =

+∞∑
k=1

kĈ(k), (5.5)

where Ĉ(k) is the Fourier transform of the covariance function as before. This
expression performed fairly well in our numerical tests, especially for correlated



Decay of an internal tide due to random topography in the ocean 289

topography. Actually, both our theoretical attempts led to formulae that were close to
(5.5), but differed by pre-factors of order unity that made the quantitative agreement
with our numerical results worse. Also, we are aware that this sum over resonant
wavenumbers is tantalizingly close to the formulae for the energy conversion from
a barotropic tide over localized deterministic topography that are summarized by
Khatiwala (2003), but we did not find it straightforward to adapt the methods used
there to the case at hand.

Now, for uncorrelated topography and α → 0, the expression (5.5) is
indeed consistent with the scalings we found previously. This follows because
Ĉ(k) → σ 2αĈ(kα) under the scaling transformation (5.2), and therefore as α → 0
we have

αλ1 → σ 2

+∞∑
k=1

(kα)Ĉ(kα) α ≈ σ 2

∫ ∞

0

sĈ(s) ds ∝ σ 2. (5.6)

For the Gaussian covariance function in (4.3), this leads to λ1 = (σ 2/

α)
√

2π ≈ 2.5(σ 2/α), which is origin of the value Γ0 = 2.5 in (5.3) that we used before.
Notably, the expression (5.5) is not restricted to the uncorrelated case, and therein

lies its main utility. For example, experimenting with this formula corroborated the
results from figure 10: at fixed �h2 and �h′2 the transition to correlated topography
leads to a reduction of the damping rate λ1.

Finally, the equivalent expression to (5.5) in dimensional form is

λ̃1 =
π

2H 2

∞∑
k=1

πµk

H

ˆ̃C

(
πµk

H

)
πµ

H
, (5.7)

which allows estimating λ̃1 directly from data for the dimensional topography

covariance function. Here the laboured notation ˆ̃C denotes the Fourier transform
of the dimensional covariance function C̃(x̃) = �h̃(0)h̃(x̃). Deriving (5.7) from (5.5)

uses the relations C(x) = (π2/H 2)C̃(x̃) and Ĉ(k) = (µπ3/H 3) ˆ̃C(k̃), which follow from
the definition of the Fourier transform together with x = (µπ/H )x̃ and k̃x̃ = kx.

For fixed topography, the limit of uncorrelated topography for this expression
corresponds to µ → 0, and by the same limit used in (5.6) we now obtain

λ̃1 → π

2H 2

∫ ∞

0

k̃ ˆ̃C(k̃) dk̃. (5.8)

This is consistent with (5.4) because for ˆ̃C(k̃) � 0 we have that

∫ ∞

0

k̃ ˆ̃C(k̃) dk̃ �

√∫ ∞

0

ˆ̃C(k̃) dk̃

∫ ∞

0

k̃2 ˆ̃C(k̃) dk̃ = π
√

�h̃2�h̃′2 (5.9)

by the Cauchy–Schwarz inequality based on

√
ˆ̃C and k̃

√
ˆ̃C. Thus, for uncorrelated

topography we showed that Γ0 � π in (5.4), which is obviously satisfied for the value
Γ0 =

√
2π that we obtained for a Gaussian covariance function.

In summary, (5.7) is our best, most accurate formula for computing the dimensional
decay rate λ̃1 for both correlated and uncorrelated topography, (5.8) is a simpler form
valid only for uncorrelated topography, and (5.4) with Γ0 = 2.5 is the simplest form
valid for uncorrelated topography, which requires only root-mean-square information
about the topography and its slope.
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6. Application to model spectra for small-scale ocean topography
We can use our model to investigate how topography in the real ocean might

scatter and degrade a mode-one internal tide. First, we used the analytic spectrum
for topography created by Bell (1975). This is an isotropic power-law spectrum for
topography intended to model the abyssal hill region of the ocean basin away from
large features such as ridges. Specifically, the spectrum is defined such that the
variance of h̃(x, y) is

�h̃2 = (125 m)2
∫ κ2

0

κ1κ(
κ2 + κ2

1

)3/2
dκ with (κ1, κ2) =

(
2π

40 km
,

2π

400 m

)
. (6.1)

Here κ1 controls the correlation length of the topography and κ2 is a cutoff scale that
regulates the slope variance �|∇h̃|2 = (125 m)2κ1κ2 ≈ 0.22.

