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ABSTRACT: We present a new method to estimate second-order horizontal velocity structure functions, as well as their

Helmholtz decomposition into rotational and divergent components, from sparse data collected along Lagrangian obser-

vations. The novelty compared to existing methods is that we allow for anisotropic statistics in the velocity field and also in

the collection of the Lagrangian data. Specifically, we assume only stationarity and spatial homogeneity of the data and that

the cross covariance between the rotational and divergent flow components is either zero or a function of the separation

distance only. No further assumptions are made and the anisotropy of the underlying flow components can be arbitrarily

strong.We demonstrate our newmethod by testing it against synthetic data and applying it to the Lagrangian Submesoscale

Experiment (LASER) dataset. We also identify an improved statistical angle-weighting technique that generally increases

the accuracy of structure function estimations in the presence of anisotropy.
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1. Introduction

Lagrangian observations have been playing a crucial role in

the understandings of submesoscale dynamics (Richardson

and Stommel 1948; Davis 1991; Poje et al. 2014; D’Asaro et al.

2018). Collected from flow-following devices such as buoys or

surface drifters, with GPS tracking, they can resolve spatial

scales well below the deformation radius of 10–50 km in the

ocean, with temporal resolutions down to minutes (Özgökmen

2015; D’Asaro et al. 2017; Lumpkin et al. 2017). While main-

taining the submesoscale-resolving accuracy, they could stay in

the ocean for up to months and cover several degrees in lati-

tude and longitude. Such a wide span in spatial and temporal

scales provides the potential for resolving the transitions and

interactions between submesoscale and mesoscale dynamics.

As oceanic flows are usually turbulent, we will apply a statis-

tical description, rather than a deterministic one. To describe

the scale-dependent dynamics, second-order structure func-

tions, which are convenient to estimate for irregularly sampled

data and directly related to power spectra (LaCasce 2016;

Callies et al. 2016) are often investigated from Lagrangian data

(Poje et al. 2014, 2017; Beron-Vera and LaCasce 2016;

Balwada et al. 2016; Essink et al. 2019; Pearson et al.

2019, 2020).

The Helmholtz decomposition of two-dimensional (2D)

velocity u5 uex1 yey on a 2D flat plane (such as a patch of the

ocean surface on a tangent plane) separates the divergent and

rotational components of the velocity via

u52c
y
1f

x
, y5c

x
1f

y
, (1)

where c andf are stream and potential functions, respectively.

As quasigeostrophic flows are nearly nondivergent, a strongly

divergent flow indicates the breaking of balance. The detection

of balance breaking sheds light on classic open questions such

as the dynamics underlying the double power law of the

Nastrom and Gage (1985) kinetic energy spectrum (Bartello

1995; Bühler et al. 2014, hereafter BCF14; Lindborg 1999), and
has also been of practical interests in recent studies of tracer

dispersion (D’Asaro et al. 2018) and high-resolution altimetry

data processing (Qiu et al. 2017; Cao et al. 2019). However,

observational data often suffer from strong limitations. Ship

track or aircraft track measurements are one dimensional (1D)

only, satellite snapshots usually cannot resolve scales finer than

10 km and Lagrangian observations are sparse and potentially

suffer from biased sampling (D’Asaro et al. 2018; Pearson et al.

2019, 2020).

Overcoming such limitations to untangle the balanced and

unbalanced flows has been of great interest, and a decompo-

sition method suitable for 1D spectra under the assumption of

horizontal isotropy was developed by BCF14. Their method

consists of two steps: first, a Helmholtz decomposition is de-

veloped for 1D spectral data. Second, if potential energy

spectrum is also measured, an energy equipartitation state-

ment is used to separate the energy spectrum of linear inertia–

gravity waves and of the geostrophic flow. Extensions and

generalizations of the BCF14 method have since been actively

developed. It was soon realized that the assumption of un-

correlatedness between c andf is not necessary under isotropy

for the Helmholtz decomposition (Callies et al. 2016); inclu-

sions of nonhydrostratic effects by utilizing vertical velocity

measurements are studied (Zhang et al. 2015; Callies et al.

2016); more recently, a quasigeostrophic component is added
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to the diagnosis, allowing for weak nonlinearities in the de-

composition algorithm (Wang and Bühler 2020; Waite 2020).

The BCF14 Helmholtz decomposition formulae has also been

adapted into second-order structure functions counterparts

(Lindborg 2015), emerging as a practical Helmholtz decom-

position algorithm in studies of Lagrangian observations

(Balwada et al. 2016; Essink et al. 2019; Pearson et al. 2019).

All the Helmholtz decomposition algorithms mentioned

above rely on the assumptions of temporal stationarity, spatial

homogeneity and horizontal isotropy. In this work, while

keeping stationarity and homogeneity, we attempt to relax

isotropy in the treatments of Lagrangian observations.

Anisotropy is of obvious relevance to atmospheric and oceanic

flows, as angle-dependent flow features such as fronts and di-

rectional currents cannot exist without it. Some quantitative

indicators of anisotropy include the eccentricity of the eddy

covariance matrix (Hoskins et al. 1983; Stewart et al. 2015) and

asymmetry in zonal and meridional dispersions (Beron-Vera

and LaCasce 2016; LaCasce 2010), but to our knowledge these

cannot be directly applied to diagnose anisotropic components

in structure functions.Moreover, nonphysical values have been

sometimes observed in the applications of the isotropic

methods in both atmospheric and oceanic datasets (Lindborg

2015; Bühler et al. 2017, hereafter BKT17). Motivated by this,

an anisotropic extension to the BCF14 method that applies to

1D power spectra is proposed in BKT17, which successfully

suppresses some nonphysical values in the applications to ship

track data taken at Gulf Stream.

