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An overlooked conservation law for near-inertial waves (NIWs) propagating in a
steady background flow provides a new perspective on the concentration of these
waves in regions of anticyclonic vorticity. The conservation law implies that this
concentration is a direct consequence of the decrease in spatial scales experienced by
an initially homogeneous wave field. Scaling arguments and numerical simulations of
a reduced-gravity model of mixed-layer NIWs confirm this interpretation and elucidate
the influence of the strength of the background flow relative to the dispersion.
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1. Introduction

Near-inertial waves (NIWs) are ubiquitous in the ocean. They contribute strongly
to surface mixing, and hence to biological activity, (e.g. Granata, Wiggert & Dickey
1995). They also propagate to depth where they eventually dissipate, thus participating
in deep vertical mixing and the global overturning circulation (Ferrari & Wunsch
2009). The propagation of NIWs in heterogeneous flows has motivated a great deal
of work. One of the main conclusions, emerging from both numerical simulations
(Lee & Niiler 1998; Zhai, Greatbach & Zhao 2005; Danioux, Klein & Rivière 2008)
and observational data (Kunze & Sanford 1984; Elipot, Lumpkin & Prieto 2010;
Joyce et al. 2013), is that near-inertial energy concentrates in anticyclones, i.e. in
regions of negative relative vorticity in the Northern Hemisphere and positive relative
vorticity in the Southern Hemisphere.

Various explanations have been advanced for this phenomenon. Using a Wentzel–
Kramers–Brillouin (WKB) approach, Kunze (1985) showed that refraction by a
background flow leads to an ‘effective’ inertial frequency fe shifted from the local
Coriolis frequency f by ⇣/2, where ⇣ is the local relative vorticity: fe = f + ⇣/2.
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Because the range of allowed wave frequencies ! satisfies | fe| < ! < N, where
N is the stratification frequency (usually much larger than | f |), it is larger in
regions of negative vorticity in the Northern Hemisphere. Therefore, anticyclonic
regions are expected to be more energetic because (i) NIWs propagating poleward
can enter regions of negative vorticity, but not regions of positive vorticity, and
(ii) frequencies lower than f present in the forcing can become resonant (Kunze
1985). This explanation is subject to caution, however, because the initial length
scales of NIWs, set by atmospheric storms, are typically much larger than the
length scales of geostrophic flows (the ratio of tropospheric to oceanic radii of
deformation is approximately 10), thus invalidating the assumption underlying the
WKB approximation.

Alternative explanations were offered by Young & Ben Jelloul (1997) and Klein,
Llewellyn Smith & Lapeyre (2004). These rely on the NIW model developed by
Young & Ben Jelloul (1997), hereafter referred to as the YBJ model, which exploits
the small frequency spread of NIWs near f and makes no assumption about their
spatial scales. These explanations rely on strong assumptions: strong dispersion for
Young & Ben Jelloul (1997), short time and restrictions on the spectrum of the
vorticity field for Klein et al. (2004) In this paper, we revisit the issue and, taking
the YBJ model as a starting point, show that a so-far overlooked conservation law
provides a robust argument for the concentration of NIWs in anticyclones. Section 2
derives the conservation law in the simple case of a reduced-gravity shallow-water
model, the YBJ approximation of which is obtained in appendix A. (The extension to
a continuously stratified fluid is straightforward when the background flow is assumed
to be barotropic, so that NIWs can be expanded in vertical modes.) Section 3
demonstrates analytically and numerically how NIW concentration in anticyclones
stems from the conservation law. Some conclusions and perspectives are offered in
§ 4.

2. Model and conservation laws

2.1. The YBJ model and analogy with the Schrödinger equation
We study the propagation of NIWs in a steady geostrophic flow with a reduced-gravity
shallow-water model (e.g. Cushman-Roisin 1994). This slab model can be thought of
as representing the dynamics of NIWs confined in a mixed layer capping an abyssal
layer where the only motion is the imposed geostrophic flow, assumed to be identical
in both layers. For NIWs, the horizontal velocity (u, v) can be written in terms of
a complex amplitude M according to u + iv = Me�ift. The slow (compared with f �1)
time evolution of M is governed by the YBJ equation

@tM + J( , M) � i
h
2
1M + i

1 

2
M = 0, (2.1)

where  and 1 are the streamfunction and vorticity of the steady geostrophic flow,
J is the horizontal Jacobian and h = g0H/f is a dispersion parameter, with g0 and H
the reduced gravity and average depth of the mixed layer. We assume that h > 0, as
in the Northern Hemisphere where f > 0. The respective terms quantify the effects
due to advection, dispersion and refraction. A concise derivation of (2.1) is given in
appendix A.

