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Abstract
This article reviews the methods of wave–mean interaction theory for classi-
cal fluid dynamics, and for geophysical fluid dynamics in particular, providing
a few examples for illustration. It attempts to bring the relevant equations
into their simplest possible form, which highlights the organizing role of the
circulation theorem in the theory. This is juxtaposed with a simple account
of superfluid dynamics and the attendant wave–vortex interactions as they
arise in the nonlinear Schrödinger equation. Here the fundamental physi-
cal situation is more complex than in the geophysical case, and the current
mathematical understanding is more tentative. Classical interaction theory
might be put to good use in the theoretical and numerical study of quantum
fluid dynamics.
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1. INTRODUCTION

The study of interactions between waves and vortices has a long history in classical fluid dynamics,
and especially in geophysical fluid dynamics (GFD), which is concerned with atmosphere and ocean
fluid dynamics. This is because of the pressing need in GFD to understand and to model unresolved
wave motions in the large-scale numerical models used for climate and weather prediction. The
methods of wave–mean interaction theory that have been developed to answer this need are now
in a mature state and are described in recent GFD textbooks (McWilliams 2006, Salmon 1998b,
Vallis 2006), as well as in dedicated monographs (Bühler 2009). It is therefore timely to draw
some of the theoretical threads together and to review the key interaction mechanisms with a
few examples, along with a snapshot of how these interaction mechanisms affect the large-scale
circulation of the atmosphere.

Another area in which wave–vortex interactions are important is that of superfluidity in quan-
tum fluid dynamics, where quantized line vortices interact, with wave motions representing ele-
mentary excitations of the quantum fluid (e.g., Donnelly 1991, Pethick & Smith 2002). In this area
much experimental progress has recently been made on Bose-Einstein condensates, which has in
turn stimulated renewed theoretical and numerical efforts to model superfluidity. Here we briefly
review the fluid dynamics of the mathematically most precisely defined of such models, namely the
nonlinear Schrödinger equation. It may be fair to say that there has been little exchange between
the fields of geophysical and quantum fluid dynamics, but it seems to me that both fields could
benefit from each other’s advances, and it is in this spirit that this brief review is offered.

2. WAVE–VORTEX INTERACTIONS IN CLASSICAL FLUIDS

At its core, the study of wave–vortex interactions in classical fluid dynamics is a study of Kelvin’s
circulation theorem (KCT) and its ramifications. More specifically, by combining the circulation
theorem with Lagrangian, particle-following averaging for the flow, it is possible to bring the
relevant interaction equations into their simplest form. This is certainly true for the traditional
wave–mean interaction results, which are based on spatially periodic waves relative to a basic flow
that is symmetric with respect to the periodic coordinate. Interestingly, it turns out also to be true
for the more recently studied interactions that do not rely on such global symmetries.

2.1. Kelvin’s Circulation Theorem

We start with the compressible Euler equations for perfect fluid flow in the form

Du

Dt
+ ∇p

ρ
= −∇�, (1)

Dρ

Dt
+ ρ∇ · u = 0, and

Ds
Dt

= 0. (2)

Here u = (u, v, w) is the fluid velocity, p is the pressure, ρ is the density, � is an external potential
such as gravity, and s is the specific entropy per unit mass, which is materially invariant because of
the assumption of perfect fluid flow. We assume that an equation of state allows the pressure to
be computed as a function of ρ and s, as would be the case for an ideal gas. This ignores moisture
effects in the atmosphere and salinity effects in the ocean.

The circulation is defined by the line integral

� =
∮
C

u · dx, (3)
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where C is a closed material loop, i.e., a closed curve that moves with the fluid. It follows that (e.g.,
Batchelor 1967)

d�

dt
= −

∮
C

∇p
ρ

· dx = −
∮
C

d p
ρ

. (4)

KCT spells out the conditions under which the integral in Equation 4 is zero, which results in the
Lagrangian conservation law

Kelvin’s circulation theorem:
d�

dt
= 0. (5)

This is the most interesting formula in fluid dynamics. The condition under which Equation 5
holds is that dp/ρ restricted to C must be a perfect differential. In the simplest case of incompressible
homogeneous flow, ρ is a global constant and Equation 5 holds for any C. The same is true for
barotropic flow, in which ρ is a function of p only. An example of this is the flow of an ideal gas
with uniform entropy s. Finally, Equation 5 also holds if ρ is a function of both p and s, provided
that C lies within an isentrope, i.e., within a surface of constant s. In this case, the s dependence of
ρ plays no role in the integral, and, crucially, if C lies within an isentrope at the initial time, then
it continues to do so at subsequent times by Equation 2b. Notably, the validity of the circulation
theorem depends only on the flow on C itself; i.e., it is not necessary to consider the flow inside
the area enclosed by C.

In the stably stratified flows that are relevant to GFD, the entropy increases with altitude, and
surfaces of constant s then mark out quasi-horizontal stratification surfaces. It is easy for fluid to
flow tangentially along these quasi-horizontal stratification surfaces, but there is a large potential
energy cost associated with vertical deformations of these stratification surfaces. The linear waves
associated with the restoring mechanism due to this energy cost are the internal gravity waves
familiar in GFD (e.g., Salmon 1998b, Vallis 2006).

2.2. Circulation Theorem for the Lagrangian-Mean Flow

Eulerian wave–mean interaction theory is based on a linear averaging operator (. . .) that decom-
poses any flow field φ into a mean part φ̄ and a disturbance part φ′ such that

φ = φ̄ + φ′ and φ′ = 0 (6)

both hold. The second requirement makes sure that averaging is a projection in the sense that=
φ = φ̄. The actual definition of the averaging operator can vary greatly from case to case; for the
abstract theory, it is usually easiest to think of an ensemble average, or of an average over a very
fast timescale. In practice, the most commonly used averaging operations are zonal averaging,
i.e., averaging along latitude circles in the atmosphere and time averaging in the ocean. In either
case, the resulting equations for the Eulerian-mean flow are all variants of the Reynolds-averaged
equations familiar from the classical theory of incompressible turbulence.

Now, it is well-known that the Eulerian-mean flow ū does not inherit a version of the circulation
theorem (Equation 5), essentially because the Lagrangian information contained in following the
material circuit C is lost under Eulerian averaging. At the price of some additional complexity,
this can be remedied in the generalized Lagrangian-mean theory (GLM) of Andrews & McIntyre
(1978a,b). Here an additional particle displacement field ξ(x, t) is introduced such that the lifting
map

x → x + ξ(x, t) (7)

produces the actual position of the particle whose mean position at time t is x. It then follows that
ξ is a disturbance field, i.e., ξ̄ = 0. Here the averaging operation is any of the Eulerian averaging
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operations discussed above; this makes GLM theory a hybrid Eulerian-Lagrangian theory. With
the aid of ξ, it is possible to define a Lagrangian-mean velocity field as

ūL(x, t) = u(x + ξ(x, t), t). (8)

The pedantic notation emphasizes that ξ is always evaluated at (x, t). In analogy with Equation 6,
one can also define a Lagrangian-disturbance velocity u� via

u(x + ξ(x, t), t) = ūL(x, t) + u�(x, t) and u� = 0. (9)

By construction, the Lagrangian-mean velocity ūL is formed by an average over a fixed set of
particles, whereas the Eulerian-mean velocity ū is formed by an average over a fixed set of points.
Consequently,

Ds
Dt

= 0 ⇒ D̄Ls̄ L = 0, where D̄L = ∂

∂t
+ ūL · ∇ (10)

is the derivative following the Lagrangian-mean flow. This can be contrasted with the correspond-
ing Eulerian-mean relation (

∂

∂t
+ ū · ∇

)
s̄ = −u′ · ∇s ′. (11)

Clearly, the material advection of s is inherited by s̄ L but not by s̄ .
Moreover, it can be shown (Andrews & McIntyre 1978a) that Equations 3 and 5 have the exact

Lagrangian-mean counterpart
d
dt

∮
C

(ūL − p) · dx = 0. (12)

Here C is a closed loop that moves with ūL, and p is the pseudomomentum vector whose Cartesian
components are defined by

pi = −
3∑

k=1

∂ξk

∂xi
u�

k. (13)

The mean circulation theorem (Equation 12) holds under the natural Lagrangian-mean versions
of the original conditions. In particular, in the stratified case, Equation 12 holds if C lies within a
surface of constant Lagrangian-mean entropy s̄ L.