The BKT17 method is developed specifically for treatments

of 1D data, which inevitably suffers from some strong con-

straints on the forms of anisotropy. Lagrangian observations,

albeit irregular and sparse, are not strictly restricted to a single

spatial dimension as 1D ship tracks do, and in principle, could

provide more angle-dependent information. In this work, we

propose a new Helmholtz decomposition algorithm that is

suitable for the sparse 2D measurements, which allows for a

generic azimuthal Fourier expansion of 2D structure functions.

Another discovery made during our explorations is a new

angle-weighted approach to estimate structure functions. To

our knowledge, isotropic structure functions are commonly

evaluated as unweighted ensemble averages within each sep-

aration distance bin. We show that even if one is only inter-

ested in the isotropic components of structure functions, there

is a systematic error in this approach if both the underlying

dynamics and the distribution of separation vectors are an-

isotropic. A straightforward angle-weighted approach is pro-

posed, which resolves this systematic error. We appeal to

readers that this approach can be applied to any scalar-based

quantities, including third-order structure functions and so on,

and should be relevant inmore general applications even if one

is not focused on the Helmholtz decomposition.

The paper flows as follows. In section 2, we state the basic

definitions of second-order structure functions, and expand

them in terms of azimuthal Fourier coefficients. The azimuthal

Fourier transform converts 2D functions into isotropic and

anisotropic modes, and we will analyze the modes system-

atically in later chapters. In section 3, we explain the po-

tential systematic error from the traditional structure function

estimation approach that applies unweighted ensemble aver-

ages, and propose a straightforward angle-weighted approach

to suppress it. Section 3 is self-containing and can be read alone

if one is not primarily concerned with Helmholtz decomposi-

tions. In section 4, we derive the anisotropic Helmholtz de-

composition formulae that in principle can diagnose any

anisotropic modes of rotational or divergent structure func-

tions. Notably, compared to the isotropic Helmholtz decom-

position, this method does not require any additional observed

fields. The form of anisotropy allowed in the derivation is quite

general: the only constraint is that the cross covariance be-

tween c and f needs to be either zero or at most isotropic. No

more assumption is made other than stationarity and homo-

geneity. We then test and verify both the angle-weighted

approach and the Helmholtz decomposition formulae on

synthetic data in section 5, which shows excellent agreements

with theoretical expectations. In section 6, we apply the new

algorithms onto data from a recent surface drifter observa-

tional project that took place in the Gulf of Mexico. Some

discussions and summary are offered in section 7.

2. Second-order structure functions

For each drifter pair the separation vector r 5 Dxex 1 Dyey
connects the locations of the two drifters in a local tangent

plane. We follow the usual convention that ex and ey point

toward zonal and meridional directions, respectively. The ve-

locity difference Du between two drifters is decomposed into

two components: DuL, the ‘‘longitudinal’’ component pointing

along r, and DuT, the ‘‘transversal’’ component pointing along

ez 3 r where ez is the vertical unit vector. The longitudinal and

transversal second-order structure functions are then de-

fined as

D
LL

(r)5Du2
L, D

TT
(r)5Du2

T , (2)

where (�) denotes a suitable ensemble average. The assump-

tions of homogeneity and stationarity imply that these aver-

ages depend only on the separation vector r. We also need the

‘‘cross’’ structure function

D
LT

(r)5Du
L
Du

T
, (3)

which will turn out to be crucial for our method. The velocity

difference Du can also be decomposed into DuR, the velocity

difference due to rotational motion induced by the stream-

function c in (1), and DuD, the velocity difference induced by

the potential function f in (1):

Du5Du
R
1Du

D
. (4)

The rotational and divergent structure functions, denoted as

DRR and DDD, are

D
RR

(r)5Du2
R, D

DD
(r)5Du2

D , (5)

where DuR 5 jDuRj and DuD 5 jDuRj. Under isotropy, it

has been pointed out that the sum of DLL and DTT can be

unambiguously expressed as a sum of DRR and DDD

(Lindborg 2015):
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D
LL

(r)1D
TT
(r)5D

RR
(r)1D

DD
(r) . (6)

We will later find out that the above still holds under aniso-

tropic statistics. The principal goal is to diagnose the rotational

and divergent structure functions DRR(r) and DDD(r) from

observations of DuL(r) and DuT(r) without assuming isotropic

statistics.

In subsequent analysis, we refer to second-order structure

functions as ‘‘structure functions’’ for convenience. The only

time higher-order structure functions are mentioned are in

section 3, and we will be explicit about the order there. We will

also work primarily in polar coordinates, referring to the polar

angle a of the separation vector r as the ‘‘separation angle,’’

and the magnitude of r, denoted as r, as ‘‘separation distance.’’

The (second-order) structure functions considered in this work

are even in r, which means they have the same values at a and

a 1 p. So in the evaluation of structure functions from ob-

servations we can enforce Dy $ 0 or a 2 [0, p) without loss of

generality.

We will systematically analyze 2D anisotropic functions

through the lens of azimuthal Fourier series. Any smooth real

function f(r, a) can be expanded into the azimuthal Fourier

series

f (r,a)5 �
‘

n50,1,2,...
f cn(r) cos(na)1 f sn(r) sin(na) , (7)

where in (7), n are nonnegative integers and the azimuthal

Fourier coefficients are

f c0 5
1

2p

ðp
2p

f (r,a)da, (8)

f cn 5
1

p

ðp
2p

f (r,a) cos(na)da, n 6¼ 0, (9)

f sn 5
1

p

ðp
2p

f (r,a) sin(na)da, n 6¼ 0: (10)

We also define the absolute value function when n 6¼ 0, which

will be convenient when we compare modal amplitudes

in figures.

f an(r)[

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f cn(r)

2 1 f sn(r)
2

q
, n 6¼ 0: (11)

The (second-order) structure functions and covariance func-

tions are all even by definition, so all odd-ordermodes are zero.