Two simple facts help in understanding the dynamics of (2.1). First, for any constant
↵> 0 the YBJ equation is invariant under the scaling transformation  7!↵ , h 7!↵h,
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t 7! t/↵. This makes it obvious that the intrinsic dynamics of (2.1) depends only on
the single non-dimensional parameter h/ , say, where  is the amplitude scale of  .

Second, without the advection term J( , M) the YBJ equation is identical to the
Schrödinger equation that governs the complex wavefunction �(x, y, t) for a single
particle with unit mass and external potential V(x, y):

@t� � i
h̄
2
1� + i

V
h̄
� = 0. (2.2)

Here, h̄ is Planck’s constant divided by 2p. Comparing (2.1) and (2.2) and identifying
h̄ with h shows that the effective potential in (2.1) is

V = h
1 

2
. (2.3)

Clearly, regions of higher V repel the particle whereas regions of lower V attract it.
Hence, if the advection term is negligible, then the mathematical analogy between
the particle probability density |�|2 and the inertial wave kinetic energy density
|M|2 readily implies that cyclones repel inertial waves while anticyclones attract them
(Balmforth, Llewellyn Smith & Young 1998). For the special case of an axisymmetric
anticyclonic vortex, this is confirmed by the existence of axisymmetric trapped modes
(Llewellyn Smith 1999).

Of course, if the advection term cannot be neglected then the simple analogy with
the Schrödinger equation breaks down. Hence, the main task is to understand how the
advection term alters the basic Schrödinger dynamics as a function of h/ . For this
it becomes crucial to study the full set of conservation laws associated with (2.1), as
we shall do now.

2.2. Conservation laws
By multiplying (2.1) by M⇤ and adding its complex conjugate we obtain

@t
1
2 |M|

2
+ J

�
 , 1

2 |M|
2�

+ r · F = 0, (2.4)

where F = ih(MrM⇤ � M⇤rM)/4. In a finite domain with suitable boundary
conditions (periodicity or M = 0), integration of (2.4) gives the conservation of
NIW kinetic energy, as derived by Young & Ben Jelloul (1997),

d
dt

ZZ
1
2
|M|

2 dx dy = 0. (2.5)

There is another conservation law associated with (2.1) and not mentioned in Young &
Ben Jelloul (1997). It is derived by forming the combination M⇤

t (2.1) � Mt(2.1)⇤ and
integrating the result over the domain. Using properties of the Jacobian and integrating
by parts, this gives

d
dt

(I1 + I2 + I3) = 0, (2.6)

where

I1 =

ZZ
ih J(M⇤, M) dx dy, I2 =

ZZ
h2

2
|rM|

2 dx dy, I3 =

ZZ
h
1 

2
|M|

2 dx dy.

(2.7a�c)
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The terms I1, I2 and I3 stem directly from the advection, dispersion and refraction
terms in the YBJ equation. The overall factors of h are included for two practical
reasons: to keep the values of the invariants comparable when h is varied and
to highlight the appearance of the effective potential V from (2.3) in I3. The
consequences of the new conservation law (2.6) are discussed in more detail in
the next section. In the absence of a geostrophic flow, I1 and I3 are identically zero,
and I2 can be recognized as the scaled NIW potential energy averaged over the fast
time scale. This is not unexpected, as explained in appendix B. In the presence of
a steady flow, I1 + I2 + I3 can be interpreted as an energy in that its conservation is
associated with the time invariance of (2.1). Unlike (2.5), I1 + I2 + I3 is not conserved
for arbitrary time-dependent flows. However, when the flow and NIWs evolve in a
dynamically consistent manner, an analogous conservation law holds that accounts
for energy transfers between the flow and the NIWs (Xie & Vanneste 2015).