The mean circulation theorem (Equation 12) can be used to investigate wave–vortex interac-
tions by encircling a vortex with a suitable contour C either in two dimensions or on a stratification
surface in three dimensions. More specifically, we can envisage a steady axisymmetric vortex in
the absence of waves, and it is then convenient to make the undisturbed contour axisymmetric
as well. To make matters as simple as possible, we can then consider a periodic wave disturbance
in the azimuthal direction and use a local tangent-plane approximation in which the undisturbed
contour is straightened out to lie along the x axis, for example. We can then use zonal averag-
ing over the periodic x coordinate, and it follows that all mean quantities are independent of x.
Under zonal averaging, the mean contour C remains flat and parallel to the x axis even though
the actual material contour traced out by the lifting map (Equation 7) if x ∈ C is undulating in a
three-dimensional wavelike fashion.

It follows that Equation 12 only involves the zonal, x components of ūL and p. Indeed, we have
the exact result (Andrews & McIntyre 1978a)

D̄LūL = D̄Lp. (14)

This remarkable formula implies that the zonal Lagrangian-mean flow follows the zonal pseu-
domomentum associated with the wave field. For instance, the formula implies that the vortex is
weakened by the waves if the zonal pseudomomentum is retrograde relative to the rotation of the
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vortex (i.e., if the sign of p is opposite to the sign of the vortex circulation). This will in fact usually
be the case for vortex edge waves, so Equation 14 quantifies the often-observed phenomenon
that the disturbance of a vortex edge goes hand in hand with a weakening of the circumferential
velocity of the vortex.

Overall, this simple yet exact formula, and its extensions to forced-dissipative flows and to
flows in a rotating reference frame, underpins most of the wave–mean interaction theory that
is in practical use in atmospheric science. It is possible to derive similar formulas based on an
Eulerian definition of a zonal pseudomomentum, but this works only for small wave amplitudes
and requires nontrivial modifications in a rotating frame (e.g., Andrews et al. 1987). Eulerian and
Lagrangian definitions of p are compared and discussed by Bühler (2009).

2.3. Pseudomomentum of Linear Plane Waves

The pseudomomentum vector p defined in Equation 13 has a simple generic form in the case of
linear plane waves. This generic form is most useful for asymptotic studies of a slowly varying
wave train. In particular, if the linear waves are propagating on a constant basic state with velocity
U, then it is easy to show that

ξt + (U · ∇)ξ = u′ and u� = u′ (15)

to first order in the small wave amplitude a � 1, for example. In a plane wave, all fields are propor-
tional to exp(i [k · x − ωt]) for some wave-number vector k and frequency ω. Hence Equation 13
becomes (taking real parts as necessary)

p = k

ω̂
|u′|2 (16)

to O(a2). Here

ω̂ = ω − U · k (17)

is the intrinsic frequency, which differs from the absolute frequency ω by the Doppler-shifting
term U ·k. Under the assumption of equipartition of wave energy between its kinetic and potential
forms, this equation can be rewritten in the generic form

p = k

ω̂
Ē, (18)

where Ē ≥ 0 is the mean wave energy per unit mass. Despite the specifics of this derivation, this
generic expression in fact holds for all kinds of waves, even those that do not obey the equipartition
of energy. This includes sound waves, internal gravity waves with or without Coriolis forces, and
even Rossby waves.

Clearly, the sign of the zonal component p is equal to the sign of the intrinsic zonal phase
velocity. In other words, one can deduce the sign of p and therefore the sign of the mean-flow
response in Equation 14 from the zonal direction of phase propagation relative to the basic flow.
For example, in the case of Rossby waves, this intrinsic zonal phase propagation is always retrograde
relative to the rotation of Earth, implying that the zonal mean-flow response to Rossby waves is
always retrograde as well: A growing Rossby wave goes hand in hand with a westward acceleration
of the zonal mean flow.

For internal gravity waves, conversely, either sign is possible for p. In the particular case of
steady mountain lee waves caused by a zonal wind U blowing over sinusoidal topography, the
intrinsic frequency ω̂ follows from ω = 0 and Equation 17 as

ω̂ = −Uk ⇒ sgn(p) = −sgn(U). (19)
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Here k is the zonal wave number of the topography. Here the zonal pseudomomentum is always
of opposite sign to the zonal wind causing the waves, in which case Equation 14 implies that the
zonal wind is reduced in magnitude at O(a2) by a growing wave field. For instance, if the wind
started to blow over topography at z = 0 at time t = 0, then the developing internal wave field
will have reached up to a finite altitude Z(t) at a later time t; in the simplest scenario, Z(t) grows
with the vertical group velocity of the waves. In the region z > Z, there are no waves yet, and the
zonal flow is at its basic value. However, the region z < Z contains waves, and in there the zonal
flow has been weakened by the pseudomomentum at O(a2). The concomitant momentum change
of the zonal flow per unit time as Z(t) grows is equal and opposite to the zonal drag exerted on the
mountain below.

As mentioned above, the plane-wave relation (Equation 18) retains its validity in the asymptotic
regime of slowly varying wave trains. This is particularly important for the propagation of waves
through shear flows, in which the basic velocity U depends on position. In this case, conservation
of wave action (Bretherton & Garrett 1968) implies that Ē/ω̂ satisfies a conservation law of the
form

∂

∂t

(
Ē
ω̂

)
+ ∇ ·

(
Ē
ω̂

c g

)
= 0, (20)

where cg is the absolute group velocity, which is the sum of the basic flow U and the intrinsic
group velocity ∂ω̂/∂k that can be computed from the dispersion relation. In the context of a
zonally symmetric basic state, the zonal wave number k is constant following a group-velocity ray,
and therefore p inherits the conservation law of wave action; i.e., it follows that

∂p
∂t

+ ∇ · (pc g ) = 0. (21)

It is noteworthy that it is possible to derive an exact conservation law for zonal pseudomomentum
p based solely on the zonal symmetry of the mean flow, and that such a conservation law then
retains its validity even if wave action is not conserved (e.g., Andrews & McIntyre 1978b, Bühler
2009, Shaw & Shepherd 2008). In this more general case, the flux of zonal pseudomomentum in
the meridional, yz plane is known traditionally as the Eliassen-Palm flux. This flux has a simple
generic expression in GLM theory but not in Eulerian-mean theory (e.g., Bühler 2009).