Hence, we will only discuss the modes where n are even. If we

assume a 2D function is isotropic, we are in fact truncating the

expansion to the mode at n 5 0. Conversely, as we allow for

anisotropy in the statistics, we include higher modes at n$ 2 in

the azimuthal Fourier expansions ofDLL(r, a) and so on. Most

derivations to appear in section 4 will be based on the azi-

muthal Fourier expansions, analyzing structure functions at

each mode separately.

3. Angle-weighted structure function estimation

Anisotropic velocity statistics introduce a sampling issue

that affects the estimation of all structure function modes,

including the isotropic mode (n 5 0). For example, consider

estimating Dc0
LL(r) at r 5 ri from a dataset. If the underlying

DLL(r, a) is indeed isotropic, then there would be no need to

incorporate the angle distribution of separation vectors, and to

estimateDc0
LL(ri), one only needs to calculate a sample average

of Du2
L over all the drifter pairs whose separation distances fall

into the distance bin around ri. We call this the ‘‘unweighted

approach.’’ To our knowledge, this is highly likely the popular

practice so far, as we have never seen discussions on the angle

distribution in previous literature when estimations of struc-

ture functions are introduced (e.g., Bennett et al. 2006;

LaCasce 2016; Pearson et al. 2019). This approach is conve-

nient and consistent with isotropy, but as we will see in the

following thought experiment, if the underlying DLL(r, a) is

actually anisotropic, the unweighted approach based on isot-

ropy introduces a systematic error.

Suppose the true DLL(r, a) at r 5 ri is

D
LL

(r
i
,a)5 sin(2a)1 1 (12)

and that there are 5 drifter pairs whose separation distances

fall into the distance bin centered at r 5 ri. We also assume a

simple anisotropic arrangement of the separation vectors, as

sketched in Fig. 1. The ‘‘true answer’’ for Dc0
LL is

Dc0
LL(ri)5

1

p

ðp
0

[ sin(2a)1 1]da5 1: (13)

But in the unweighted approach Dc0
LL would be estimated

simply as an average over the five observations:

1

5

�
01 sin

�
2p

6

�
1 sin

�
2p

3

�
1 sin

�
2p

2

�

1 sin

�
6p

4

��
1 15 1:15,

which is significantly different from (13). What has gone wrong

here is that the integral was biased toward angle regions where

there were more observations.

This biasing error can be removed if we use a suitable angle

weighting to counterbalance the empirical angle distribution.

In the approach we are proposing here, we treat the evaluation

of (13) as a numerical integration over a nonuniform grid.

FIG. 1. Locations of the five drifter pairs distributed anisotropi-

cally at the same separation distance in the thought experiment.

The underlying structure function (not plotted) is prescribed by

(12), which is also anisotropic.
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In this example, the difference in the separation angles be-

tween the drifter pair at a5 0 and the drifter pair at a5 p/6 is

p/6, and so on. We use these empirical Da values and apply a

simple trapezoidal rule to (13):

1

2p

��
sin(0)1 sin

�
2p

6

��
3

p

6
1

�
sin

�
2p

6

�
1 sin

�
2p

3

��
3
p

6
1

�
sin

�
2p

3

�
1 sin

�
2p

2

��

3
p

6
1

�
sin

�
2p

2

�
1 sin

�
23 3p

4

��
3
p

4
1

�
sin

�
23 3p

4

�
1 sin(0)

�
3
p

4
1 1

�
5 1:04, (14)

so this approach yields the much better estimate 1.04 for (13).

Higher modes such as

Dcn
LL(r)5

1

2p

ðp
0

D
LL

(r
i
,a) cosnada, (15)

can be estimated in the same fashion. For n � 1, noise in the

observedDLL(ri, a) may be amplified by the highly oscillatory

cos(na) in the evaluation of (15). In the applications to realistic

data, we will only estimate the modes at n 5 0, 2 and n 5 4.

Finally, in real data, occasionally, several drifter pairs in the

ensemble may share a same, or almost identical separation

vector. In that case, we chose to average observations from

these drifter pairs, and treat the averaged value as a single

point in the (r, a) space. Overall, this approach is elementary

yet effective in our applications. We do not argue it is optimal,

and an alternative approach is described in appendix B.

The angle-weighted approach can be applied to the evalu-

ations of any other scalar-based quantities. For example, to

evaluate the zeroth mode of third-order structure functions, the

only significant inconsistency with the thought experiment above

is the oddness of third-order structure functions, which can be

incorporated by making up an odd function to replace (13).

Last but not least, in the thought experiment, the weighted

and unweighted approaches would give the same estimation

for Dc0
LL(ri) and so on if we modify our premises by making

either the underlying DLL(ri, a), or the distribution of sepa-

ration vectors to be instead isotropic. Here, by isotropic dis-

tribution, we mean that the five separation angles are equally

spaced by p/5, so that the equally spaced angles span the whole

angle range [0, p). This leads to a practical rule: the angle

weighting only makes a difference in the outcome when both

the underlying 2D structure functions and the distribution of

separation vectors are anisotropic.

