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We present a simple two-step method by which one-dimensional spectra of horizontal
velocity and buoyancy measured along a ship track can be decomposed into a wave
component consisting of inertia–gravity waves and a vortex component consisting of
a horizontal flow in geostrophic balance. The method requires certain assumptions for
the data regarding stationarity, homogeneity, and horizontal isotropy. In the first step
an exact Helmholtz decomposition of the horizontal velocity spectra into rotational
and divergent components is performed and in the second step an energy equipartition
property of hydrostatic inertia–gravity waves is exploited that allows a diagnosis of the
wave energy spectrum solely from the observed horizontal velocities. The observed
buoyancy spectrum can then be used to compute the residual vortex energy spectrum.
Further wave–vortex decompositions of the observed fields are possible if additional
information about the frequency content of the waves is available. We illustrate the
method on two recent oceanic data sets from the North Pacific and the Gulf Stream.
Notably, both steps in our new method might be of broader use in the theoretical and
observational study of atmosphere and ocean fluid dynamics.
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1. Introduction
The decomposition of a complex flow into various constituents that are distinguished

by their intrinsic physical and mathematical properties is a powerful conceptual tool,
which is particularly useful in the flows typical for the atmosphere and ocean, where
small-scale dispersive waves, quasi-two-dimensional large-scale vortical flows along
stratification surfaces, and pockets of three-dimensional turbulence all intermingle in a
nonlinear jigsaw puzzle. The most elementary of such flow decomposition methods is
based on the linearized fluid equations relative to a state of rest, which for a rotating
and stratified three-dimensional fluid system such as the Boussinesq model leads
to the familiar decomposition into a horizontal flow in geostrophic and hydrostatic
balance on the one hand and unbalanced inertia–gravity waves on the other. However,
even this most basic decomposition method in principle requires knowledge of all
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the flow variables throughout the entire three-dimensional domain, a task that is as
straightforward in a numerical model as it is hopeless in observational practice.

Indeed, many observations in the atmosphere and ocean are confined to a fixed
location, or to a sequence of locations along a horizontal transect following an
airplane flight or a ship track, say. In this latter situation it is possible to compute
one-dimensional spectra along the ship track of flow variables such as the horizontal
velocities or the buoyancy. By assuming stationarity and homogeneity as needed, this
allows the estimation of one-dimensional covariance functions or, equivalently, of
one-dimensional power spectra. Of course, such ship-track data are highly aliased
in the sense that the power spectra at the one-dimensional wavenumber k > 0 along
the ship track, say, are affected by the multi-dimensional dynamics associated with
all wavenumber vectors with magnitude greater than or equal to k. The situation
improves if one can assume horizontal isotropy at least, in which case one can
exploit the link between one-dimensional and isotropic two-dimensional spectra. In
particular, one can then exploit the well-known differences between the power spectra
of along-track and across-track velocity components (e.g. Batchelor 1953; Charney
1971) to gain some insight into the dynamics of the underlying flow, such as its
decomposition into waves and other constituents.

These issues are of pressing concern especially in oceanography, where observations
are sparse and our understanding of the relevant dynamical processes is poor. For
example, the oceanic motions are very energetic in the submesoscale horizontal range
between O(100) km, the scale of the Rossby radius of deformation, and O(1) km,
the smallest scale at which rotation strongly affects dynamics. These motions play an
important role in the overall ocean circulation, because they connect the large scales
where the ocean is energized by atmospheric forcing to the small scales at which
energy is dissipated (Ferrari & Wunsch 2010). Despite the explosion of theoretical
studies of submesoscale dynamics in the last decade, the dearth of observations on
this range of scales has slowed progress.

A major question is how to partition the relative contributions of geostrophic eddies
and inertia–gravity waves at the submesoscales, because they have different impacts
on dynamics and tracer transport (e.g. Callies & Ferrari 2013, hereafter CF13). A
turbulent field of geostrophic eddies tends to transfer energy to larger scales and mix
tracers along density surfaces. Internal wave interactions, instead, transfer energy to
smaller vertical-scale waves, which break and mix tracers across density surfaces.
In situ mooring observations are useful to separate sub-inertial and super-inertial
motions, but the lack of spatial information prevents any conclusive statement about
whether the sub-inertial motions are submesoscale geostrophic eddies or larger-scale
motions and whether the super-inertial motions are inertia–gravity waves or other
forms of stratified turbulence. Two-dimensional sections (along ship tracks and depth)
of velocity and density provide snapshots of the superposition of all submesoscale
motions with no temporal information to separate the relative contributions. Maps
of potential vorticity (PV) could be used to distinguish the two classes of motion,
because geostrophic eddies are associated with PV anomalies whilst inertia–gravity
waves have no PV signature. But PV requires three-dimensional sections and it is
extremely difficult to measure accurately (e.g. Müller, Lien & Williams 1988).

CF13 used the fact that the ratio of the power spectra of along and across ship-
track velocities can be used to determine whether a velocity field is horizontally non-
divergent, a necessary condition for flows to be in geostrophic balance. In this sense
the geostrophic flow left a clear fingerprint in the observed horizontal velocities that
could be tracked down. However, the horizontal velocity field due to inertia–gravity
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waves has both rotational and divergent components, so its fingerprint in the observed
fields is not as immediately apparent.

In this work, we present a two-step method that allows the extraction of the
fingerprint of inertia–gravity waves from ship-track spectra. First, we show that
measurements of the two horizontal velocity components along ship tracks are
sufficient to partition the flow uniquely into rotational (i.e. horizontally non-divergent)
and divergent (i.e. horizontally irrotational) components, provided one can assume
that the two fields are horizontally homogeneous and isotropic at the measured
scales, and that their rotational and divergent components are uncorrelated in a
statistical sense. This Helmholtz decomposition of the one-dimensional velocity
spectra is purely kinematic in nature and is achieved by solving two simple ordinary
differential equations (ODEs) in spectral space, an easy numerical task. We have
not been able to find a direct prior reference in the literature for this kind of
exact Helmholtz decomposition method for one-dimensional spectra, although related
theoretical investigations do exist as in Lindborg (2007).