We note in passing that in the case of finite-amplitude waves, GLM theory remains formally
valid, but that the occurrence of ξ makes it hard to evaluate p or its flux from observational or com-
putational data. Alternative Eulerian methods to define wave activity measures that are conserved if
a suitable reference flow has a corresponding space-time symmetry have been developed using the
powerful methods of Hamiltonian fluid mechanics (e.g., Morrison 1998; Salmon 1988a,b; Shaw
& Shepherd 2008; Shepherd 1990). These are the methods of choice to diagnose wave dynamics
from data, but their utility is restricted to this diagnostic activity. For example, it is usually not pos-
sible to link the definition of Eulerian pseudomomentum based on these methods to the evolution
of the actual zonal mean flow. Thus Eulerian techniques based on Hamiltonian fluid mechanics
and the Lagrangian techniques of GLM theory are complementary in their applicability to wave
diagnostics and wave–mean interaction theory.

2.4. Dissipation and the Pseudomomentum Rule

The mean-flow changes described by Equation 14 are bounded by the size of p, which is necessarily
small for small-amplitude waves. Larger mean-flow changes can accrue if continuous forcing and
dissipation of the waves are brought into play. Specifically, if wave dissipation by a momentum-
conserving mechanism such as viscous diffusion is added to the governing equation, then
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Equation 14 is replaced by

D̄LūL = D̄Lp − F, (22)

where F quantifies the dissipation of zonal pseudomomentum. [Here, the term momentum-
conserving means that if a dissipative force F is added to the right-hand side of Equation 1, then
it must be of the form F = (∇ · T )/ρ, where T is a stress tensor.] For example, in a situation with
linear dissipation, a typical expression for this quantity is F = −αp with some damping rate per
unit time α > 0. The best way to understand Equation 22 is by considering a thought experiment
in which a spatially compact wave packet propagates without dissipation until at some moment the
wave packet is dissipated instantaneously by a suitable F . As the wave packet enters a previously
undisturbed region, the zonal mean flow ūL first responds in accordance with Equation 14, as
described above. When the instantaneous dissipation occurs, the right-hand side of Equation 22
contains two large term terms that cancel each other. In other words, the dissipation destroys the
wave packet, but it does not, by itself, accelerate the mean flow (Bühler 2000, 2009; Bühler &
McIntyre 2005).

We can extend this thought experiment to a sequence of wave packets all undergoing the same
life cycle. It is then clear that the net changes of ūL in the dissipation region are cumulative and
point in the same direction as p. In the limit of a steady wave train, the time-dependent term on the
right-hand side of Equation 22 is zero, and the region of mean-flow acceleration then coincides
with the region of wave dissipation. This often-studied case of a steady wave train with dissipation
gives rise to the pseudomomentum rule, which is the notion that the mean flow feels the presence
of the waves only where and when the waves are dissipating, and that in this case the effective force
felt by the zonal mean flow is equal to (minus) the dissipation rate of the zonal pseudomomentum.
This is a useful rule in practice, although the thought experiment just described makes clear that
wave dissipation only makes permanent mean-flow changes that have already occurred previously
due to wave transience.

Essentially the same construction for the dissipative pseudomomentum rule can also be achieved
for a three-dimensional packet of internal waves that intersects a given stratification surface. Here
zonal averaging is replaced by the usual asymptotic averaging over the rapidly varying phase of
the wave packet. This is illustrated in Figure 1, which shows a wave packet intersecting a quasi-
horizontal stratification surface. At the core of the wave packet, the wave-induced mean flow is
forward, i.e., in the direction of pH . This is as could be expected from Equation 14. In addition, the
wave packet is surrounded by a large-scale O(a2) dipolar return flow, which was first computed by
Bretherton (1969). This return flow is peculiar to localized wave packets, and it has no counterpart
in the zonal-mean theory that led to Equation 14. If the wave packet dissipates, then the mean flow
does not change, but a dipolar pattern of equal-and-opposite vertical vorticity arises as indicated
in Figure 1b (Bühler 2000, McIntyre & Norton 1990). More accurately, the dipolar pattern arises
in the distribution of Rossby-Ertel potential vorticity (PV) on the stratification surface under
consideration. For example, in the case of Equations 1 and 2, the PV is defined as

q = (∇ × u) · ∇s
ρ

, with the property that
Dq
Dt

= 0 (23)

in perfect flow without dissipation. As the wave packet dissipates, a dipolar PV pattern is generated
as if a horizontal force equal to (minus) the dissipation rate of horizontal pseudomomentum were
acting on the mean flow. As above, the dissipation can only make permanent the mean-flow change
that arose from wave transience. Notably, this dissipation pattern implies that the horizontal
pseudomomentum of the wave packet reappears as the horizontal impulse of the PV distribution.
This is an instance of a more general conservation law that is discussed in Section 2.6 below.
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Wave packet Vortex dipole

Dissipation

Figure 1
View from above of a three-dimensional packet of internal waves that intersects a horizontal stratification
surface. The large-scale O(a2) return flow is indicated by the black lines. As the wave packet dissipates, it
turns into a vortex dipole. The purple arrow indicates both the direction of propagation of the wave packet
and the horizontal pseudomomentum vector pH according to Equation 14. The horizontal
pseudomomentum of the wave packet before dissipation equals the horizontal impulse of the
potential-vorticity distribution after dissipation.

2.5. The Wave-Driven Circulation in the Middle Atmosphere

In the long run, the persistent forcing due to dissipating waves that is felt by the zonally averaged
zonal mean flow according to Equation 22 can lead to a significant large-scale flow response in the
atmosphere, especially in the middle atmosphere, which lies between approximately 20 and 80 km
in altitude. The main component missing in Equation 22 is Earth’s rapid rotation. Basically, on a
rotating planet, the zonal accelerations due to a zonally symmetric prograde (i.e., eastward) force
give rise to Coriolis forces that push the air equatorward, toward the region of higher absolute
angular momentum. Conversely, a retrograde (i.e., westward) force leads to Coriolis forces that
push the air poleward. This is true in both hemispheres.

By mass conservation, the poleward or equatorward push due to the Coriolis forces leads to
a global-scale zonal-mean circulation in the meridional, latitude-altitude plane. This gyroscopic
pumping effect of the wave-induced zonal forces is illustrated in Figure 2. In the lower and middle
stratosphere, the retrograde force due to Rossby waves dominates, leading to the Brewer-Dobson
circulation, which is an equator-to-pole circulation in both hemispheres with corresponding
upwelling in the equatorial region and downwelling over the poles.

The prevailing zonal winds in the summer hemisphere do not allow topographically forced
Rossby or gravity waves to propagate higher up into the mesosphere, but it is possible for prograde
gravity waves to make this journey, and this leads to an effective prograde force in the summer
mesosphere (e.g., Andrews et al. 1987, Bühler & McIntyre 1999, Bühler et al. 1999). Conversely,
there is no such lack of retrograde Rossby waves in the winter hemisphere, and this leads to a
retrograde force in the winter mesosphere. Combining these force patterns therefore leads to the
Murgatroyd-Singleton circulation, which is circulation from summer pole to winter pole, with
upwelling over the summer pole and downwelling over the winter pole. The adiabatic cooling
associated with the expansion of air parcels in the rising branch of this circulation over the summer
pole is responsible for the peculiar fact that the summer polar mesophere is both the sunniest
place on Earth and also the coldest, with observed temperatures as low as −163◦C (McIntyre
2003).
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Figure 2
Mass-transport streamlines, indicating the wave-driven meridional circulation in the middle atmosphere.
Retrograde wave-induced forces due to Rossby waves and gravity waves are displayed in green, and prograde
forces due to gravity waves are displayed in orange.