4. Anisotropic Helmholtz decomposition

The angle-weighted approach described in the previous

section allows us to estimate the velocity structure functions

DLL(r,a),DTT(r,a), andDLT(r,a) at anymode. In this section,

we derive a set of formulae that relate the modes of the rota-

tional and divergent structure functions to them, which is the

key ingredient for a Helmholtz decomposition algorithm of

sparse 2D observational data.

a. Helmholtz decomposition results

The BCF14 Helmholtz decomposition method for iso-

tropic spectra can be adapted to isotropic structure func-

tions (Lindborg 2015), yielding

D
RR

(r)5D
TT
(r)1

ðr
0

[2D
LL

(t)1D
TT
(t)]

dt

t
,

D
DD

(r)5D
LL

(r)2

ðr
0

[2D
LL

(t)1D
TT
(t)]

dt

t
. (16)

In this paper we show that for anisotropic flows this can be

generalized to

D
RR

(r,a)5D
TT
(r,a)1

ðr
0

�
2D

LL
(t,a)1D

TT
(t,a)2

›D
LT

(t,a)

›a

�
dt

t
,

D
DD

(r,a)5D
LL

(r,a)2

ðr
0

�
2D

LL
(t,a)1D

TT
(t,a)2

›D
LT

(t,a)

›a

�
dt

t
. (17)

These formulas are exact under stationarity and homogeneity,

provided that c and f are either uncorrelated or correlated

only via an isotropic function. In casec andf are correlated via

an anisotropic function, the formulas at the isotropic mode n5
0 are still valid. The azimuthal average of (17) brings back (16),

which shows that (16) can be viewed as an equation for the n5
0 mode. The implied azimuthal average brings in the angle-

weighting issue discussed in section 3.

We have not been able to derive (17) in a straightforward

fashion, instead its Fourier mode form was guessed and then

verified using Wolfram Mathematica. The corresponding

codes are located in the online supplemental material. To do

this we first express the structure functions in terms of the

velocity covariances and then use the covariances of the

streamfunction c and velocity potential f to find the di-

vergent and rotational components, respectively. This is

sketched now.

b. Expressions for velocity structure functions

By definition (see section 2) we have

Du
L
5Du cos(a)1Dy sin(a) , (18)
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Du
T
52Du sin(a)1Dy cos(a) , (19)

where (u, y) are zonal and meridional velocities. For the ve-

locity structure functions this yields

D
LL

5Du2 cos2(a)1Dy2 sin2(a)1DuDy sin(2a) , (20)

for example. We can then use the standard relations

DuDy(r) 5 2uy2C
uy
(r)2C

uy
(2r) ,

Du2(r) 5 2[u2 2C
u
(r)],

Dy2(r) 5 2[y2 2C
y
(r)], (21)

to bring in Cu, Cy, the covariance functions of u and y respec-

tively, and also the cross covariance Cuy(r). As a reminder, the

covariance and cross-covariance functions are defined as

C
u
(r)5u(r

0
)u(r

0
1 r), C

uy
(r)5u(r

0
)y(r

0
1 r) , (22)

where we have assumed zero-mean fields, and as a conse-

quence of homogeneity, the location variable r0 that denotes

the initial point vanishes after ensemble averaging. Cu(r) or

Cy(r) are always even, but Cuy(r) need not be. Henceforth we

use the letter C to denote covariance or cross-covariance

functions, depending on whether it is adorned by one or two

subscripts. With manipulations similar to appendix A in

BKT17, we can further relate the above to the covariance and

cross-covariance functions of c and f:

C
u
52

›2C
f

›x2
2

›2C
c

›y2
1

›2C
cf

›x›y
1
›2C

fc

›x›y
; (23)

C
y
52

›2C
f

›y2
2
›2C

c

›x2
2
›2C

cf

›x›y
2
›2C

fc

›x›y
; (24)

C
uy
52

›2C
f

›x ›y
1

›2C
c

›x ›y
1

›2C
cf

›y2
2
›2C

fc

›x2
, (25)

where we used r5 (x, y) for simplicity here. Now, in our theory

we allow for arbitrary Cf(r) and Cc(r), but restrictCcf(r) to be

isotropic (or zero), i.e., it can only be a function of the sepa-

ration distance r5 jrj. Relaxations of this extra assumption will

be discussed in section 4e, but for now we stick to this as-

sumption for simplicity. Hence Ccf(r) 5 Cfc(r) and (23)–(25)

can be shortened. The velocity correlation Cuy is even too,

which simplifies (21) to

DuDy5 2(uy2C
uy
) . (26)

Combining these equations, and with help from Wolfram

Mathematica, we can finally express DLL, DTT, and DLT in

terms of Cf(r), Cc(r) and Ccf(r)5Cc0
cf(r). For the Fourier

modes this yields

Dc0
LL 5 u2 1 y2 1 2(Cc0

f )
00
1
2(Cc0

c )
0

r
; (27)

Dcn
LL 5 1

n52
(u2 2 y2)1 2(Ccn

f )00 2
2n2Ccn

c

r2
1
2(Ccn

c )
0

r
, n$ 2;

(28)

Dsn
LL 5 1

n52
(2uy)1 2(Csn

f )
00 2

2n2Csn
c

r2
1

2(Csn
c )

0

r
, n$ 2; (29)

Dc0
TT 5 u2 1 y2 1

2(Cc0
f )

0

r
1 2(Cc0

c )
00
; (30)

Dcn
TT 5 1

n52
(2u2 1 y2)1

2(Ccn
f )0

r
2
2n2Ccn

f

r2
1 2(Ccn

c )
00
, n$ 2;

(31)

Dsn
TT 5 1

n52
(22uy)1

2(Csn
f )0

r
2
2n2Csn

f

r2
1 2(Csn

c )
00
, n$ 2;

(32)

Dc0
LT 52

2(Cc0
cf)

0

r
1 2(Cc0

cf)
00
; (33)

Dcn
LT 5 1

n52
(2uy)1

2n(Csn
f )

0

r
2
2nCsn

f

r2

1
2nCsn

c

r2
2
2n(Csn

c )0

r
, n$ 2; (34)