Specifically, in that paper it was shown how the one-dimensional covariances of
vertical vorticity vx � uy and of horizontal divergence ux + vy can be expressed
in terms of the one-dimensional horizontal velocity covariances by applying a
certain second-order differential operator. This information can then be converted
into the corresponding power spectra by Fourier transforms, which in principle
also enables a Helmholtz decomposition of the horizontal flow because the vertical
vorticity governs the rotational component and the horizontal divergence governs the
divergent component. In practice, this depends on the smoothness of the observed
covariance functions, which need to be differentiated twice in order to extract the flow
components. This is a difficult task on noisy data and in the practical application of
the theory to air flight data in Lindborg (2007) a parametric fit to an assumed shape
of a piecewise defined covariance function is used instead. The Fourier transforms are
then approximated by transforming each piecewise part of the covariance functions in
isolation. In contrast, the decomposition technique derived in the present paper works
directly on the power spectra of the observed fields and involves only integrals in
spectral space, so no derivatives of noisy data need to be taken. This also allows our
method to be applied directly to the data, without assuming any particular shape for
the covariance functions.

Second, we show that for hydrostatic and vertically homogeneous inertia–gravity
waves the aforementioned Helmholtz decomposition in combination with a statement
about wave energy equipartition is sufficient to compute the one-dimensional wave
energy spectrum. If buoyancy spectra are also available then this means that the total
observed energy spectrum can be exactly decomposed into its inertia–gravity wave
component and its residual vortical component in geostrophic balance. We also show
that one can derive additional relationships between the power spectra if one has
some information about the frequency content of the wavefield (for example that it is
narrow-band, or that it follows a simple model spectrum). In this case it is possible
to decompose not just the total observed energy spectrum but also the individual
observed field spectra into their balanced and unbalanced components. This allows
a complete decomposition of the one-dimensional spectra into their wave and vortex
components, which is of obvious dynamical significance.

In § 2, we introduce the Helmholtz decomposition method for separating the
rotational and divergent components of a two-dimensional velocity field from
one-dimensional spectra. Then we show how to determine what part of the spectrum
is composed of inertia–gravity waves. Throughout, we consider only a very simple
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fluid set-up, which is a three-dimensional Boussinesq model with constant Coriolis
parameter f and buoyancy frequency N. In § 3, the method is applied to ship-based
measurements of the upper ocean velocity field from two field experiments, one in
the eastern subtropical North Pacific and one in the western North Atlantic. Despite
noisy data and restrictive assumptions, in both cases the separation of submesoscale
geostrophic motions from inertia–gravity waves appears to be fully successful.

2. Helmholtz decomposition and wave diagnostics
We begin by assembling some generic facts about one-dimensional velocity spectra

that are derived from a two-dimensional horizontal flow with homogeneous and
isotropic statistics. For horizontally non-divergent flows this is a subset of well-known
results from homogeneous turbulence theory, but for inertia–gravity waves we need
to accommodate horizontal velocity fields that have both rotational and divergent
components, which is a less studied case.

2.1. Helmholtz decomposition of one-dimensional spectra
Let u and v be horizontal velocity components defined in the xy-plane with x aligned
with the ship track, so u is the along-track ‘longitudinal’ component and v is the
across-track ‘transverse’ component. The time t and depth z are considered fixed
during the measurement, so we may ignore these coordinates at this stage. If the flow
is purely rotational, i.e. horizontally non-divergent, then (u, v) derive from a stream
function  (x, y) in the standard way:

ux + vy = 0 ) u = � y and v = + x. (2.1a,b)

Let  be a homogeneous and isotropic zero-mean random function such that

E[ ] = 0 and C (x, y) =E[ (x0, y0) (x0 + x, y0 + y)] = F(r) (2.2a,b)

where r =
p

x2 + y2 and E denotes taking the expected value. The function F(r) is the
covariance of the stream function, which is a function of horizontal distance r > 0
in the two-dimensional plane and encapsulates all the statistical knowledge that is
available for the random velocity field. The power spectrum Ĉ (k, l) is the Fourier
transform of C (x, y), i.e.

Ĉ (k, l) =

Z
1

�1

Z
1

�1

C (x, y)e�i(kx+ly) dxdy = 2p

Z
1

0
J0(khr)F(r) rdr = F̂(kh) (2.3)

where kh =
p

k2 + l2. The corresponding velocity spectra follow from (2.1a,b) as

Ĉu(k, l) = l2 Ĉ (k, l) = l2 F̂(kh) and Ĉv(k, l) = k2 Ĉ (k, l) = k2 F̂(kh). (2.4a,b)

These are clearly not isotropic even though Ĉ is. For completeness, the cross-
spectrum is given by

Ĉuv(k, l) = �kl Ĉ (k, l) = �kl F̂(kh). (2.5)

Now, along the ship track y = 0 and r = x, so the relevant one-dimensional covariance
functions are given by C (x, 0) = F(x), for example. For the power spectra this
corresponds to integrating over the transverse wavenumber l:

Ĉ (k) =
1

2p

Z
1

�1

Ĉ (k, l) dl =
1

2p

Z
1

�1

F̂(kh) dl. (2.6)
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This integrand is even in l and, at fixed k, we have ldl = khdkh, which allows rewriting
(2.6) as

Ĉ (k) =
1
p

Z
1

|k|

F̂(kh)p
k2

h � k2
khdkh. (2.7)

The same steps lead to the one-dimensional velocity spectra

 only: Ĉu(k) =
1
p

Z
1

|k|
F̂(kh)

q
k2

h � k2 khdkh, (2.8)

Ĉv(k) =
k2

p

Z
1

|k|

F̂(kh)p
k2

h � k2
khdkh, (2.9)

where ‘ only’ is added as a reminder that these expressions hold only for
horizontally non-divergent flows that can be expressed through a stream function
 . The corresponding cross-spectrum Ĉuv(k) = 0, because the relevant symbol kl in
(2.5) is odd in l and hence integrates to zero. This will always be the case, so we
will not consider the cross-spectrum any further. By inspection, and using Leibniz’s
rule, we obtain the celebrated formula

 only: Ĉv(k) = �k
d
dk

Ĉu(k) (2.10)

for the horizontally non-divergent case (e.g. Charney 1971). For power-law velocity
spectra of the form k�n this yields

 only: Ĉv(k) = nĈu(k), (2.11)

which, for n > 1, means that along a ship track the transverse spectrum dominates the
longitudinal spectrum for two-dimensional incompressible flows. This is the fingerprint
that was exploited in CF13.