These examples illustrate the importance of the wave-induced transport of angular momentum
for the global-scale circulation of the atmosphere; further examples and more theoretical detail of
how the meridional circulation at some altitude depends on effective forces higher up are discussed
comprehensively by Haynes et al. (1991). The global conservation of angular momentum is crucial
to achieve the right physical results here, and this is also important for the design of numerical
models, which need to take this angular-momentum constraint into account (e.g., Shepherd &
Shaw 2004).

2.6. Conservation Law for Pseudomomentum Plus Impulse

The classical interaction theory discussed in the previous section excludes effects regarding the
three-dimensional refraction of waves by vortices. This matters for localized wave–vortex inter-
actions, in which both the waves and the relevant mean flow depend on all spatial coordinates.
Recent wave-vortex refraction studies involving internal gravity waves include Plougonven &
Snyder (2005), Hasha et al. (2008) in atmospheric science, Polzin (2008) in oceanography, and
Snyder et al. (2007) in idealized GFD.

Refraction is most easily studied in the regime of slowly varying linear waves, in which the
general methods of ray tracing together with the conservation of wave action readily deliver
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the solution. A simple system for illustration is the two-dimensional shallow-water system. The
governing equations are

Du

Dt
+ g∇h = 0 and

Dh
Dt

+ h∇ · u = 0. (24)

Here u = (u, v) is the horizontal velocity, h is the layer depth, and g is gravity. The fields (u, h)
depend on the horizontal coordinates x = (x, y) and time t. The relevant PV is

q = ∇ × u

h
= vx − uy

h
, which has the property

Dq
Dt

= 0. (25)

We assume an O(1) vortical flow with slowly varying velocity field U(x, t). If the Froude number
based on U is sufficiently low, then we can neglect O(1) variations of the layer depth; i.e., we can
treat the O(1) layer depth H as constant.

A slowly varying wave train with central wave-number vector k(x, t) containing shallow-water
surface waves is then governed by the dispersion relation

ω = ω̂(k) + U · k with ω̂(k) =
√

g H|k|. (26)

The absolute group velocity is

c g =
√

g H
k

|k| + U, and
d
dt

= ∂

∂t
+ c g · ∇ (27)

is the time-derivative along a ray. The wave-action conservation law takes the generic form of
Equation 20. The evolution of k along a ray is then given by

dk

dt
= −(∇U ) · k ⇔ dki

d t
= −

2∑
k=1

∂Uk

∂xi
kk. (28)

For example, in the case of a zonally symmetric mean flow, the zonal component of k would
remain constant along a ray. In combination with Equation 20, this would then lead to the integral
conservation of zonal pseudomomentum, as discussed above. In the more general case, this is no
longer true, and hence no component of p is conserved. Indeed, combining Equations 20 and 28
leads to

∂p
∂t

+ ∇ · (pc g ) = −(∇U ) · p. (29)

This shows that the pseudomomentum is refracted in the same way as the wave-number vector.
Assuming a compact wave field, a domain-integrated form of Equation 29 is

PP =
∫

p dxdy and
dPP
dt

= −
∫

(∇U ) · p dxdy. (30)

The changes in p or PP due to refraction raise the question as to how the basic flow U is it-
self affected. In other words, is there a generalization of Equation 14 that allows for local
refraction?

If the velocity field U is induced by vortices, then a simple conservation law exists that regulates
the interplay of the pseudomomentum and the impulse of the mean vorticity distribution (Bühler
& McIntyre 2005). To demonstrate this, we use the Lagrangian-mean versions of Equation 25
(Bühler & McIntyre 1998):

q̄ L = ∇ × (ūL − p)
h̃

and D̄Lq̄ L = 0. (31)

Here h̃ is defined by

D̄Lh̃ + h̃∇ · ūL = 0. (32)
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+

_

+Γ>0

−Γ<0

Figure 3
Impulse of a vortex couple consisting of two vortices with equal-and-opposite circulations ± �. The impulse
vector points in the direction of propagation of the couple and has magnitude |I| = �R, where R is the
distance between the vortices. Notice that the couple speed is proportional to �/R, whereas its
two-dimensional vortex interaction energy is proportional to �2 ln R. Hence, with decreasing R, the impulse
and the energy of the couple both decrease, but its speed increases.

The impulse based on q̄ L is

I =
∫

(−y, +x)h̃q̄ L d xd y =
∫

(−y, +x)∇ × (ūL − p)d xd y . (33)

As an example, the impulse of a vortex couple is depicted in Figure 3. It is well-known that
the impulse of a two-dimensional or three-dimensional vorticity field in incompressible fluid
dynamics has a number of attractive properties. For instance, in an unbounded domain, the
impulse is conserved. Moreover, the impulse integral does not suffer from the well-known
ambiguity of the momentum integral, which is not absolutely convergent in an unbounded
domain, even for compact vortical structures such as vortex rings or vortex couples in two di-
mensions (e.g., Lamb 1932, Theodorsen 1941). Impulse theory has also been used to measure
fluid-body interaction forces in studies of animal locomotion (e.g., Bühler 2007, Dabiri 2009,
Drucker & Lauder 1999). It is therefore quite a natural idea to use impulse theory for wave–vortex
interactions.

The time derivative of I is easily evaluated by applying D̄L to the entire integrand, including
dxdy. Both q̄ L and h̃d xd y are mean material invariants, and hence the only nonzero term comes
from D̄L( y, −x) = (v̄L, −ūL). After some integration by parts, this yields

dI
dt

=
∫

(ūL − p)∇ · ūL d xd y +
∫

(∇ūL) · p d xd y (34)

up to a remainder that vanishes in an unbounded domain if q̄ L and p are compact (Bühler 2009,
Bühler & McIntyre 2005). In the last term, p contracts with ūL and not with ∇. So far we have
used exact GLM theory for I , but now we ignore the ∇ · ūL term under the assumption of low
Froude number for the mean flow. Comparing Equations 30 and 34 then yields

d (PP + I)
dt

= 0, (35)

which is the sought-after conservation law for the sum of pseudomomentum and impulse. Notably,
Equation 35 also remains valid in the presence of momentum-conserving dissipation, which makes
clear that in Figure 1 the net pseudomomentum of the wave packet before dissipation is equal to
the impulse of the vortex couple after dissipation.
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Us

x = 0

x

y

x > 0 x = xA x = xd

Figure 4
Two snapshots of a wave packet undergoing refraction due to the strain flow induced by the vortex couple on
the right. The flow is viewed in a reference frame moving with the vortex couple, and the induced strain is
such that it compresses the wave packet in the x direction, which increases |k| and therefore increases |P|.
The conservation law (Equation 35) makes clear that there must be a concomitant decrease of the impulse
|I|, which is confirmed by detailed calculation: The large-scale Bretherton return flow of the wave packet
(indicated by the stippled lines) pushes the vortex couple closer together and thereby lowers its impulse by the
right amount. Figure taken from Bühler & McIntyre 2005.

The conservation law for I + P makes it easier to analyze wave–vortex interactions involving
refraction. For example, Figure 4 illustrates a wave packet undergoing refraction. The gain in the
wave packet’s pseudomomentum is balanced by a loss in the couple’s impulse. It is apparent that
this kind of nonlocal action-at-distance interaction between waves and vortices is quite different
from the standard wave–mean interactions (such as Equation 14) that occur in the theory of zonally
symmetric mean flows.