We remark that, in a steady geostrophic flow, differentiation of (2.1) with respect to
time shows that Mt satisfies the same equation as M, and hence the same conservation
laws. In particular,

d
dt

ZZ
1
2
|Mt|

2 dx dy = 0 (2.8)

means that no stationary state can be reached.

3. Near-inertial-wave concentration in anticyclones

Non-dimensionalization of (2.1) using x = Lx0,  =  0, h = h0 and t = (L2/ )t0,
with L the typical length scale of the geostrophic flow, gives an identical equation
for the primed variables. Again, this makes it obvious that h0 = h/ is the only
relevant parameter; in § 3.3 we conduct simulations with different values of h/ .
This parameter is the reduced-gravity shallow-water equivalent of the parameter
⌥ =  /h = 1/h0 used in Young & Ben Jelloul (1997) and Balmforth et al. (1998),
on which they base their ‘strong-dispersion’ (h/ � 1) and ‘strong-trapping’ (or
‘strong-advection’, h/ ⌧ 1) approximations. In the ocean, h/ is highly variable
because of varying kinetic energy levels and stratification. For instance, typical values
for the North Atlantic might be f = 10�4 s�1, g0 = 2 ⇥ 10�3 m s�2, L = 50 km; taking
H and U in the ranges H 2 [50, 100] m, U 2 [0.005, 0.1] m s�1 gives h/ 2 [0.2, 8].

We will consider a specific initial-value problem in which M(x, y, 0) = 1. Without
loss of generality this represents an eastward NIW momentum deposition by a storm:
because storm scales are typically much larger than ocean eddy scales, a homogeneous
initial condition for M is appropriate.

The conservation law (2.6) involves I3, which is proportional to the covariance
between |M|2 and 1 ; it is therefore relevant to the concentration of NIWs in
anticyclones, which corresponds to I3 < 0. At t = 0, I1 = I2 = I3 = 0 (assuming no net
vorticity – a given with periodic boundary conditions). The development of spatial
heterogeneities in the M field must lead to an increase in the positive definite I2,
which is then compensated by I1 + I3 < 0. Of course, if I1 is negligible then I3 must
take negative values, but in the general case it is less clear whether I3 behaves in this
way. We next provide an asymptotic argument that I3 becomes negative for all values
of h/ at short times. This is followed by a long-time scaling argument for (2.1) as
a function of h/ , which predicts that I3 < 0 for large and intermediate values of
h/ but not for small values of this parameter. These predictions are then checked
against numerical simulations in § 3.3.
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3.1. Short-time solution
With homogeneous initial conditions, the first physical effect on NIW propagation is
due to refraction, and the short-time behaviour is M(x, y, t) = exp(�it1 (x, y)/2) ⌘

M̄(x, y, t) (Danioux et al. 2008). A cautious definition for short time here is t ⌧ ts =

1/max{ /(2L2), h/(2L2)}. For such times, the solution can be sought as the expansion
M = M̄ + M0, with M0(x, y, t = 0) = 0 and |M0| ⌧ 1. Introducing this into (2.1) gives

@tM0
+ J( , M0) � i

h
2
1M0

+ i
1 

2
M0

= �J( , M̄) + i
h
2
1M̄. (3.1)

Because of the form of M̄, the short-time behaviour of the right-hand side of (3.1)
behaves as O(t), hence forcing M0(t) = O(t2) for small t. Keeping this in mind, we
now compare the relative size of terms I1 and I2 in (2.6). First, because J(M̄⇤, M̄)= 0,
I1 is dominated by terms of the form ih J(M̄⇤, M0), resulting in an O(t3) dependence.
Second, I2 is dominated by h2|rM̄|2/2, yielding an O(t2) dependence. Hence, for short
enough times, I2 � I1. The NIW energy concentration in regions of negative vorticity
can also be deduced from (2.4). On injecting the short-time solution M̄(x, y, t) into
F, one finds that the amplitude of M obeys

@t
1
2
|M|

2
'

ht
4
�2 (3.2)

at short times, consistent with the short-time solution of Klein et al. (2004). Because
the vorticity field and its Laplacian are anticorrelated, (3.2) gives an increase of NIW
energy in anticyclonic regions for all values of h/ .