Conversely, we may consider a purely divergent flow, i.e. one that is two-
dimensionally irrotational such that (2.1a,b) is replaced by

vx � uy = 0 ) u = �x and v = �y (2.12a,b)

in terms of a homogeneous and isotropic zero-mean random potential �(x, y) defined
by

E[�] = 0 and C�(x, y) =E[�(x0, y0)�(x0 + x, y0 + y)] = G(r), (2.13a,b)

where G(r) is the covariance of �. Clearly, apart from the sign change, this simply
reverses the roles of u and v in (2.1a,b), so all the spectra can be worked out just as
before. For the two-dimensional spectra this yields

Ĉu(k, l) = k2 Ĝ(kh) and Ĉv(k, l) = l2 Ĝ(kh) (2.14a,b)
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and the one-dimensional ship-track spectra are

� only: Ĉu(k) =
k2

p

Z
1

|k|

Ĝ(kh)p
k2

h � k2
khdkh, (2.15)

Ĉv(k) =
1
p

Z
1

|k|
Ĝ(kh)

q
k2

h � k2 khdkh, (2.16)

where ‘� only’ is added as a reminder that these expressions hold only for irrotational
flows that can be expressed through a velocity potential �. The relationship (2.10) is
replaced by

� only: Ĉu(k) = �k
d
dk

Ĉv(k) (2.17)

and hence now the longitudinal spectrum dominates for power laws with n > 1:

� only: Ĉu(k) = nĈv(k). (2.18)

Note that by definition both F̂ and Ĝ are real and non-negative functions of kh.
Now, a general two-dimensional flow has a Helmholtz decomposition into rotational

and divergent components of the form

u = � y + �x and v = x + �y, (2.19a,b)

which implies the two-dimensional Poisson equations

 xx + yy = vx � uy and �xx + �yy = ux + vy. (2.20a,b)

This determines both  and � up to a harmonic function, but with doubly periodic
boundary conditions such a harmonic function could only be a physically meaningless
constant, so  and � are in fact uniquely determined by (2.20). Progress with the
statistical theory is then possible if  (x, y) and �(x, y) are uncorrelated in the sense
that

E[ (x0, y0)�(x0 + x, y0 + y)] = 0 (2.21)

holds for all (x, y). Under this assumption the velocity covariances due to  and �
simply add up, which yields the one-dimensional ship-track spectra

Ĉu(k) =
1
p

Z
1

|k|

"
F̂(kh)

q
k2

h � k2 +
k2Ĝ(kh)p

k2
h � k2

#
khdkh, (2.22)

Ĉv(k) =
1
p

Z
1

|k|

"
k2F̂(kh)p

k2
h � k2

+ Ĝ(kh)

q
k2

h � k2

#
khdkh. (2.23)

These expressions can be substantially simplified if one introduces the auxiliary
functions D (k) and D�(k) defined by

D (k) =
1

2p

Z
1

�1

l2Ĉ (k, l) dl =
1
p

Z
1

|k|
F̂(kh)

q
k2

h � k2 khdkh, (2.24)

D�(k) =
1

2p

Z
1

�1

l2Ĉ�(k, l) dl =
1
p

Z
1

|k|
Ĝ(kh)

q
k2

h � k2 khdkh. (2.25)



Wave–vortex decomposition of one-dimensional ship-track data 1013

The functions D and D� are the spectra of  y and �y, respectively, and they allow
rewriting (2.22) and (2.23) in the succinct form

Ĉu(k) = D (k) � k
d
dk

D�(k) and Ĉv(k) = D�(k) � k
d
dk

D (k). (2.26a,b)

This is the main result of this section, which neatly incorporates both (2.10) and (2.17)
as special cases. The functions D and D� can be viewed as analogous to  and � in
the Helmholtz decomposition of the ship-track velocity spectra. Correspondingly, the
horizontal kinetic energy spectrum can be viewed as the sum of a rotational and a
divergent part:

1
2

h
Ĉu(k) + Ĉv(k)

i
=

1
2


D (k) � k

d
dk

D (k)
�

+
1
2


D�(k) � k

d
dk

D�(k)
�

. (2.27)

2.2. Numerical method for Helmholtz decomposition
The spectral functions D (k) and D�(k) are not directly observable from the ship-track
data, but (2.26) suggests a simple and robust method for computing them from the
directly observed Ĉu and Ĉv. First, the functions D and D� are symmetric in k so
we only need to find their values for k > 0. Second, in the limit k ! 1 we have the
robust decay boundary conditions

D (+1) = D�(+1) = 0 (2.28)

and this allows us to compute D and D� for k > 0 by integrating the two ODEs in
(2.26) backwards in k, starting from zero values at k = +1. This is particularly easy
in the logarithmic wavenumber

s = ln k such that
d
ds

= k
d
dk

. (2.29)

The ODEs in (2.26) can be integrated numerically, but there is also a closed-form
solution

D (s) =

Z
1

s

h
Ĉu(s̄) sinh(s � s̄) + Ĉv(s̄) cosh(s � s̄)

i
ds̄, (2.30)

D�(s) =

Z
1

s

h
Ĉu(s̄) cosh(s � s̄) + Ĉv(s̄) sinh(s � s̄)

i
ds̄. (2.31)