Overall, the material reviewed above shows how the interplay between the circulation theorem,
the Lagrangian-mean flow, and the pseudomomentum regulates the wave–vortex interactions in
classical fluid dynamics. We now turn to quantum fluid dynamics, in which we note similarities
with the classical wave–vortex interactions.

3. SUPERFLUIDS

Superfluidity is a macroscopic quantum effect that can arise at very low temperatures in certain
materials. Outstanding among a remarkable score of unusual fluid-dynamical behavior exhibited
by superfluids is the possibility of quantized vortex lines (e.g., Donnelly 1991, 1993). The classic
example of superfluid material is liquid helium II, which exhibits superfluidity below a temperature
T of approximately 2.17 K. More recently (since 1995), the production of dilute Bose-Einstein
condensates by laser cooling in laboratory experiments has provided an example of superfluidity
in which quantized vortex lines are directly observable (e.g., Pethick & Smith 2002). This has
greatly stimulated renewed interest in superfluid dynamics, and even in superfluid turbulence
(e.g., Barenghi et al. 2001).

The traditional reference point for a continuum description of superfluidity at low-but-finite
temperature is the two-fluid model of Landau, in which the fluid is conceived as an inseparable
mixture of two interpenetrating components termed the super and the normal components (e.g.,
Landau & Lifshitz 1959). The super component executes inviscid irrotational flow (including
quantized vortex lines) and carries zero entropy. In contrast, the normal component executes
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standard viscous flow and carries all the fluid entropy. The two fluids are not independent, but
are coupled dynamically through various force terms, describing effects such as mutual friction.
Their relative abundance is temperature dependent such that the normal component is absent at
T = 0 and the super component is absent at the transition temperature.

Apart from requiring a certain suspension of disbelief on behalf of classical fluid dynamicists,
the two-fluid model (and its various extensions over the years that account more fully for quantized
vortex lines) suffers from the presence of a large number of adjustable constants in the model,
and from a certain ambiguity of the exact terms that should appear in the equations. Arguably,
these problems effectively prohibit a comprehensive fundamental mathematical and computational
study of the two-fluid model.

An attractive alternative in this regard is the study of superfluidity using the dynamics of a
macroscopic wave function for the particle locations, which leads to the nonlinear Schrödinger
(NLS) equation. This appears to be a faithful model of superfluidity of dilute systems at very low
temperatures, and it naturally includes quantized vortex lines, as well as elementary wave excitations
that can interact with these vortices. Indeed, it is broadly agreed that such wave excitations are a
model for the normal component in the two-fluid model, and sometimes it is even speculated that
a full thermodynamic ensemble of such waves would recover the two-fluid model in its entirety
(e.g., Sonin 2001).

We now provide a simple account of the fluid dynamics described by the NLS equation, and
then discuss wave–vortex interactions. Whenever possible, we compare results with the classical
results reviewed above. Of course, the basics of quantum fluid dynamics are readily available
elsewhere, but it is convenient for discussion to assemble all the pieces in one place.

3.1. The Nonlinear Schrödinger Equation

The NLS equation, also called the Gross-Pitaevskii equation, is a model equation for the collective
wave function that governs the behavior of a condensate of N identical bosons near absolute zero
temperature T = 0. Formally, the equation is derived under two assumptions. First, the N-particle
wave function � of quantum mechanics is approximated by a product of N identical copies of the
single-particle wave function ψ̃ , i.e.,

�(x1, x2, . . . , xN, t) =
N∏

i=1

ψ̃(xi , t). (36)

Here the particle locations xi ∈ D ⊂ R
3 live in some bounded domain D, for example. The

product form in Equation 36 implies that the particles are independent, and we also have the
normalizations ∫

D
|�|2d V1 . . . d VN = 1 and

∫
D

|ψ̃ |2d V = 1. (37)

Second, the pair interactions between any two particles are approximated by a potential energy
function V, given by

V(xi , x j ) = U0δ(xi − x j ) for i 
= j. (38)

Here U0 > 0 is a constant, and Equation 38 provides the simplest possible model for the repulsive
short-range interactions between two particles. [It is not possible to derive a precise value for U0

from microscopic theory, but a typical expression is U0 = 4π�a2/m, where a is the particle ra-
dius and m is its mass (Pethick & Smith 2002).] The expected energy of the N particles then follows
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from the usual Hamiltonian operator of quantum mechanics as

N
∫
D

(
�

2

2m
|∇ψ̃ |2 + V(x)|ψ̃ |2 + N − 1

2
U0|ψ̃ |4

)
d V. (39)

Here � is Planck’s constant divided by 2π , m is the mass of a particle, and V(x) is an external
potential that might be present. There are N(N − 1)/2 pair interaction terms, and they multiply
the wave function raised to the fourth power.

The form of Equation 39 suggests the use of a scaled wave function

ψ(x, t) =
√

Nψ̃(x, t) such that
∫
D

|ψ |2d V = N, (40)

and therefore for N � 1, the expected energy takes the simpler form∫
D

(
�

2

2m
|∇ψ |2 + V(x)|ψ |2 + 1

2
U0|ψ |4

)
d V. (41)

For stationary states, this expression can be used to determine the ground-level energy states by
minimization under the particle-conservation constraint (Equation 40) (e.g., Pethick & Smith
2002). Conversely, a time-dependent evolution equation for ψ(x, t) can be derived by applying
the standard methods of Hamiltonian mechanics for continuous fields to the expected energy
functional (Equation 41). If U0 = 0, this yields the usual linear Schrödinger equation, and if
U0 
= 0 it yields the NLS equation

i �ψt = − �
2

2m
∇2ψ + [V(x) + U0|ψ |2]ψ. (42)

The boundary conditions are ψ = 0 on x ∈ ∂D. Notably, the nonlinearity in Equation 42 appears
in undifferentiated form via the magnitude of ψ , showing that in low-density regions, the NLS
equation is well approximated locally by the linear Schrödinger equation. This is much simpler
than the nonlinearity in Equation 1. Also, Equation 42 can be simply integrated numerically using
an operator-splitting method, which again contrasts with the classical compressible fluid equations.

3.2. The Madelung Transformation and Vortices

The NLS equation can be made intelligible to fluid dynamicists via the celebrated Madelung
transformation, which is based on the polar representation of ψ in the form

ψ = √
n exp(iθ ), (43)

where n(x, t) ≥ 0 and θ (x, t) are real-valued functions describing the expected particle density and
the wave phase, respectively. Clearly,

n(x, t) = |ψ(x, t)|2, (44)

and therefore n(x, t) satisfies the continuity equation

nt + ∇ · j = 0, (45)

where the usual probability current vector

j = − i�
2m

(ψ∗∇ψ − ψ∇ψ∗) = + �

m
�(ψ∗∇ψ) = �

m
n∇θ. (46)

This motivates the definition of a velocity vector u(x, t) = j/n for the condensate via

u = �

m
∇θ = �

m
�(ψ∗∇ψ)

|ψ |2 . (47)
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If ψ is replaced by its complex conjugate ψ∗, then u changes its sign. This is a simple manifestation
of the time reversibility of the NLS equation; i.e., replacing an initial condition of the NLS equation
by its complex conjugate reverses the direction of time.