Dsn
LT 5 1

n52
(2u2 1 y2)2

2n(Ccn
f )0

r
1
2nCcn

f

r2

2
2nCcn

c

r2
1

2n(Ccn
c )0

r
, n$ 2: (35)

Here primes denote differentiation with respect to r and

1n52 5 1 if n5 2 and zero otherwise; note that there are terms

peculiar to the n 5 2 mode. If all covariance terms diminish

at a decorrelation scale, which presumably should be the limit

r / ‘, we can extract the decorrelation limits

lim
r/‘

Dc0
LL 5 lim

r/‘
Dc0

TT 5u2 1 y2, lim
r/‘

Dc0
LT 5 0, (36)

lim
r/‘

Dan
LL5 lim

r/‘
Dan

TT 5 lim
r/‘

Dan
LT

5 1
n52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(u2 2 y2)

2 1 (2uy)
2

q
. (37)

We will check if such limiting behaviors are indeed satisfied in

synthetic and observational data.We also note here thatDLL(r,

a) 5 DTT(r, a) at decorrelation scale, which is a generalization

of a similar result in the isotropic case (Lindborg 2015).

c. Nonzero Ccf(r) and ‘‘spirality’’ of the flow

It follows from (33)–(35) that DLT(r) 5 0 if the correlation

functions ofc andf are isotropic and their cross correlation is zero,

which is likely the reason whyDLTwas usually ignored in previous

work. On the other hand, (33) shows that in general Dc0
LT(r) 6¼ 0

even if c and f are correlated only by an isotropic term, which is

the case that we allow for in the present theory. An intriguing

situation arises if all correlation functions are isotropic yetDc0
LT 6¼ 0

becauseCc0
cf 6¼ 0. This implies that there is an isotropic handedness

involved in the statistical description of the flow, i.e., the flow sta-

tistics can distinguish between a clockwise and a counterclockwise

rotation of the velocity along the separation vector r.

This makes sense physically, given that the Coriolis force

provides precisely this handedness, but it is puzzling at first sight

from a mathematical point of view: if all correlation functions

are isotropic, how can the preference to turn clockwise, say, be
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encoded in the statistics? The answer to that comes from the

observation that c and f behave differently under a reflection of

the flow across a line such as the y axis: in this case f remains the

same butc changes sign. In physical terms,f behaves like a scalar

but c like a pseudoscalar, a consequence of the obvious handed-

ness involved in the definition of c. Hence a nonzero correlation

betweenf and c implies a lack of reflection symmetry of the flow

statistics, leading to Dc0
LT(r) 6¼ 0.

Notably, one can check with similar steps as before that the

cross covariance between vertical vorticity z and horizontal

divergence x is directly related to that between c and f via

Czx 5=4
hCcf, where =2

h is the horizontal Laplacian operator.

Hence if Ccf behaves in a way that makes Czx positive, then

cyclonic vorticity is correlated with flow divergence and vice

versa. The resultant flow pattern will exhibit a distinct

‘‘spirality,’’ with outward or inward spirals preferentially

associated with cyclones or anticyclones, respectively [W. Young

2020, personal communication; see also Zhurbas et al. (2019)

for recent observations of tracer spirals]. Such spirality obviously

implies a lack of reflectional symmetry of the flow statistics.

d. Anisotropic Helmholtz decomposition

A crucial observation from (27)–(32) is that any mode of the

sum (DLL1DTT) is a linear combination of terms related only to

Cf and Cc, and the cross terms Ccf or Cfc play no role. This

means thatDRRorDDD, whose definitions are essentially ‘‘velocity

structure functions due to rotational or divergent motions,’’ can

unambiguously be told apart in their contribution to (DLL1DTT)

if we have full knowledge of c andf: we can simply evaluate them

by retaining the terms induced by c or f, respectively. Formally,

D
RR

5D
LL

1D
TT

withf taken as 0, (38)

and

D
DD

5D
LL

1D
TT

withc taken as 0: (39)

To illustrate how to use (38) and (39), at n 5 0, we have by

summing up (27) and (30) and taking f 5 0

Dc0
RR 5A1

2(Cc0
c )

0

r
1 2(Cc0

c )
00
, (40)

where the constant A is determined from the zero boundary con-

dition of structure functions at r5 0. The other modes ofDRR and

DDD can be similarly evaluated. Resubstituting from (27)–(35) as

needed we can then verify the following integral relationships

Dcn
RR(r)5Dcn

TT(r)1

ðr
0

�
2Dcn

LL(t)1Dcn
TT(t)

t
2n

Dsn
LT(t)

t

�
dt ,

Dsn
RR(r)5Dsn

TT(r)1

ðr
0

�
2Dsn

LL(t)1Dsn
TT(t)

t
1n

Dcn
LT(t)

t

�
dt ,

Dcn
DD(r)5Dcn

LL(r)2

ðr
0

�
2Dcn

LL(t)1Dcn
TT(t)

t
2n

Dsn
LT(t)

t

�
dt ,

Dsn
DD(r)5Dsn

LL(r)2

ðr
0

�
2Dsn

LL(t)1Dsn
TT(t)

t
1n

Dcn
LT(t)

t

�
dt .

(41)

These were the equations found first by guesswork and then

verified in Wolfram Mathematica. The guess was inspired by

DLT 6¼ 0 for n. 0 under anisotropy, and was stumbled upon by

listing and observing all the separate modes that are shown in

section 4b. Summing the Fourier series then yields the compact

relations in (17).

The terms on the RHS in formulae (41) can be estimated

from data by the angle-weighted approach described in

section 3, which works for sparse 2D observations, as long as

the mode number n is not too high to exaggerate observa-

tional noises. In practice, we will stop at n 5 4.