In this formulation, the functions D and D� at wavenumber k only depend on the
velocity spectra at wavenumbers larger than k, which is consistent with the aliasing
apparent in their definition in (2.24). Notably, the sinh(s� s̄) terms in (2.30) and (2.31)
are negative, which can lead to unphysical negative values in D or D� . This may
occur when either D or D� become very small, say comparable to the instrumental
noise threshold or to the errors imposed by the limitations of the assumptions of
isotropy and homogeneity in the data (cf. § 3.2 below).
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2.3. Inertia–gravity waves and the wave energy spectrum
We now consider the linear Boussinesq equations with constant f and N in a domain
with doubly periodic horizontal boundary conditions. The horizontal velocity field
induced by linear inertia–gravity waves then has both a stream function and a velocity
potential component, which are related as follows. The vertical vorticity satisfies the
linear equation

(vx � uy)t = f wz = �f (ux + vy) ) t + f� = 0. (2.32)

Equation (2.32) shows that  and � are in quadrature in time, which we will take to
imply that for a stationary and horizontally isotropic field of random waves  and �
are uncorrelated at any fixed time t, and therefore the key assumption (2.21) indeed
holds for linear inertia–gravity waves. The reasoning behind this is described in § A.1.

It is of course possible to define further spectral relationships based on the linear
equations, for example (2.32) implies the frequency-dependent relationship

Ĉ 
W(k, l,!) =

f 2

!2
Ĉ�

W(k, l,!) (2.33)

between the three-dimensional wave spectra of  and �, which are defined in the
usual way as functions of the horizontal wavenumbers and the wave frequency. (Here
and in the following we denote wave-related functions by the subscript W.) However,
such relationships include the wave frequency ! as a parameter, which depends on
(k, l) but also on the vertical wavenumber or some other information about the vertical
structure of the waves. This is of limited use for general ship-track observations,
where the vertical structure is typically not known and therefore (2.33) cannot be
reduced to a unique statement for two-dimensional or one-dimensional spectra. We
note in passing that the situation would be very different in a two-dimensional
fluid system such as the shallow-water equations, where the dispersion relation
determines !2 as a function of (k, l). In this case (2.33) would indeed hold for the
two-dimensional spectra, with !2 determined from the dispersion relation.

We will therefore pursue a different course of action under the assumption that the
waves are hydrostatic, implying that the vertical velocity is negligible in the wave
energy budget. Somewhat surprisingly, this assumption will allow us to deduce the
exact one-dimensional wave energy spectrum

EW(k) =
1
2

h
Ĉu

W(k) + Ĉv
W(k) + Ĉb

W(k)
i

(2.34)

solely from ship-track observations of u and v! Here Ĉb
W(k) is the spectrum of b/N

where b is the linear buoyancy disturbance, which is related to the vertical velocity w
by

bt + N2w = 0. (2.35)

Hence Ĉb
W/2 is the potential energy spectrum. The computation of EW(k) in (2.34)

hinges on the following statement about the energy equipartition for linear hydrostatic
inertia–gravity waves that are stationary in time as well as spatially homogeneous
in all three directions: the sum of the potential energy plus the rotational horizontal
kinetic energy due to  then equals the divergent horizontal kinetic energy due to �.
This statement is derived in § A.2 and using (2.27) it takes the form

Ĉb
W(k) +


D 

W(k) � k
d
dk

D 
W(k)

�
=


D�

W(k) � k
d
dk

D�
W(k)

�
. (2.36)
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Substitution in (2.34) then immediately yields the key result

EW(k) = D�
W(k) � k

d
dk

D�
W(k). (2.37)

In a nutshell, this equation asserts that a Helmholtz decomposition of the horizontal
velocity spectra along a ship track yields the exact wave energy spectrum of linear
hydrostatic inertia–gravity waves, at least under the assumption that the waves can
be modelled as spatially homogeneous, including in the vertical. For a wavefield
dominated by low-order vertical modes this latter assumption would fail, but otherwise
the generality of (2.37) is remarkable.

We note in passing that (2.36) is the hydrostatic version of a more general
equipartition statement (A 11) that is also derived in § A.2. The non-hydrostatic
extension of (2.37) would then have an extra term Ĉw

W on the right-hand side, where
Ĉw

W is the power spectrum of the vertical velocity w. However, the vertical velocity
is typically not available in present-day observations, which is why we restrict to the
hydrostatic case.

2.4. Combination with a geostrophic flow component
If the inertia–gravity wavefield is embedded in a vortical flow in geostrophic balance
then the horizontal velocity field can be viewed as the sum of an unbalanced wave
part and of a balanced ‘vortex’ part. We allow for this by extending the Helmholtz
decomposition to

 = W + V and � = �W, (2.38a,b)

where the subscript V denotes the vortex part. The vortex part is horizontally non-
divergent and therefore � has no vortex part.

It is reasonable on physical grounds to assume that  V is statistically independent
of  W and �W , in which case the covariances due to  V simply add to the wave
covariances we have already considered, i.e.

Ĉu(k) = Ĉu
W(k) + Ĉu

V(k) and Ĉv(k) = Ĉv
W(k) + Ĉv

V(k). (2.39a,b)

The corresponding Helmholtz decomposition leads to

D (k) = D 
W(k) + D 

V (k) and D�(k) = D�
W(k) (2.40a,b)

such that

Ĉu
W(k) = D 

W(k) � k
d
dk

D�
W(k), Ĉv

W(k) = �k
d
dk

D 
W(k) + D�

W(k), (2.41a,b)

Ĉu
V(k) = D 

V (k), Ĉv
V(k) = �k

d
dk

D 
V (k). (2.42a,b)

Crucially, D�
W = D� can be computed from the observed velocity spectra exactly as

before, i.e. the function D�
W computed from the velocity observations is unaffected

by the geostrophic flow component. The same is hence true for the hydrostatic wave
energy spectrum EW computed in (2.37). In other words, allowing for the presence
of a geostrophic stream function does not affect the method of computation of the
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wave energy spectrum at all, because the crucial potential part of the Helmholtz
decomposition of the spectra is not affected by the geostrophic flow.