The continuity equation then takes the standard form

nt + ∇ · (nu) = 0 ⇔ Dn
Dt

+ n∇ · u = 0, (48)

which is familiar from Equation 2a with ρ replaced by n. The definition of u as the gradient of θ

makes clear that

∇ × u = 0 (49)

holds, albeit only in a weak sense. Specifically, Equation 49 holds at any point at which ψ 
= 0, but
it can be violated at zeros of ψ , which correspond to vortices. The velocity field is singular at such
vortex locations, and the right-hand side of Equation 49 then acquires a delta function centered
at the vortex location. A simple kinematic example in two dimensions is the following. We let

ψ = x + iy = r exp(iα) ⇒ n = r2 and θ = α, (50)

where (r, α) are cylindrical coordinates such that x = r cos α and y = r sin α. Hence θ is multiple
valued,

u = �

m
(−y, +x)
x2 + y2

, (51)

and the circulation of u around any closed contour C enclosing the origin is

� =
∮
C

u · dx = 2π
�

m
. (52)

This is the celebrated occurrence of quantized vortex lines in superfluids, which correspond to zero
lines of the complex wave function ψ . [Higher-order vortices with circulations that are integer mul-
tiples of 2π�/m are also possible; e.g., ψ = (x+iy)2 has circulation 4π�/m. However, such higher-
order vortices play a limited role in practice because they are likely to split into several first-order
vortices with the same net circulation.] Notably, the occurrence of such zero lines in three dimen-
sions (and the occurrence of zero points in two dimensions) is generic for a complex function such
as ψ , because such a line is the intersection of the zero surfaces of the real and imaginary parts of ψ .

At first sight, it may seem that a single vortex such as Equation 50 may spontaneously appear
or disappear in the course of the time-dependent dynamics of the NLS equation, but this is not
the case. Indeed, an isolated vortex can neither appear nor disappear at all under NLS dynamics.
Essentially, this is because around the vortex the phase of ψ increases by 2π , and this topological
fact cannot be undone by the differential dynamics of the NLS equation. A direct proof of the
same fact follows from KCT once we have written down the governing equations for θ and u,
which follow from Equation 42 after the substitution of Equation 43. This leads to

�

m
θt + |u|2

2
+ 1

m
[V(x) + U0n] − �

2

2m2

∇2√n√
n

= 0. (53)

The occurrence of 1/
√

n signals that this equation is well defined away from zeros of ψ , i.e., away
from vortex locations. Similarly, away from vortex locations, the gradient of Equation 53 gives

Du

Dt
+ ∇

{
1
m

[V(x) + U0n] − �
2

2m2

∇2√n√
n

}
= 0, (54)

where Equation 49 has been used in the vector identity (u·∇)u = 1
2 ∇|u|2+(∇×u)×u. Remarkably,

the U0n term stemming from the repulsive interactions is the same as the pressure-gradient term
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in shallow water (Equation 24) or in polytropic flow with the ratio of specific heats equal to two.
In other words, the repulsive nonlinearity in the NLS equation gives rise to an effective pressure
that is proportional to the density squared. Conversely, the term −�

2∇2√n resembles the effect of
surface tension. Importantly, both terms appear inside the gradient, so KCT holds along material
contours C that do not pass through vortices, where u is singular.

It is easy to compute the structure of a steady point vortex in two dimensions (e.g., Donnelly
1991), and the density n varies from zero at the vortex line to its background value n0 over a radial
distance comparable to the so-called healing length

ξ = �√
2mn0U0

. (55)

A simple approximation for the density structure is n(r) ≈ n0r2/(r2 + ξ 2), which shows that
Equation 50 is accurate at leading order in the radius r.

Now, we again consider the two-dimensional situation with a single vortex at the origin and put a
closed contour C around the vortex and subsequently move this contour with u. Then KCT applies
in its simplest form to this material contour, and therefore �(C) cannot change its value, and a single
isolated vortex can neither appear nor disappear in the NLS equation. This conclusion holds even
though the vortex need not move with u itself, because if an isolated vortex disappears during some
infinitesimal time interval �t, then it is always possible to find a contour C that encloses the vortex
location at a finite distance during this interval. An analogous conclusion holds in three dimensions:
A finite-size vortex ring can only disappear if it shrinks to zero radius ( Jones & Roberts 1982).

The persistence of isolated vortices under NLS dynamics raises the question of how such
vortices can be generated or destroyed at all. Naturally, interactions of the superfluid with solid
walls or with foreign bodies such as ions can lead to vortex generation (e.g., Berloff 2000). More
subtly, in two-dimensional flows, for example, it is possible to have the spontaneous pair generation
of two equal-and-opposite point vortices that are infinitesimally separated. The generation or
destruction of such an infinitesimal dipole does not violate KCT because the velocity field in this
case is singular on a material contour that is threaded through the infinitesimal gap between the
vortices. An analogous possibility exists for infinitesimal vortex rings in three dimensions.

The spontaneous generation and destruction of infinitesimal vortex dipoles in two dimensions
are easily demonstrated using the linear Schrödinger equation, which is a valid local approximation
to the NLS equation if |ψ |2 is small enough. Basically, this applies to the local flow structure around
vortices within the healing length ξ . Setting both V and U0 to zero in Equation 42 and rescaling
time by m/� lead to

ψt = i
2
∇2ψ. (56)

An initial condition that corresponds to two equal-and-opposite vortices at x = (0, 0) and
x = (1, 0) is

ψ(x, y, 0) = (x + iy)(x − 1 − iy) = x2 − x + y2 − iy . (57)

This is only a local model for ψ , so we do not worry about the growth of |ψ | with distance. The
linear solution to this initial-value problem is

ψ(x, y, t) = x2 − x + y2 − i (y − 2t). (58)

This has zeros at

x = 1
2

± 1
2

√
1 − 16t2 and y = 2t. (59)

Clearly, the vortices are moving with speed 2 in the y direction, but they are also getting closer
together in the x direction, and at time t = 1/4 they collide and disappear.
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Vortex pair creation and destruction

Figure 5
Vortex pair creation and destruction in the solution (Equation 58) to the linear Schrödinger equation. Shown
in red and blue are the trajectories of the positive and negative vortex, respectively, and the arrows indicate
the direction of propagation. The bending direction of the trajectories is opposite to that suggested by
analogy with a classical Magnus force.

Actually, the solution (Equation 58) is also valid for negative times, meaning that the vor-
tices were pair-generated at (x, t) = (1/2, −1/2, −1/4), separated, reached maximum distance at
t = 0, and then converged again until they disappeared at t = 1/4. This life cycle is illustrated in
Figure 5. Presumably the same construction can be achieved for three-dimensional vortex rings,
and there is certainly plentiful numerical evidence for the spontaneous generation of vortex rings
(e.g., Berloff & Barenghi 2004).

Despite the ease with which vortices can be identified and manipulated in the Schrödinger
equation, it is worth noting that the assumptions that went into the derivation of the NLS equation
break down on molecular scales comparable to the interatomic spacing. The healing length ξ is
comparable to these molecular scales, and therefore the detailed vortex core structure in the NLS
equation is not realistic.

3.3. Vortex Dynamics

A quantum vortex line is a zero line of the complex wave function ψ , so the vortex line is marked
by the absence of condensate. Conversely, the velocity u is defined by the continuity equation
(Equation 48) for the condensate, so by definition it is the velocity with which the condensate
moves. It is therefore not too surprising that there is no fundamental link between the motion of a
quantum vortex line and u. This is in striking contrast to classical incompressible fluid dynamics,
in which vorticity is frozen into the fluid, and hence vortex lines necessarily move as material lines.
(If the flow is barotropic, i.e., if the density is a function of pressure only, then the same is also
true for the density-scaled vector field ∇ × u/ρ in classical compressible fluid dynamics.)