At the mode n 5 0, the Helmholtz decomposition formulae

(41) are identical to the Helmholtz decomposition formulae

under assumption of isotropy (16). We stress, however, that

although the Helmholtz decomposition formulae are the same

at the zeroth modes, the angle-weighted approach to estimate

the input functions Dc0
LL(r), D

c0
TT(r), and Dc0

LT(r) described in

section 3 could still render different outcomes.

e. Consequences of anisotropic Ccf

Even though the relations (27)–(32) were derived under the

assumption that Ccf is isotropic, we found with similar steps

that even if Ccf(r, a) contains anisotropic modes, the sum

(DLL 1 DTT) is still always a linear combination of terms re-

lated to Cf and Cc, which means (6), (38) and (39) are valid

and a Helmholtz decomposition should still be a well-defined

problem in the sense that it can always be achieved if full

knowledge ofCc andCf is available. The remaining question is

then how to achieve the Helmholtz decomposition if the only

inputs available are modes of velocity structure functions.

Apparently, the assumption that Ccf is isotropic can easily

be relaxed to allow for odd Fourier modes in Ccf. With similar

steps as above we find that the expressions for the velocity

structure function modes from (27) to (35) turn out exactly the

same, and hence (41) hold as is. We are not aware of any

particularly useful implications of this result yet, and hence we

stick to the stricter assumption of isotropy for simplicity.

The troubling case is when Ccf contains even and nonzero

Fourier modes (i.e., n5 2, 4, 6, . . .). In this case, (27)–(35) turn

out different at n $ 2 in a way that makes the formulas (41)

invalid at n $ 2. However, at n 5 2, we find that the modes

Dc0
LL, D

c0
TT andDc0

LT happen to stay unchanged: all the modes at

n . 0 in Ccf do not leave fingerprints on Dc0
LL, D

c0
TT and Dc0

LT .

Hence, the Helmholtz decomposition formulas (41) at n 5 0

holds even in this troubling case. We attach the relevant deri-

vations, which follow similar steps as in sections 4b and 4d, in

the illustrated code provided in the supplemental material.

This may indeed be a useful result: the current Helmholtz

decomposition formulas (41) are always valid at the mode n5
0 no matter what form Ccf takes. This means that in a dataset,

if anisotropic modes are diagnosed to be magnitudes weaker

than the isotropic modes, then the Helmholtz decomposition,

then dominated by the isotropic modes, would be valid even if

Ccf violates our assumption. In the Lagrangian Submesoscale

Experiment (LASER) data application, we have not found a

good chance to apply this result as anisotropic modes rarely

turn out to be more than 10 times smaller than the isotropic

modes, but it is still potentially useful in other datasets.

1380 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 51

Brought to you by New York University | Unauthenticated | Downloaded 04/23/21 06:48 PM UTC



We also note that the isotropy of Ccf is already a weaker

assumption than the uncorrelatedness between c and f [i.e.,

Ccf(r) 5 0], which has been made in some preceding works

(BCF14; Callies et al. 2014). As derived in BCF14, the un-

correlated case is at least consistent with a classic idealized

scenario: a superposition of purely geostrophic flow and lin-

ear inertia–gravity waves. To make the theory more appli-

cable it would be desirable to incorporate general forms of

Ccf. This is left as future work.

5. Synthetic examples

We have developed a code for (17) and (41) that includes

suitable angle weighting and here we test it on two synthetic

examples. For these examples the ‘‘true answers’’ forDRR and

DDD should be known. We achieve this by setting up the un-

derlying 2D power and cross spectrum of c and f which are

easily related to both the velocity fields and DRR and DDD.

These true answers for DRR and DDD are to be reconstructed

from velocity ‘‘observations’’ on synthetic drifters.

The 2D power spectrum of c(x, y), denoted as Sc(k, l), is the

2D Fourier transform of the covariance function Cc(x, y), and

the 2D cross spectrum of c(x, y) and f(x, y), denoted as

Scf(k, l), is the 2D Fourier transform of the cross covariance

Ccf(x, y). The power spectra and cross spectra are also known

to be related to the Fourier modes of individual fields via

(Yaglom 2004)

S
c
(k, l)5

jĉ(k, l)2j
L2

; S
cf
(k, l)5

ĉ*(k, l)f̂(k, l)

L2
, (42)

where ĉ(k, l) and f̂(k, l) denote the 2D Fourier coefficients

of c(x, y) and f(x, y), and L is the domain length in real space

(x, y), fixed here at L 5 250 km.

Both examples feature the band-limited spectra

S
c
(k, l)5C

S
(pk2 1 l2)23/2K22, S

f
(k, l)5C

H
K25 , (43)

S
cf

5C
P
K25, K5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p
. (44)

Outside the wavenumber interval 2p/(100km), K, 2p/(1 km)

the spectra are zero. The corresponding one-dimensional ki-

netic energy spectra along k due toc orf are both proportional

to power decay laws k22 within the interval.

a. Isotropic example with strong correlation

In the first example p 5 1, rendering the input spectra iso-

tropic. The constants CS, CH are fixed so that the root-mean-

square velocities in the domain due to c or f are 0.2 and

0.1m s21, respectively. The constant CP is set to be 0:9
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CSCH

p
.

Under this configuration, the Cauchy–Schwartz inequality

condition

jS
cf
(k, l)j2 # S

c
(k, l)S

f
(k, l) (45)

holds at all wavenumbers, making this a realizable spectrum. In

this example the magnitudes of Scf(k, l), Sc(k, l) and Sf(k, l)

are all comparable to each other: in 2-norm, Scf(k, l) is roughly

twice as big as Sf(k, l) and a half as big as Sc(k, l). To construct

the true answers, we first directly calculate from these model

spectra the corresponding 2D structure functions DLL(r, a),

DTT(r, a),DLT(r, a) from the general relations (21)–(25). Also

similar to section 4d, the true answers ofDRR(r, a) andDDD(r,

a) are evaluated by summing up (23) and (24), and deleting all

the terms involving Cf(r, a) and Cc(r, a), respectively. With

the method described in appendix A, we evaluate the n 5 0,

n 5 2, and n 5 4 modes directly from these 2D structure

functions.