At this point EW , D� = D�
W and the sum D = D 

W + D 
V are known, but not D 

W

and D 
V individually. So the vortical energy spectrum as well as the individual wave

and vortex velocity spectra in (2.41) and (2.42) are still unknown. Either additional
assumptions or additional observations are needed to progress further. We consider two
options: either observing b/N along the ship track, or assuming additional information
about the frequency content of the wavefield.

2.5. Observed buoyancy spectrum
If b/N is observed along the ship track then we know the potential energy spectrum
Ĉb/2 and hence also the total energy spectrum

E(k) = EW(k) + EV(k) =
1
2

h
Ĉu(k) + Ĉv(k) + Ĉb(k)

i
. (2.43)

Now, because EW can be computed from (2.37), the vortical energy spectrum

EV(k) =
1
2

h
Ĉu

V(k) + Ĉv
V(k) + Ĉb

V(k)
i

= E(k) � EW(k) (2.44)

simply follows by subtraction, so we now know both EW and the residual EV . This
provides an exact energy decomposition into wave and vortex parts based solely on
observing (u, v, b/N) along a ship track, which is of obvious physical importance.

On the other hand, it is still not possible to compute the spectra of the individual
wave and vortex fields from the available data. For example, Ĉb is known but not its
constituents Ĉb

W and Ĉb
V . At least one further auxiliary assumption would be needed

to overcome this. For example, in Charney’s conception of energy equipartition in
three-dimensional quasi-geostrophic turbulence with isotropic statistics (after rescaling
the vertical coordinate by f /N) (Charney 1971), the vortical buoyancy spectrum
is approximately equal to the longitudinal velocity spectrum, which in the present
notation would imply

Ĉb
V(k) = Ĉu

V(k) = D 
V (k). (2.45)

Combining this with (2.44) and (2.42) yields

EV(k) = D 
V (k) �

k
2

d
dk

D 
V (k), (2.46)

which is an ODE for D 
V in terms of the known EV . This is again easily solved for

D 
V (k) by starting with a zero value at k = +1 and solving backwards in k for all

k > 0. Thereafter D 
W = D � D 

V is known as well and hence all fields have been
completely decomposed into their wave and vortex constituents. This is an attractive
theoretical result, but it must be clearly noted that the underlying heuristic assumption
(2.45) based on isotropy in rescaled coordinates may in practice hold only for the
smallest scales of the geostrophic flow, if it holds at all. We will not use this approach
in this paper.
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2.6. Frequency models for the wave spectrum
Substantial progress can be made if one assumes a more detailed model for
the frequency content of the wave spectrum. For example, if the wavefield is
narrow-banded in frequency then it makes sense to assign a single typical value
to the parameter f 2/!2 that appears in relationships such as (2.33). If we denote this
constant value by f 2/!2

0 then (2.33) implies the spectral relationships

Ĉ 
W(k, l) =

f 2

!2
0

Ĉ�
W(k, l) and D 

W(k) =
f 2

!2
0

D�(k). (2.47a,b)

With D 
W and D 

V = D � D 
W now in hand we can evaluate all the terms in (2.41) and

(2.42). Moreover, Ĉb
W follows from the known EW as

Ĉb
W(k) = 2EW(k) � Ĉu

W(k) � Ĉv
W(k). (2.48)

This narrow-band approach for the wave spectrum might be relevant for inertia–gravity
wavefields dominated by specific tidal components such as the M2 tide, but such
internal tides also tend to be quite anisotropic.

A more flexible modelling approach extends (2.47b) to a function !⇤(k), say, which
is defined by

D 
W(k) =

f 2

!2
⇤
(k)

D�(k). (2.49)

Clearly, if !⇤(k) is somehow known then one can again compute D 
W from the

observed D� and hence again obtain the complete decomposition of the spectra into
their wave and vortex constituents in (2.41) and (2.42). For ease of reference, in
terms of D and D� these relations become

Ĉu
W(k)=

f 2

!2
⇤
(k)

D�(k)� k
d
dk

D�(k), Ĉv
W(k)=�k

d
dk


f 2

!2
⇤
(k)

D�(k)
�

+ D�(k), (2.50a,b)

Ĉu
V(k) = D (k) �

f 2

!2
⇤
(k)

D�(k), Ĉv
V(k) = �k

d
dk


D (k) �

f 2

!2
⇤
(k)

D�(k)
�
. (2.51a,b)

Again, Ĉb
W can then be computed from (2.48), which provides a ‘sight unseen’

prediction for the buoyancy spectrum.
Of course, this only works if the function !⇤(k) is known by some method, for

example by using a model spectrum for the wavefield to evaluate the definition of
!⇤(k) that follows from the exact three-dimensional spectral relationship between Ĉ 

W

and Ĉ�
W in (2.33), namely

f 2

!2
⇤
(k)

=
D 

W(k)
D�(k)

=

ZZ
f 2

!2
l2Ĉ�(k, l,!) dl d!

ZZ
l2Ĉ�(k, l,!) dl d!

. (2.52)

For example, in the next section we will use the standard Garrett–Munk (GM)
spectrum (e.g. Munk 1981) for ocean inertia–gravity waves as a basis for modelling
the function !⇤(k). Notably, !⇤(k) as defined by (2.52) is insensitive to the overall
amplitude of the wave spectrum. Alternatively, if the observed spectra are dominated
by waves in some wavenumber band (i.e. D ⇡ D 

W there), then it is possible to
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estimate !⇤(k) in that wavenumber band directly from its definition (2.49), with D 
W

approximated by D . This can provide a useful check on the validity of any assumed
model spectrum, as we shall see in § 3.1 below.

2.7. Summary of the Helmholtz decomposition method
We can summarize the theoretical results as follows. Observations of the longitudinal
and transverse velocity spectra Ĉu and Ĉv allow a unique Helmholtz decomposition
in terms of the functions D� and D . Moreover, the function D� then implies the
energy spectrum EW for hydrostatic inertia–gravity waves, and this implication is
unaffected by the presence of a geostrophic vortex flow component, provided only
that this component is uncorrelated with the wave component. Additional observations
of Ĉb allow computation of the vortex energy spectrum EV as well, which can then
be compared with the wave energy spectrum EW . Finally, by making additional
assumptions either about the structure of the balanced flow or about the frequency
content of the wavefield, it becomes possible to decompose all measured fields into
their wave and vortex components.