3.2. Long-time scaling arguments
For long times the spatial scales of M need not be equal to those of  anymore and
hence the dominant balance between the various terms in (2.1) may shift accordingly.
However, the conservation law (2.8) implies

ZZ
1
2
|Mt|

2 dx dy =

ZZ
1
2
|Mt(t = 0)|2 dx dy =

ZZ
1
2
(1 /2)2 dx dy, (3.3)

and together with (2.5) this means that for all times the root-mean-square magnitudes
of M and Mt scale with unity and  /L2 respectively. This allows a simple scaling
analysis of the four terms in (2.1), which after rearranging yields

1,
L
l
,

h
 

L2

l2
, 1. (3.4a�d)

Here, l is the long-time spatial scale of M such that rM = O(1/l). We use (3.4)
to determine how l/L may depend on h/ . First, in the ‘strong-dispersion’ regime
h/ � 1 the only possible balance in (3.4) is l/L =

p
h/ , which balances dispersion

and refraction whilst advection is negligible. As expected, this reduces the YBJ
dynamics to that of the Schrödinger equation, so I1 is negligible and I3 ⇡ �I2. In
this regime the spatial scale of M is larger than that of the background flow  by a
factor of

p
h/ .

Second, in the opposite regime h/ ⌧ 1 one scaling possibility is l = L, which
balances advection and refraction whilst dispersion becomes negligible. However, from
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(2.1) this would correspond to an advective dynamics along streamlines in which |M|

is conserved while its phase continues to change by the refraction as in the short-term
solution derived in § 3.1. This would inevitably lead to the generation of increasingly
small spatial scales in M and hence defeat the assumption l = L. We must therefore
look at the alternative, a balance between the advective and dispersive terms based
on l/L = h/ . The advective and dispersive terms then provide a new leading-order
dominant balance of size  /h � 1 to the long-term evolution of the YBJ equation.
Consequently, in this scenario the refraction is weak and I3 becomes negligible, and
so I1 ⇡ �I2. Moreover, the spatial scale of M is much smaller than that of  , by a
factor of h/ .

It should be noted that this small horizontal scale may invalidate the assumption of
small h/( fl2) that underpins the near-inertial YBJ model (see appendix A). Using l =
hL/ , we rewrite this assumption as  /( fL2) ⌧ h/ in terms of the Rossby number
on the left-hand side. Hence, for small but fixed h/ the near-inertial approximation
holds provided that the Rossby number is small enough.

Finally, in the intermediate regime h/ = 1 the scaling l/L = 1 makes all terms
equally important. It stands to reason that in this intermediate regime I3 will take
moderate negative values, consistent with a monotonic transition between its value
I3 ⇡ 0 for h/ ⌧ 1 and its negative value I3 ⇡�I2 for h/ � 1. However, only in this
intermediate regime does the length scale of M equal that of  , which arguably is the
best situation for effective concentration of NIW energy in anticyclones. This suggests
that the intermediate regime might be the most effective for this purpose. Of course,
this simple scaling analysis can only provide a heuristic guide to the full NIW energy
dynamics, not least because the spatial scales of |M|2 are not related in a trivial way
to those of M. Still, we will see that the present scaling arguments do indeed provide
a useful guide for understanding the numerical simulations.

3.3. Numerical simulations
Equation (2.1) is solved numerically on a doubly periodic 256 ⇥ 256 grid using a
pseudo-spectral time-split Euler scheme. A weak biharmonic dissipation is added
for numerical stability. The streamfunction  is taken as a single realization of a
homogeneous isotropic Gaussian random process, with Gaussian correlation function
and a correlation length L of approximately 1/5 of the domain size. The chosen
vorticity field is shown in figure 1(b0). Because its correlation scale is much smaller
than the size of the domain, the results presented here are generic. We run three
simulations with the same background flow but different values of h such that
h/ = 0.2, 1 and 10, representative of the strong-advection, intermediate and
strong-dispersion regimes. Simulations are stopped when the various terms in (2.6) no
longer evolve significantly, which occurs at t ' 0.3L2/h (figure 2). For the intermediate
case, using the values given at the beginning of this section, we find a time scale of
between four and eight days, which is realistic.