The simple vortex pair example in Figure 5 demonstrates this point. Specifically, by
Equation 57, the condensate velocity at t = 0 is

u = j

n
= (2xy − y, y2 − x2 + x)

(x2 − x + y2)2 + y2
. (60)
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At this instant, the left vortex is located at x = (0, 0), and it easy to show that the average
of u over a small square centered at the vortex location is equal to (0, 1). In other words, the
averaged velocity at the left vortex is equal to the classical induced velocity due to the right vortex,
which has circulation � = −2π and is located at x = (1, 0) (cf. Equation 64 below). However,
Equation 59 shows that the left vortex moves with velocity (0, 2) at this instant, which is twice
the classical induced velocity. This makes unambiguously clear that quantum vortices do not in
general move with the condensate velocity.

In the light of this, there has been a considerable effort (discussed in detail in Donnelly 1991
and Barenghi et al. 2001) to find a dynamical equation for the motion of quantum vortex lines
that allows the study of interactions between several vortices as well as between vortices and
elementary wave excitation such as phonons and rotons (see Section 3.4 below). For example,
in two dimensions the motion of a quantum vortex line relative to the condensate is sometimes
compared with the motion of a solid cylinder with circulation that moves relative to a classical
incompressible fluid. This gives rise to a Magnus force acting on the cylinder to which the cylinder
then responds like a single particle endowed with an added mass due to the exterior fluid motion.
Specifically, in the classical two-dimensional situation, the Magnus force is

F = ρ�ẑ × U, (61)

where ρ is the fluid density, � is the circulation around the cylinder, ẑ is the vertical unit vector,
and U is the motion of the cylinder relative to the ambient fluid. The velocity U(t) then evolves
according to

(mc + ma )
dU

dt
= F = ρ�ẑ × U, (62)

where mc + ma is the mass of the cylinder plus the added mass of the displaced fluid. Working by
analogy, an effective Magnus force is therefore sometimes postulated for quantum vortex lines.
However, the solid cylinder played an essential role in the classical example because it bears the
dipolar pressure load caused by the relative motion of the cylinder with respect to the fluid. It is
not obvious that the “soft” compressible core of a quantum vortex can play the role of the solid
cylinder. (If the quantum vortex circulation is attached to a wire threading the condensate, as
might be the case in some experimental set ups, then the analogy with the classical Magnus force
is much better.) That is not to say that the analogy with the classical Magnus force is wrong in all
cases, but rather that it is hard to discern the range of validity of this analogy.

For what it is worth, it appears that the bending of the vortex trajectories in Figure 5 cannot be
explained by Magnus forces. Specifically, at t = 0 the left vortex (which has positive circulation)
moves with speed (0, 2) while the local condensate moves with the average speed (0, 1). Hence
the vortex is faster than the condensate, therefore U = (0, 1) in Equation 61, and the Magnus
force points to the left. But the depicted vortex trajectory bends to the right, i.e., in the opposite
direction to that suggested by the Magnus force in Equation 62.

Conversely, a point vortex in two dimensions can indeed be simply advected by a slowly varying
condensate velocity. Essentially this already follows from the Galilean invariance of the linear
Schrödinger equation. For example, if the single-vortex initial condition (Equation 50) is replaced
by

ψ(x, y, 0) = e iyV (x + iy), then ψ(x, y, t) = e iyV−iV2t/2[x + i ( y − Vt)]. (63)

Here the unitary factor exp(iyV ) adds a constant velocity field (0, V ) that is a simple model for
a slowly varying velocity field, and Equation 63 makes clear that the vortex is simply advected
by this velocity. This contrasts with Equation 57, where the factor x − 1 − iy corresponds to a
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velocity field near the origin equal to (0, 1) + (y, x) + O(r2). This is not slowly varying compared
to the vortex core, which is O(1) in this example.

This gives rise to the classical approximation to quantum vortex dynamics, which is based
on two assumptions: first, that the density n is approximately equal to its background value n0

everywhere outside the vortex cores, and second, that the vortices are well separated in the sense
that their separation r satisfies r � ξ . The first assumption is reasonable for small velocities and
large-scale flows, because in this case the nonlinear term in the NLS equation ensures that there
are only weak density fluctuations, and hence n ≈ n0 and ∇ · u ≈ 0 outside the vortex cores. The
second assumption can be controlled for the initial conditions, but there is no guarantee that the
dynamical evolution of the quantum state will maintain this assumption.

In two dimensions, this means that a vortex at (x1, y1) with circulation �1 induces the classical
velocity field

u = �1

2π

[−(y − y1), +(x − x1)]
(x − x1)2 + (y − y1)2

(64)

at distances large compared to ξ . Therefore, M well-separated vortices with positions (xi , yi ) ∈
R

2 and circulations �i move according to the classical Hamiltonian set of ordinary differential
equations first proposed by Kirchhoff (Lamb 1932):

�i
d xi

d t
= +∂ H

∂yi
and �i

d yi

d t
= −∂ H

∂xi
, (65)

where the Hamiltonian function is

H(x1, y1, . . . , xM, yM) = − 1
2π

M∑
j=2

j−1∑
i=1

�i� j ln ri j (66)

in terms of the vortex separations ri j = |xi − x j |. This dynamical system preserves the value of H
as well as the impulse vector

I =
M∑
i

(−yi , +xi )�i (67)

and the angular momentum

J =
M∑
i

(x2
i + y2

i )�i . (68)

The partial analogy with classical point vortex dynamics also extends to bounded flows. For
example, if a quantum vortex is far away from a straight impermeable wall, then the effect of
the wall on the vortex is well represented by the usual image vortex construction (Mason et al.
2006). This is not completely obvious because the quantum boundary condition is ψ = 0 at a
wall, whereas the classical condition is u · n = 0 in terms of the unit vector normal to the wall.
However, just as in the vortex core, the density adjusts from zero to its background value over a
short distance away from the wall that is comparable to the healing length ξ . In other words, the
direct impact of the quantum boundary condition is confined to a thin boundary layer, and there
can be no probability current into this boundary layer, so u · n = 0 applies at a short distance
normal to the wall.

The validity of Equation 65 for well-separated quantum vortices makes available the well-
known results of classical point vortex dynamics. It also makes available the statistical mechanics
methods that have been developed for the classical situation (e.g., Bühler 2002). Of course, if two
vortices get too close to each other (or if one vortex gets too close to a wall), then Equation 65
loses its validity, the vortices do not move according to classical theory anymore, and we also face
the possibility of spontaneous pair creation or destruction.
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3.4. Linear Wave Spectrum

The linear wave spectrum of the NLS equation for small perturbations relative to a uniform
basic state with n = n0 and u = 0 is easily computed. For plane-wave perturbations of the form
exp(i [k · x −ωt]) with wave-number vector k and frequency ω, one obtains the dispersion relation

ω2 = c 2κ2 + �
2

4m2
κ4 where κ = |k| and c 2 = n0U0

m
. (69)

Thus for small wave numbers, there is the nondispersive sound wave regime ω2 = c 2κ2, whereas
for higher wave numbers, the dispersive κ4 term comes into play. Compared with classical fluid
dynamics in two dimensions, this dispersion relation is identical to that of the shallow-water equa-
tions with surface tension (e.g., Whitham 1974). In quantum mechanics, the low-wave-number
excitations described by Equation 69 are called phonons. In general, elementary excitations such
as phonons are interpreted as a model for the normal fluid component in the two-fluid model.