3. Application to oceanic data sets
We now illustrate how these methods can be used to decompose observed ship-track

spectra in the upper thermocline of the eastern subtropical North Pacific and of
the Gulf Stream region. These spectra, spanning the mesoscale (approximately
200–500 km) and submesoscale (approximately 5–200 km) ranges, are the same as
those analysed in CF13, to which we refer the reader for a more in-depth discussion
of the data sets as well as of mesoscale and submesoscale dynamics.

In the eastern subtropical North Pacific, both velocity and buoyancy measurements
are available, which allows an exact decomposition of the energy spectra into a
balanced vortex part and an inertia–gravity wave part. Moreover, by approximating
the function !⇤(k) using the GM model spectrum, we can decompose all the observed
fields into their balanced and wave parts. In the Gulf Stream region, on the other
hand, only velocity data are available, but by assuming a GM model for !⇤(k) a
decomposition of the observed fields can be achieved there, too.

The eastern subtropical North Pacific has weak mesoscale eddy activity and CF13
argued that much of the submesoscale range is dominated by inertia–gravity waves.
In the Gulf Stream region, on the other hand, where the mesoscale eddy field
is strong, the submesoscale is dominated by balanced motions down to a scale
of approximately 20 km, where a transition to inertia–gravity waves occurs. The
decompositions performed here confirm these results.

3.1. Eastern subtropical North Pacific
Velocity and buoyancy data were collected in successive visits to the 140� W meridian
between 25� and 35� N in January and February 1997 (cf. Ferrari & Rudnick 2000;
CF13). We use shipboard acoustic Doppler current profiler (ADCP) data from four
transects at 200 m depth (8 m depth bin), which is below the base of the mixed layer.
Buoyancy data are obtained from a transect of a CTD-equipped SeaSoar programmed
to stay at constant depth 200 m. An average stratification of N = 8.7 ⇥ 10�3 s�1 is
obtained from a transect with the SeaSoar following a sawtooth profile. We interpolate
both velocity and buoyancy data onto a 3 km regular grid, which is about the spacing
of the raw velocity data averaged over 12 min bins, and rotate the velocities into a
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frame of reference aligned with the ship track. Spectra are obtained by dividing all
transects into three segments with 50 % overlap, applying a Hann window to each
segment, computing the discrete Fourier transform, and averaging over all transforms
and over 10 wavenumber bins per decade.

The resulting Ĉu, Ĉv, and Ĉb show relatively low mesoscale energies and are
relatively flat in the submesoscale range (figure 1a). Using (2.30) and (2.31), we
perform the Helmholtz decomposition into rotational and divergent components
(figure 1b). The rotational component dominates at scales larger than 200 km, below
which the divergent component dominates. From the velocity spectra Ĉu and Ĉv,
we can diagnose the total energy due to inertia–gravity waves EW using (2.37). The
diagnosed EW matches the observed total energy E remarkably well below 100 km
(figure 1c). This indicates that the observed signal is consistent with an isotropic,
hydrostatic inertia–gravity wavefield in this range. At scales larger than 100 km there
is a substantial balanced component.

We can exploit the fact that the range below 100 km is dominated by inertia–gravity
waves to estimate the frequency content of the wavefield expressed by !⇤. The ratio
D /D� ⇡ f 2/!2

⇤
roughly follows the GM curve between 20 and 100 km (figure 1d).

At larger scales the ratio becomes larger than unity, which is incompatible with
inertia–gravity waves, for which !2 > f 2 holds robustly. At smaller scales, the
diagnosed ratio is much larger than the GM value, but in this range the effects of
both the interpolation onto a regular grid and the cutoff at the Nyquist wavenumber
contaminate the estimate. At 100 km, the diagnosed ratio drops below the GM curve
and has a value close to that of a monochromatic M2 tidal wave (f 2/!2

0 = 0.27
at 30� N), which may be interpreted as evidence for a significant tidal signal at
this scale. Nevertheless using the GM curve to perform the decomposition (2.48),
(2.50) and (2.51), we find that the balanced components Ĉu

V , Ĉv
V , and Ĉb

V match the
observed spectra Ĉu, Ĉv, and Ĉb at scales larger than 200 km (figure 1e) and that
the inertia–gravity waves components Ĉu

W , Ĉv
W , and Ĉb

W match the observed spectra
Ĉu, Ĉv, and Ĉb at scales smaller than 100 km (figure 1f ).

In summary, kinetic and potential energy spectra are dominated by balanced
eddies at scales of 200 km and larger. This is consistent with CF13’s finding that
at these scales, the in situ Ĉv also matches that obtained from applying geostrophic
balance to along-track altimetric measurements of sea surface height. At scales
smaller than 100 km, the energy spectra are dominated by inertia–gravity waves. The
inertia–gravity wavefield may have a substantial tidal component.

3.2. Gulf Stream region
Velocity data in the Gulf Stream region were collected using a 150 kHz shipboard
ADCP on repeat transects from New York Harbour to Bermuda between 1994 and
2004 (cf. Wang et al. 2010; CF13). We use data at 150 m depth, which is below the
base of the mixed layer for most of the year. We select transects that are at least
1000 km long and have at least 400 data points, resulting in a total of 306 transects.
We interpolate onto a 2.5 km regular grid, which is about the spacing of the raw data
averaged over 5 min bins, and rotate the velocities into a frame of reference aligned
with the ship track. Spectra are obtained by the same procedure as described for the
Pacific data set.