We generate 1000 independent random snapshots of the

velocity fields that are consistent with the assigned spectra Sc,

Sf, and Scf, and for each of those snapshots we randomly

generate 400 independent locations in the real domain, which

we assign as drifter locations. The large sample number makes

statistical noise almost invisible in figures. We purposefully

ensure that the drifter locations are anisotropically distributed,

by demanding that the polar angles of drifter locations con-

centrate around p/5 and 6p/5, as sketched in the histogram

Fig. 2. It is the separation vectors of these drifters, not the

positions of each drifter themselves, that are directly required

in calculations of structure function reconstructions. We

present a histogram of the separation vectors (Dx, Dy) with

Dy $ 0 from all the drifter pairs in Fig. 3. The distribution of

separation vectors is anisotropic too under our configuration.

At separation distances larger than about 84 km, marked by

the semicircle in figure Fig. 3, there are nearly no drifter pairs

at a significantly wide gap in angles. To have a reasonable es-

timate of azimuthal Fourier modes, which are in essence angle

integrations, the observations need to have a reasonable cov-

erage over angles. Hence, we will only calculate the modes of

structure functions with r up to r5 84 km in the angle-weighted

approach described in section 3. In the traditional unweighted

FIG. 2. Histogram of drifter positions (x, y) in synthetic examples

(sections 5a and 5b). The polar angle of drifter locations follows a

double-triangular distribution in the interval [0, 2p], peaking atp/5

and 6p/5. The square of the radial coordinate of drifter locations

follows a uniform distribution in the interval [0, (3L/8)2]. The his-

togram is plotted with 500 3 500 bins.
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approach to estimate structure functions under isotropy, the

angle distributions are not investigated, and these gaps in an-

gles would likely not be detected or regarded as a concerning

factor. Hence, when we conduct the reconstructions with the

traditional unweighted approach, the modes of structure

functions are calculated up to a higher r.

We compute the random velocity fields from samples of

ĉ(k, l) and f̂(k, l) that follow a multivariate Gaussian distri-

bution consistent with (44). To ensure the correct cross cor-

relation we follow a standard strategy (Rasmussen 2003):

[ĉ(k, l), f̂(k, l)] are drawn as a complex bivariate sample that

follows the two-variable Gaussian distribution with mean zero

and covariance matrix

S5
S
c
(k, l) S

cf
(k, l)

S
fc
(k, l) S

f
(k, l)

" #
. (46)

Numerically, we compute the Cholesky decomposition of S,

which is bound to be symmetric and positive definite from (45),

findingA such thatAAT5S, and draw a random vector z5 (z1,

z2)
T, where z1 and z2 are independent samples from standard

normal distributions. The productAzwould then have the zero

mean and the covariance matrixS as we desired. If either Sc(k,

l) or Sf(k, l) is zero then so is Scf(k, l), meaning that ĉ(k, l) and

f̂(k, l) are uncorrelated at this wavenumber. We can then just

sample ĉ(k, l) and f̂(k, l) separately from Sc(k, l) and Sf(k, l),

assuming single-variable zero-mean Gaussian distributions.

Afterward, we enforce the reality condition on ĉ(k, l) and

f̂(k, l) so that their inverse Fourier transforms are purely real

and normalize the samples accordingly.

With û(k, l) and ŷ(k, l) sampled, we can then numerically

evaluate the velocities at each drifter location (x, y) by the

inverse Fourier series:

u(x, y)5
1

L2�
k,l

û(k, l)ei(kx1ly) . (47)

In our application, we directly evaluate the sum (47) instead of

applying a FFT algorithm, as the drifter locations presented in

Fig. 2 do not fall on a regular grid. For our purpose this is not

too costly, as we only evaluate u(x, y) on 400 points in each

snapshot.

The binning in r is set so that the number of drifter pairs in

each bin is about the same. In the results presented in this

section, we apply 256 bins in r, and each bin contains about

30 500 pairs of drifters. Varying the number of bins by a factor

of 4 did not significantly change the outcomes. We then apply

both the angle-weighted approach and the unweighted ap-

proach described in section 3 to evaluate different modes of

DLL(r, a),DTT(r, a), andDLT(r, a) and compare the outcomes.

We note that although the underlying true answers are all

isotropic, we do not ‘‘tell’’ our algorithms that they are a priori,

and all the inputs are the positions and velocity recordings of

the synthetic drifters. At modes n . 0, all the structure func-

tions considered should be zero, and we intend to test if the

synthetic drifters can recover these zero values.

As shown in figure Fig. 4, the reconstructed velocity struc-

ture function are in agreement with the true answers at the n5
0, n 5 2, and n 5 4 modes. At n 5 2 and n 5 4 modes, the

synthetic drifters recover the zero values. The decorrelation

limits of the n 5 0 modes, estimated via (36) and (37), also

seem consistent with the behaviors of the true answers at

larger r. In this example, there is a strong correlation be-

tween c and f, which is the cause for nonzero values in

Dc0
LT(r) that are comparable in magnitude with Dc0

LL(r) or

Dc0
TT(r). We will apply these reconstructed structure func-

tion modes to diagnose the corresponding modes of the

FIG. 3. Histogram of separation vectors (Dx, Dy) in synthetic

example (section 5a). The dashed half-circle marks the radius of

84 km, beyondwhich there are significant gaps in the distribution of

separation angles. The histogram is plotted with 200 3 200 bins.