The spectrum is for 2D topography, i.e. κ2 = k2 + l2, so to apply it to our results
for 1D topography we make the modelling assumptions that our results are valid on
any 2D plane through the ocean and we calculate the spectrum for the topography in
k-space as the marginal spectrum of the topography in the (k, l)-space. The variance
of the derivative can then be found using |∇h̃|2 = h̃2

x + h̃2
y and noting that each of these

has the same expected value by horizontal isotropy, so a 1D slice of topography has
�|h̃′|2 = (125 m)2κ1κ2/2 = (0.14)2. Subject to the normalization in (4.2), the resultant

spectrum corresponds to ˆ̃C(k) in § 5.3.
To compute the dimensional decay scale λ̃1 for the mode-one energy flux from

our best formula (5.7), we need to set the ocean depth H and the wave slope µ.
Using H = 4 km and µ = 0.17 based on N/f = 10 and ω/f = 2, we obtain a decay
scale λ̃1 ≈ 500 km. If H =5 km is used instead then we obtain λ̃1 ≈ 800 km. We verified
these values using direct Monte-Carlo simulations for scattering off Bell’s topography.
These results are not very sensitive to the value of µ, i.e. the results are nearly identical
to the expression (5.8) that holds as µ → 0. However, these results depend strongly
on the parameters of Bell’s spectrum. In particular, due to the relatively slow decay
of the spectrum at high wavenumbers, the sum in (5.7) depends on the wavenumber
cutoff. Moreover, the parameters of Bell’s topography apparently tend to overestimate
the topography amplitudes in much of the Pacific ocean basin.

We therefore repeated our calculations using the more recent model spectrum
proposed by Goff & Jordan (1988). The isotropic version of that spectrum is
proportional to (6.1) but with the power-law exponent 3/2 replaced by an adjustable
constant. We used the same parameter values as in the recent study Nikurashin &
Ferrari (2010), where the parameters were fitted to observational data from a southeast
Pacific region. This produced an ocean depth of H = 5 km, a topography standard
deviation of 155 m, a correlation length for the topography of 50 km and a power-law
exponent of 3.5/2 replacing 3/2 in (6.1). With this faster decay the sum in (5.7)
actually converges and with the wave slope µ = 0.17 we then obtained a decay scale
of λ̃1 ≈ 1200 km.

Overall, in comparison with the recent observational case study of long-lived
propagating mode-one waves in the Pacific Ocean in Zhao et al. (2010), our decay-
scale estimates of about 1000 km for the energy flux appear rather short (of course,
decay-scale estimates for the amplitude of mode-one waves would be a factor of
two larger). The obvious candidates for explaining this discrepancy between the
observations and our model results are the restriction to linear 2D fluid dynamics
and the restriction to uniform stratification in our model. These restrictions are briefly
discussed in the next section.
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7. Concluding comments
For practical application in oceanography the most useful results reported here are

the expressions for the dimensional mode-one energy flux decay rate λ̃1 given in (5.7)
together with its simpler, but less general, forms (5.8) and (5.4). Based on how much
observational data are available, evaluation of either of these expressions would allow
a ready estimate for the prevailing decay rate. This should be especially useful in
conjunction with the high-resolution topography data that are increasingly becoming
available along research ship tracks, but to look at the present data is beyond the
scope of this short paper.

We also think that for laboratory experiments with deterministic topography shapes,
the scaling laws in § 3.2 and the numerical tool for computing the detailed wave field
should be useful. Again, our numerical tool is based on subcritical but otherwise O(1)
topography, so it goes beyond linear theory in topography.