The resulting Ĉu and Ĉv show large mesoscale energies and fall off steeply in
the submesoscale range (figure 2a). The spectra exhibit a conspicuous flattening at
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FIGURE 1. Observations from the eastern subtropical North Pacific: (a) observed
transverse and longitudinal kinetic energy and potential energy spectra Ĉu, Ĉv , and Ĉb;
(b) decomposition into rotational and divergent components D and D� from (2.30), (2.31)
and (2.27); here K = (D � kdD /dk)/2 and K� = (D� � kdD�/dk)/2; (c) total observed
energy E and total inertia–gravity wave energy EW from (2.37); (d) ratio D /D� compared
to !⇤ from GM spectrum and M2 value for reference; (e) diagnosis of the balanced
components of the observed spectra Ĉu

V , Ĉv
V , and Ĉb

V ; (f ) diagnosis of the inertia–gravity
wave component of the observed spectra Ĉu

W , Ĉv
W , and Ĉb

W . In (a) a line corresponding to
a k�2 power law has also been added for reference.
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FIGURE 2. Observations from the Gulf Stream region: (a) observed transverse and
longitudinal kinetic energy spectra Ĉu and Ĉv; (b) decomposition into rotational and
divergent components D and D� from (2.30), (2.31) and (2.27); here K = (D �

kdD /dk)/2 and K� = (D� � kdD�/dk)/2; (c) diagnosis of the balanced components of
the observed spectra Ĉu

V and Ĉv
V ; (d) diagnosis of the inertia–gravity wave component of

the observed spectra Ĉu
W and Ĉv

W . In (a) a line corresponding to a k�3 power law has also
been added for reference.

a scale of approximately 20 km. Using (2.30) and (2.31), we perform the Helmholtz
decomposition into rotational and divergent components (figure 1b). In contrast to the
eastern Pacific case, the rotational part D here vastly dominates over a wide range
of scales: only at 20 km does the divergent component D� become comparable to the
rotational component D . Notably, at large scales the true D� becomes close to zero,
but our computed D� actually becomes negative, which is of course unphysical. This
is the numerical robustness issue discussed at the end of § 2.2.

Since no buoyancy data are available, the only way to decompose into a balanced
part and an inertia–gravity wave part is to make an assumption about the frequency
content of the waves. We choose the GM curve to perform the decomposition,
since the GM empirical spectrum is largely based on observations collected nearby
the North Atlantic region considered here. The diagnosed balanced components
Ĉu

V and Ĉv
V show good agreement with the observed spectra Ĉu and Ĉv in the

range 50–200 km (figure 2c). At larger scales, the reconstruction overestimates the
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longitudinal component Ĉu. This is likely to be the effect of anisotropy in the flow: the
Gulf Stream, running mostly transverse to the ship track, has scales of a few hundred
kilometres and renders the geostrophic flow field highly anisotropic (cf. Wortham,
Callies & Scharffenberg 2014), violating the isotropy assumption made throughout
the development of the theory. At the small-scale end, the balanced components Ĉu

V

and Ĉv
V start deviating from the observed spectra Ĉu and Ĉv at 20–50 km. This scale

is coincident with the scale at which the observed spectra Ĉu and Ĉv start flattening
out. The balanced components Ĉu

V and Ĉv
V show no sign of a transition and keep

falling off steeply. The diagnosed inertia–gravity wave components Ĉu
W and Ĉv

W start
contributing substantially at this scale (figure 2d), indicating that the flattening of
the spectra Ĉu and Ĉv is due to a transition to a range dominated by inertia–gravity
waves.

In summary, the decomposition into a balanced part and an inertia–gravity wave part
shows that in the Gulf Stream region, in contrast to the eastern Pacific case, much of
the submesoscale range is dominated by balanced flows. The transition in the slope
of the observed spectra at approximately 20 km is due to inertia–gravity waves.

4. Concluding comments
Our proposed method is very easy to implement and gave robust results when

applied to real oceanic data sets, in the sense that no processing of the noisy raw
data was needed in order to extract a self-consistent picture of the partitioning into
rotational and divergent motions and into waves and vortices. Of course, there are
several restrictions inherent in the derivation of our method, which one needs to bear
in mind. The assumptions of stationarity, homogeneity, and horizontal isotropy will
have obvious limitations in any practical situation. Another obvious restriction that is
hindering in practice is that we needed to assume that the wavefield was homogeneous
in the vertical in order to exploit the energy equipartition result (2.36) for the wave
diagnostic. Strictly speaking, this step disallows considering standing normal modes
in the vertical, which is a relevant case for large-scale ocean inertia–gravity waves
such as low-mode internal tides. Another useful extension would be to allow for
a depth-dependent buoyancy frequency N, which again would break the vertical
homogeneity assumption and also would require the consideration of suitable vertical
modes.

Slightly less obvious will be the impact of nonlinear effects, as our method relied
on geostrophic balance and linear wave dynamics. For example, the assumption
of uncorrelated  and �, which underlies both steps in our method, presumably
would fail for vortex motions with a noticeable divergent component (the so-called
‘ageostrophic’ velocities of quasi-geostrophic theory). Submesoscale balanced flows
tend to develop a large divergence close to the ocean surface through frontogenesis
(CF13). It is not obvious what this would entail for the correlations between the
rotational and divergent parts of the balanced velocity field.

Similarly, nonlinear effects would also modify the linear argument for the
uncorrelated  and � for the wavefield. That argument can be viewed as a
statement of zero linear PV, or of stretching of background vorticity, in the sense of
vx � uy = �f bz/N2. In nonlinear theory one could imagine that nonlinear terms in the
definition of PV become important, and that the stretching of background vorticity
might reasonably contain a contribution from the vorticity of the geostrophic flow.
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A model equation for the wave vorticity to study in a weakly nonlinear regime might
be

(@2
xx + @2

yy)@t W =
⇥
f + (@2

xx + @2
yy) V

⇤
(@2

xx + @2
yy)�W . (4.1)

Compared to (2.32) this includes a nonlinear coupling term between  V and the
wave-related  W and �W . Of course, in a strongly nonlinear regime one would also
encounter stratified turbulence, a broad subject heading describing three-dimensionally
turbulent flows that are significantly modified by, and interact with, the stable
stratification (e.g. Smith & Waleffe 2002; Waite & Bartello 2004; Riley & Lindborg
2008). It is an open question whether such stratified turbulence, perhaps also modified
by background rotation, would leave a detectable fingerprint in the one-dimensional
spectra that would allow it to be distinguished from the spectrum due to nearly linear
waves, for example.