The linear wave spectrum has a particularly important interpretation in quantum mechanics
because of the proportionality (for plane waves) between the expected momentum and energy
of an elementary excitation and the wave-number vector k and the frequency ω, respectively. In
other words, in quantum mechanics, a plot of ω as a function of κ is interpreted as a plot of energy
E as a function of momentum p, for example. In this interpretation, the low-wave-number part of
Equation 69 corresponds to E ∝ p , a relationship that is familiar from light waves, i.e., photons.
Conversely, the large-wave-number part of the spectrum corresponds to E ∝ p2, as in the kinetic
energy for single particles in classical mechanics.

Despite these appealing interpretations, the actual spectrum of elementary excitations for liquid
helium is not well described by Equation 69 for large wave numbers. Indeed, the true spectrum is
not monotonic, but rather it dips down and exhibits a conspicuous interior minimum of E( p) at a
wavelength comparable with the interatomic spacing. This minimum is particularly important, as
it is associated with observable excitations called rotons, but it is clearly not present in the linear
plane-wave spectrum of the NLS equation.

It is possible to modify the pair-interaction model (Equation 38) to allow for nonlocal interac-
tions to obtain a better fit between the NLS spectrum and the observed spectrum, although one
has to be careful that the implied sign reversal of the group velocity dω/dκ does not lead to other
unwanted dynamical effects, such as unphysical particle clustering (e.g., Berloff & Roberts 2001).
However, the available microscopic theories for rotons are not based on plane-wave excitations
(Feynman 1956). Indeed, Feynman visualized the molecular dynamics of a roton as the smallest
possible vortex ring (or vortex pair in two dimensions) in which individual molecules move for-
ward in a narrow and short channel while there is a large-scale dipolar return flow that surrounds
this forward flow and ensures that the probability current is nondivergent. In Feynman’s (1998)
words, “A roton can be visualized as a group of children going down a slide. After sliding down,
the children go around and come back to the slide again.” The similarity between this roton image
and the wave packet with the Bretherton return flow in Figure 1 is striking.

3.5. Wave–Vortex Interactions in the Nonlinear Schrödinger Equation

The interactions between quantized vortex lines and wave excitations are the central dynamical
topic in NLS theory. We restrict our discussion to the two-dimensional case, in which the vortex
lines correspond to point vortices. One fundamental interaction mechanism is the creation of point
vortices either in the fluid interior or at a boundary. [As discussed above, the circulation theorem
implies that, in the fluid interior, only the pair creation of vortices is possible, but at a boundary
(such as a cylinder moving through the fluid), a single-sign vortex may be locally created.] For
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smooth flows, a simple scaling argument from classical fluid dynamics then prevails because, to
produce a vortex, the fluid density must reach zero. Relative density variations in compressible
flows are proportional to the square of the Mach number, or equivalently the Froude number in
shallow water, implying that vortex creation requires flow speeds of the order of the nondispersive
wave speed c in Equation 69.

Another fundamental interaction mechanism is the scattering of linear plane waves by a point
vortex, and the concomitant back-reaction on the vortex that is often referred to as mutual friction.
This process is interpreted as a model of the interaction of vortex lines with the normal component
of the fluid in the two-fluid model, whereby the propagation of waves past the vortex line is viewed
as motion of the normal component relative to the vortex line. Despite the clarity of the linear
scattering problem, the situation is mathematically difficult because of the singularity of u at
the vortex, which requires careful asymptotic treatment (e.g., Llewellyn Smith 2002). Moreover,
cumulative effects accrue only at O(a2) in the small wave number a � 1, so in principle this
involves nonlinear effects.

For example, in a perturbation expansion where n = n0 + an1 + a2n2 + . . . and the other fields
are ordered in powers of a � 1, the current nu at O(a2) is often approximated by n1u1, where
n1 and u1 are the linear solutions. However, this neglects mean-flow response terms such as n2u0

and n0u2, which enter at the same order and which are not known from the linear solution. It is
well-known from classical fluid dynamics that these mean-flow response terms can be important in
wave-mean interaction problems (e.g., Bühler 2009, McIntyre 1981). Presumably, these difficulties
are compounded when approximate plane-wave scattering results are superimposed incoherently
to obtain an interaction result for a broad spectrum of plane waves (e.g., Nazarenko et al. 1995).

In view of these mathematical complications, it is perhaps not too surprising that a number of
different formulas and numerical constant have been proposed by different authors to account for
these wave–vortex interactions. For example, there has been ambiguity about the existence and
magnitude of the Iordanskii force, which is conceived as a transverse, Magnus-type force at finite
temperature associated with the flow of the normal fluid past the vortex line (e.g., Barenghi et al.
2001, Sonin 2001, Stone 2000, Wexler 1997).

The straightforward numerical integration of the NLS equation makes simulation the tool of
choice for studying complex wave–vortex interactions. This is particularly true for studies of the
nonlinear interplay of many wave modes and many vortices, and for studies of a forced-dissipative
state (e.g., Nazarenko & Onorato 2006).

With regard to fundamental wave–vortex interactions, it might be useful to apply GLM theory
with its definitions of ūL and p to the NLS equation. For instance, one advantage might be that
by construction ūL contains the entire mean material fluid motion, so, for example, it combines
the irrotational Eulerian-mean flow ū with the O(a2) Stokes drift ūS due to the waves, which need
not be irrotational itself. More specifically, ∇ × ūL = ∇ × ūS = ∇ × p holds for irrotational flow
(Andrews & McIntyre 1978a), and there is no reason why p should be irrotational. This might
help clarify some of the remaining issues surrounding the mutual-friction computation and the
controversy regarding the Iordanskii force.

In addition, the mean circulation theorem described in Section 2.2 remains valid for the NLS
equation. This follows easily from the analogy between shallow-water flow with surface tension
and the NLS flow outside vortex cores. The mean PV expression (Equation 31) then implies that
q̄ L is zero except at vortex locations, where it has a delta function contribution. This means that
the impulse I based on q̄ L has the classical point vortex form (Equation 67).

It seems inevitable that the refraction of phonon waves away from the vortex cores then gives rise
to changes in the waves’ total pseudomomentum P that are described by Equation 30. Similarly,
the Bretherton return flow indicated in Figure 1 must be present in the nearly incompressible
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NLS dynamics as well, and therefore one can hypothesize that the conservation law (Equation 35)
holds for superfluids described by the NLS equations. In other words, the leap-frogging wave–
vortex interaction in Figure 4 is possible in superfluids. It would be tempting to draw conclusions
about mutual friction and the Iordanskii force from a combination of this conservation law and a
linear scattering calculation, but once again it is not clear how the wave–vortex interactions near
the vortex core, where the quantum fluid is compressible, affect the conservation law.

Overall, it seems likely that in the near future a combination of the theoretical methods of wave–
mean interaction theory together with careful numerical simulations will resolve the outstanding
fundamental dynamical questions about wave–vortex interactions in the NLS system. Of course,
this does not mark the end of quantum fluid dynamics or superfluid turbulence, because the NLS
system is only an idealized model for the behavior of real quantum fluids close to zero temperature,
but it does mark an important milestone on the path toward a self-consistent predictive theory of
finite-temperature superfluidity.
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James M. Wallace and Petar V. Vukoslavčević � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 157

Friction Drag Reduction of External Flows with Bubble and
Gas Injection
Steven L. Ceccio � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 183

Wave–Vortex Interactions in Fluids and Superfluids
Oliver Bühler � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 205

Laminar, Transitional, and Turbulent Flows in Rotor-Stator Cavities
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