Snapshots of |M| are shown in figure 1 for very short, short and long times for
the three values of h/ . At very short times, for all values of h, |M| is clearly
anticorrelated with the vorticity field (or correlated with its Laplacian), as predicted
by (3.2). As time increases, the variance of |M| increases, substantially for small h/ 
but much less for large h/ . This is consistent with the scaling |M � 1| = O( /h)
that holds for short time and arbitrary h/ (as follows from integrating (3.2) for
t . L2/h) and for all time and large h/ (as follows from a perturbative treatment
of (2.1)). At the end of the simulation, M has larger scales than at the very first
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FIGURE 1. Streamfunction (a0) and associated normalized vorticity field (b0) of the
background flow, and evolution of the NIW amplitude |M| for h/ = 0.2 (a,d,g), h/ = 1
(b,e,h) and h/ = 10 (c,f,i). Here, (a–c) correspond to very short times after the start of
the simulations (1/80th of the length of the simulations), (d–f ) to short times (1/16th of
the length of the simulations) and (g–i) to the end of the simulations.

instants for h/ = 10, in accordance with the scaling arguments in § 3.2 and also
with the ‘truncated Laplacian’ solution of Klein et al. (2004). The spectrum of M
does not change much afterwards (not shown), in contrast to the theory of Klein
et al. (2004) which predicts a continued cascade towards large scales. As expected,
the evolution is very different for h/ = 0.2. The short-time solution (figure 1d) is
consistent with a passive-scalar-type scenario: after the initial generation of spatial
scales in |M| (figure 1a), the |M| field is stretched and folded, while its amplitude
grows due to dispersion. Later on (figure 1g), NIW scales much smaller than the flow
scales develop, consistent with § 3.2.

The behaviour of |M| is reflected in the evolution of I1, I2 and I3 displayed in
figure 2. The generation of small scales by refraction subsequently modulated by
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FIGURE 2. Evolution of the integrals I1 (dotted line), I2 (dashed line) and I3 (thin solid
line) in (2.6) for h/ = 0.2 (a), 1 (b) and 10 (c). Here, I1, I2 and I3 are scaled by the
area of the domain. The inset in (a) represents a zoom on very short times.

dispersion leads to an increase of I2. This is balanced by the decrease of I3 at short
times for all values of h/ and for all times for h/ = 10, as predicted by our
scaling argument. Conversely, for h/ = 0.2 we obtain I1 ' �I2, indicative of the
balance between advection and dispersion noted above (in this case, the amplitude
of these quantities decreases slightly in time because of numerical dissipation). For
h/ = 1, all terms I1, I2 and I3 have similar final amplitudes. It should be noted that
the amplitude of I2 is roughly the same in the three simulations. From the scaling
|M � 1| = O( /h) mentioned above, we infer that I2 is proportional to  2/L2, and
similarly for I3. This justifies a posteriori the inclusion of the overall factor h in the
definition of I1, I2 and I3.

We now turn to the concentration of NIW energy in anticyclones. This is best
quantified by I3/h, that is, the covariance between 1 /2 and |M|2. An alternative
diagnostic is the correlation between |M|2 and 1 /2, namely

C =
I3

h
✓
� 2

M

ZZ
(1 /2)2 dx dy

◆1/2 , where � 2
M =

ZZ
(|M|

4
� 1) dx dy (3.5)

is the variance of the NIW energy. We emphasize that C focuses on the match
between the spatial patterns of NIW energy and vorticity irrespective of their
amplitudes; the more intuitive colocation of high values of NIW energy with regions
of anticyclonic vorticity is measured by I3/h. The evolution of both I3/h and C is
shown for the three values of h/ in figure 3. At the end of the simulations, the
covariance I3/h is largest for intermediate values of h/ . Small values of h/ lead
to a strongly heterogeneous |M|2 (large � 2

M, as seen in figure 1g) but relatively weak
correlation of |M|2 and 1 (figure 3b, dashed line); conversely, large values of h/ 
lead to a strong correlation (figure 3b, solid line) but weak heterogeneity of |M|2.
The intermediate case displays both a relatively strong � 2

M (figure 1h) and a strong
correlation (figure 3b, dotted line), giving the maximum covariance.