Finally, our method should naturally be applicable to the substantial body of
commercial air flight track data that has been collected near the tropopause in the
atmosphere, where attention has been focused for some time on disentangling the
dynamical processes that underlie the conspicuous transitions between spectral slopes
that have been observed in the so-called Gage–Nastrom spectrum (e.g. Nastrom &
Gage 1985; Lindborg 1999; Tulloch & Smith 2006). We are hoping to report on the
results of this application in the near future.
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Appendix A.
A.1. Horizontally uncorrelated wave stream function and potential

We seek to demonstrate that

(2.21) : E[ (x0, y0, z0, t0)�(x0 + x, y0 + y, z0, t0)] = 0 (A 1)

holds if the expectation is taken over a stationary, homogeneous, and horizontally
isotropic wave spectrum, and if  and � are wavefields related by a time derivative, as
in the relation  t = �f� that holds for inertia–gravity waves. Here we have rewritten
(2.21) in a form that highlights that the covariance is taken at different horizontal
positions but equal vertical position z0 and time t0. By stationarity, the statement (2.21)
is trivially true in the case of x = y = 0, but not otherwise.

We will illustrate this issue using a slightly simpler model, namely that of rotating
shallow water in one spatial dimension x, say, in which horizontal isotropy is replaced
by left–right symmetry. The standard variables are (h, u, v) and the linear equations
are

ut � f v + ghx = 0, vt + f u = 0, and ht + Hux = 0, (A 2a–c)

where g is gravity and H is the basic layer depth. Note that u and v are in quadrature
because of the time derivative linking the two fields in (A 2), just as � and  were in
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the inertia–gravity wave case. The fields depend on x and t and we assume stationarity
and homogeneity. We then would like to find out whether

E[u(x0, t0)v(x0 + x, t0)] = 0 (A 3)

holds for left–right symmetric waves. Now, it is easy to construct a homogeneous and
stationary spectrum for which (A 3) fails. Specifically, consider the following spectrum
of plane-wave solutions corresponding to right-going waves only:

u=� cos(k[x� ct]�↵), v =
f
ck
� sin(k[x� ct]�↵), and h=

H
c
� cos(k[x� ct]�↵).

(A 4a–c)
Here k > 0 is a wavenumber, c = !/k > 0 is the phase speed corresponding to the
positive root of the dispersion relation !2 = f 2 + gHk2, ↵ 2 [0, 2p] is a uniformly
distributed random phase shift and � is a random zero-mean amplitude that is
independent of ↵ and has variance � 2, say. It follows that

E[u(x0, t0)v(x0 + x, t0)] =
f
ck
� 2 sin kx, (A 5)

where it was crucial to take the expectation over the random phase shift ↵. Obviously,
for this random wavefield (A 3) fails. However, if we impose left–right symmetry on
the random wavefield then we must augment (A 4) by a second wave with identical
and uncorrelated statistics, but going in the opposite direction. This corresponds to
setting c = �!/k < 0 and obviously uses the other branch of the dispersion relation.
This leads to a second term in (A 5) with equal-and-opposite sign, which cancels the
first term, and therefore (A 3) is indeed satisfied.

The conclusion is that for wave systems with equal-and-opposite frequency branches
in the dispersion relation a horizontally isotropic stationary random wavefield has the
property that (2.21) is guaranteed to hold if the two fields  and � are related by
a simple time derivative and hence in quadrature. This is the case for the rotating
Boussinesq equations as well as for the rotating shallow-water equations and therefore
holds quite generally for gravity waves.

A.2. Energy equipartition statement (2.36) for plane inertia–gravity waves
We derive

(2.36) : Ĉb
W(k) +


D 

W(k) � k
d
dk

D 
W(k)

�
=


D�

W(k) � k
d
dk

D�
W(k)

�
(A 6)

for a spectrum of stationary, homogeneous, horizontally isotropic, and hydrostatic
plane inertia–gravity waves. We delay making the hydrostatic assumption until the
end, so we start by assuming that the wavenumber vector (k, l, m) and the intrinsic
frequency ! are related by the full dispersion relation of the Boussinesq system with
constant f and N:

(k2
h + m2)!2

= m2f 2
+ k2

hN2. (A 7)

Next we derive the following equipartition statement for three-dimensional spectra:

Ĉb
W(k, l, m) + k2

hĈ 
W(k, l, m) = k2

hĈ�
W(k, l, m) + Ĉw

W(k, l, m). (A 8)
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For a plane wave with frequency ! the linear buoyancy equation bt + N2w = 0 and
the continuity equation wz = �(ux + vy) imply

!2Ĉb
W = N2Ĉw

W and m2Ĉw
W = k4

hĈ�
W . (A 9a,b)

Combining (A 9) with !2Ĉ 
W = f 2Ĉ�

W from (2.33) and substituting in (A 8) yields
✓

1 �
!2

N2
+

m2

k2
h

f 2 �!2

N2

◆
Ĉb

W(k, l, m) = 0. (A 10)

This holds by (A 7) and therefore establishes (A 8). The sought-after (2.36) then
follows after integrating over l and m and dropping the Ĉw

W term because of the
hydrostatic approximation. Conversely, the non-hydrostatic version of (2.36) would be

Ĉb
W(k) +


D 

W(k) � k
d
dk

D 
W(k)

�
=


D�

W(k) � k
d
dk

D�
W(k)

�
+ Ĉw

W(k). (A 11)

This calculation does depend on the assumption of plane waves, e.g. if standing
vertical modes were considered instead then the result would not hold, because
the wave spectrum is then not homogeneous in the vertical. Mathematically, this is
because (A 9b) does not hold for standing waves. Physically, this occurs because at
nodal horizontal planes, where b = w = 0 at all times, there is no potential energy at
all and equipartition fails even for non-rotating waves.
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