From a modelling point of view, a glaring shortcoming is the restriction to two
spatial dimensions. Even if the incoming wave field should be to a good approximation
two-dimensional (say because it was generated by tidal conversion at a long ridge), it
is certainly not the case that the rough sea floor has 1D topography. The hyperbolic
ill-posed nature of the scattering problem persists in three dimensions, although
naturally the tight propagation of information along characteristic lines is replaced
there by the less tight propagation concentrated around characteristic cones (see e.g.
Bühler & Muller 2007 for a comparison between the 2D and 3D versions of the
tidal conversion problem). Overall, based on past experience we would expect the
three-dimensional details to be significantly more complicated, but that the basic
results for the 2D decay rates computed here will be a good approximation to the 3D
case. Simple laboratory experiments might be useful in this regard; such experiments
could also check whether the strong assumption of constant buoyancy frequency N

for the ocean does indeed give a good answer here, as we previously argued based on
the recent results in Grimshaw et al. (2010).

Another significant shortcoming is the restriction to linear wave dynamics.
Nonlinear effects such as wave–wave interactions and higher-order corrections to
the boundary conditions could conceivably modify the wave field over long times
and therefore over long propagation distances. Such nonlinear effects would naturally
lead to additional waves with a different frequency, with unclear consequences for the
primary mode-one wave. For example, the surprising independence of the decay rate
λ̃1 on the wave slope µ that we found in linear theory might no longer hold under
nonlinear dynamics. Presumably, addressing these questions would require nonlinear
numerical simulations over long propagation distances.

Finally, from a heuristic point of view, we do not have a ready explanation for the
reduction of the decay rate when the topography begins to be correlated, even though
this reduction is apparent in numerical results depicted in figure 10(b). One untested
hypothesis for this effect is based on the characteristic map and the covariance
function for the slope h′, which for C(x) in (4.3) would be

�h′(0)h′(x) = −C ′′(x) =
σ 2

α2

(
1 − x2

α2

)
exp

(
−x2

2α2

)
. (7.1)

This has a range of significant negative values (roughly in the interval 1 � x/α � 3,
say), and this suggests that for correlated topography a positive value of h′ at the
present bounce is more likely to be followed by a negative value h′ at the next bounce.
This anti-correlation would in part cancel the focusing of the nearby characteristics
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described by (2.13). So, this could be a candidate mechanism for decreasing the
efficiency of random wave focusing for correlated topography.

The research reported here grew out of a summer project undertaken in
collaboration with Erinna Chen and Neil Balmforth at the 2009 Woods Hole
summer in Geophysical Fluid Dynamics (see Chen 2009), and we acknowledge
several stimulating conversations in this regard, including several with N. Grisouard.
Further stimulus was provided at the recent Banff Internal Wave meeting in April
2010 and we gladly acknowledge the organizers of that meeting. The comments of
several referees significantly improved our manuscript. Financial support for this
work under the United States National Science Foundation grant DMS-0604519 is
gratefully acknowledged. M.H.-C. was supported in part by a Canadian NSERC
PGS-D scholarship.

Appendix
A.1. Energy flux formula for reflectionless decay

For infinitesimal sinusoidal topography with wavenumber kh = 1, there are no reflected
waves and this allows an analytic solution for the transmitted waves to be found
using a multi-scale technique, which leads to the expression (75) in Chen (2009). In the
notation used in the present paper, the energy flux in the first mode is then predicted
to be

E1(x) =
(
1 − tanh2

(σx

2π

))2

. (A 1)

This is indistinguishable from the numerical results plotted in figure 6(a).

A.2. Details of covariance functions used in figure 10

The covariance functions used in figure 10 are defined by their Fourier transforms as

CA : Ĉ(k) =
√

2π exp
(
− 1

2
k2

)
, (A 2)

CB : Ĉ(k) =
3π

2
(1 − k2) if |k| � 1, zero otherwise, (A 3)

CC : Ĉ(k) =π exp(−|k|), (A 4)

CF : Ĉ(k) =
√

π(exp[−(k − 2)2] + exp[−(k + 2)2]). (A 5)
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