4. Discussion

The results described in this paper in the context of the reduced-gravity shallow-
water system demonstrate that the development of spatial heterogeneity in a
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FIGURE 3. (a) Spatial covariance I3/h and (b) correlation C between |M|2 and 1 /2
for h/ = 0.2, 1 and 10. Legend in (a) applies also to (b).

homogeneous field of NIWs due to the interaction with the barotropic vorticity field
is inevitably accompanied by a concentration of NIW energy in anticyclones. We
emphasize that this result does not make assumptions about the relative importance
of dispersion (such as the strong-dispersion approximation of Young & Ben Jelloul
1997 and Balmforth et al. 1998) or the nature of the vorticity field and smallness of
advection (Klein et al. 2004). Instead, it arises as a consequence of a conservation
law associated with the model of Young & Ben Jelloul (1997). Therefore, the
concentration of NIW energy in anticyclones is a much more robust phenomenon
than previously thought. In particular, it is the strongest for the intermediate regime
h/ = O(1), when refraction, dispersion and advection are all significant.

We note that (3.3) leads to an interesting conclusion for h/ � 1. In this limit,
M ! 1, as explained above, so that the refraction term in (2.1) becomes approximately
i1 /2. By (3.3) the time-derivative term has the same amplitude as the refraction
term in (2.1), in contrast to previous treatments of the strong-dispersion limit which
neglect it (Young & Ben Jelloul 1997; Balmforth et al. 1998). In this case, a more
complete solution of (2.1) at short times is

M = 1 +
1
h

ZZ
 ̂(k)eik·x(1 � e�ih|k|2t/2) dk + O(( /h)

2
), (4.1)

where  ̂(k) is the Fourier transform of the streamfunction  at wavenumber k. From
(4.1), the adjustment of the initial condition M = 1 towards the ‘balanced state’ with
M = 1 +  /h + O(( /h)2) is accompanied by the emission of O( /h)-amplitude
waves. Although the latter part is missing from Young & Ben Jelloul (1997) and
Balmforth et al. (1998), (4.1) shows that the correlation between |M| and  (hence
the anticorrelation between |M| and the vorticity field) remains true on average. It
should be noted that a slow modulation of (4.1) should be added to describe the
long-time behaviour of M (Young & Ben Jelloul 1997).

In this paper, we make the strong assumption of a steady background flow. The
advective time scale L2/ typical of the flow evolution can be compared with the
O(L2/h) time taken for I1, I2 and I3 to reach saturation (see figure 2), to conclude that
the assumption of steadiness can be relaxed when h � . When h/ = 1, saturation
occurs for ht/L2 ' 0.3, so the impact of unsteadiness can be expected to remain weak.
In the strong-advection regime h/ ⌧ 1, however, the time dependence of  cannot
be neglected and only the short-time solution described in 3.1 remains strictly valid.
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Last, the assumption that NIWs initially have much larger horizontal scales than
the geostrophic flow is crucial for the results reported here. Although this holds in
many parts of the ocean, NIWs can also be generated at scales similar to those of
the geostrophic flow (e.g. by a moving hurricane). The study of the propagation of
NIWs in a geostrophic flow with similar scales is the subject of a forthcoming paper.
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Appendix A. The reduced-gravity shallow-water YBJ model

We begin by considering the reduced-gravity shallow-water system linearized about
a barotropic geostrophic flow (U, V) = (� y,  x) (e.g. Klein et al. 2004). That is,
we assume u, v ⌧ U, V and ⌘ ⌧ H, where H is the horizontally averaged depth of
the top layer. We emphasize that, because the geostrophic flow is barotropic (i.e. the
same in the top layer and beneath), there is no associated interface slope. Under these
assumptions, the NIW-velocity and layer-depth perturbations obey

@tu + U@xu + V@yu + u@xU + v@yU � f v = �g0@x⌘, (A 1)
@tv + U@xv + V@yv + u@xV + v@yV + fu = �g0@y⌘, (A 2)

@t⌘+ U@x⌘+ V@y⌘+ H(@xu + @yv) = 0. (A 3)

By non-dimensionalizing using (x, y) = L(x0, y0),  =   0, (u, v) = Uw(u0, v0), ⌘ =

HUw/( fL) ⌘0 and t = t0/f , and introducing a slow time scale ⌧ = ✏t, we obtain the
following equation for the complex velocity U = u0 + iv0 by forming (A 1) + i(A 2):

@tU + iU = �✏

✓
@⌧U + J( , U ) + 2⌘⇠⇤ + i

1 

2
U + 2i ⇠⇤⇠⇤U ⇤

◆
, (A 4)

where ⇠ = x + iy and � is the horizontal Laplacian. Primes in (A 4) have been omitted
for simplicity. We have assumed ✏ =  /( fL2) ⇠ g0H/( f 2L2) ⌧ 1; this corresponds to
assuming a low Rossby number for the background flow and a small Burger number
for the waves (i.e. waves oscillating at a frequency close to f ). The non-dimensional
version of (A 3) is

@t⌘+ ✏J( , ⌘) + (U⇠ + U ⇤

⇠⇤) = 0. (A 5)

An approximate solution can be sought by expanding U in powers of ✏:

U = U (0)
+ ✏U (1)

+ O(✏2). (A 6)

The leading-order solution can be written as

U (0)
= M(x, y, ⌧ )e�it, (A 7)

where M describes the spatial and long-time modulation of the NIW field. Insertion
of this form in (A 5) gives the leading-order depth

⌘= �iM⇠e�it
+ c.c., (A 8)

where c.c. denotes complex conjugate. The evolution equation for M is found at the
next order by eliminating resonant terms, and the dimensional version of the resulting
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equation is then (2.1). Equation (2.1) is also found for continuously stratified flows
when the geostrophic flow is barotropic. In this case, it applies to the projection of
the NIW amplitude onto a single vertical mode, with g0H/f replaced by fr2

d, where
rd is the deformation radius of the vertical mode. More details on the derivation
(in the continuous stratification case) can be found in Young & Ben Jelloul (1997).
It should be noted that (2.1) differs from that obtained by Falkovich, Kuznetsov &
Medvedev (1994) and Reznik, Zeitlin & Ben Jelloul (2001) for the shallow-water
model. This is because they consider a single-layer model in which the geostrophic
flow is balanced by a sloping free surface. Our assumption of barotropic geostrophic
flow and consequent absence of interface slope is more relevant to the oceanic
context where geostrophic flows typically have vertical scales much larger than the
mixed-layer depth.

Appendix B. NIW energy in the absence of a background flow

The energy associated with the linearized reduced-gravity shallow-water system
(A 1)–(A 3) in the absence of a flow (U = V = 0) is

E =

ZZ
1
2
(u2

+ v2
+ ✏⌘2) dx dy, (B 1)

using the non-dimensionalization of appendix A. As expected, (B 1) indicates that
NIWs have much more kinetic than potential energy. Insertion of expansion (A 6) and
solutions (A 7) and (A 8) into (B 1) gives E = E0 + ✏E1 + O(✏2), where

E0 =

ZZ
1
2
|M|

2 dx dy and E1 =

ZZ
(2|M⇠ |

2
+ Me�itU ⇤

1 � M2
⇠ e

�2it
+ c.c.) dx dy.

(B 2a,b)
Here, E0 is the NIW kinetic energy appearing in (2.5). Because U1 varies as eit (since
secular terms were removed, see Young & Ben Jelloul 1997, (2.25)), the fast-time
average of E1 is just the first term, which is clearly proportional to I2.

Thus, for  = 0, conservation of total energy averaged over fast time gives (2.5) at
leading order and (2.6) at the next order. It should be noted that (2.5)–(2.6) are exact
conservation laws for the YBJ model, but only adiabatic invariants, i.e. approximate
conservation laws, for the parent shallow-water model (e.g. Cotter & Reich 2004).
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