FIG. 4. The n5 0, n5 2, and n5 4 modes of (left)DLL, (center)DTT, and (right)DLT in the first synthetic example where underlying

structure functions are isotropic. Note that for anisotropic modes, the absolute value of the modes defined in (11) are presented. The gray

lines mark the ‘‘true answers’’ for all the presented modes, which are evaluated directly from 2D structure functions corresponding to the

underlying spectra, and colored lines mark the reconstructions from synthetic drifter observations under the angle-weighted approach.

The dash–dot lines mark the decorrelation limits of different modes at r/ ‘ that is estimated from (36) and (37). Note that the plots in

synthetic experiments do not use logarithmic scales, contrary to popular practice on observational data.
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rotational and divergent structure functions via the Helmholtz

decomposition formulas (41).

As noted in section 3, the angle weighting would make a

difference only when both the distribution of separation

vectors and the underlying functions are anisotropic. In this

synthetic example, the underlying structure functions are

isotropic. Thus, the approaches with or without the angle

weighting are both expected to correctly reconstruct the

structure functions, even though the calculation processes

are different.

In Fig. 5, we present the n 5 0 modes ofDRR andDDD. The

presentations of the n 5 2 or n 5 4 modes for DRR(r, a) and

DDD(r, a) are skipped here, as they all turn out close to zero.

We find that the reconstructed structure functions using both

the angle-weighted and the unweighted approach are in

agreements with the true answer, which should be expected, as

the error in the reconstructed velocity structure functions are

shown small in Fig. 4. The small error at r around 40–80 km,

which may be noticeable to a careful eye, are well bounded by

10%. It is caused by numerical integration of a noisy function,

and decreases when we change the bin sizes in r to be more

optimal. In summary, from this example, we have demon-

strated that the reconstruction of different modes of velocity

structure functions as well as the rotational/divergent structure

functions behave as we expected under isotropy in the pres-

ence of a strong cross spectrum Scf(k, l). As all the structure

functions are isotropic here, at valid separation distances the

angle weighting does not make any difference.

b. Anisotropic example

The main goal of this example is to test if our reconstruction

algorithm works in the existence of strong anisotropy, and to

demonstrate that angle weighting can be crucial in such sce-

narios. The general flow of this example is similar to the pre-

vious example, and the major change is in the constant p in

(44): to introduce anisotropy, we pick p to be 5 in this example.

The value 5 was chosen arbitrarily. In order for the inequality

(45) to still hold, we also modify the constant Cp into

0:9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
523/2CSCH

p
. Under this configuration, the cross spectrum

Scf(k, l) would turn out weaker compared to the previous

example; in 2-norm, Scf(k, l) is roughly half as big as Sf(k, l),

and 15% as big as Sc(k, l). The true answers and synthetic

drifters are sampled in the same way as in the previous

example.

We present the reconstructions of the n5 0, n5 2, and n5 4

modes of velocity structure functions in this example in Fig. 6.

The reconstructions of all these modes from the angle-

weighted approach appear successful. In Fig. 7, we present

the modes of DRR(r, a) and DDD(r, a). The reconstructions

obtained using the angle-weighted approach again agrees with

the true answers, but the reconstructions obtained with the

unweighted approach diverge significantly. At around r 5
100 km, there is a crossover of Dc0

RR(r) and Dc0
DD(r) in the out-

come of the unweighted approach, which could mislead one

into believing a fundamentally different underlying dynamics

from the true answers. This illustrates a main point of this

example: the angle weighting could indeed be important when

both the underlying structure functions and the distribution of

separation vectors are anisotropic.

6. Application to LASER data

We now demonstrate the Helmholtz decomposition with

angle weighting by applying it to a well-studied dataset.

FIG. 5. Helmholtz decomposition of second-order structure

functions at the n5 0 mode in the first synthetic example. The gray

lines mark the ‘‘true answers’’ for all the presented modes, evalu-

ated directly from 2D structure functions. Lines marked with text

‘‘unw.’’ in the legends represent modes reconstructed from syn-

thetic drifters under the unweighted approach, and the rest of

the lines are reconstructed under the angle-weighted approach. In

this example the weighted and unweighted outcomes are identical

at the overlapping distances.

FIG. 6. As in Fig. 4, but for the second synthetic example instead.
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The primary aim is to show that the new method is easy to

use and builds naturally on previous methods, rather than to

find new physical effects in this particular dataset.

a. Data and methods

The LASER took place near the site of the Deepwater

Horizon oil spill in the northern Gulf of Mexico. In this work

we restrict the attention to the .1000 Consortium for

Advanced Research on Transport of Hydrocarbon in the

Environment (CARTHE)-type drifter units, which were

drogued at 0.5 m and reported their positions through GPS

tracking every 5 min for about 3 months, covering the period

from 21 January through 30 April 2016. Among the released

drifters, 840 were densely deployed around 288–298N and

878–898W, intended to monitor the structure of frontal lines,

and the remaining drifters were deployed to provide a

contextual map of the mesoscale flows during the operation

(Novelli et al. 2017, 20–21). Among all the positions re-

ported, 95% have an error of 10m or less (Novelli et al.

2017, p.4).

We use the processed data product (D’Asaro et al. 2017),

where the positions are low-pass filtered and interpolated to

uniform 15min intervals. The trajectories are separated at

drogue loss, which are detected for deletion by transmission

data and comparison of neighboring drifter velocities (Haza

et al. 2018). In this work, we do not discard or attach weight on

any specific deployments or snapshots for simplicity.

Shown in Fig. 8 is the histogram of the locations of drifters from

all available observations. We will analyze in section 6b observa-

tions fromall the areas covered in thedataset, and in section 6c four

different spatial subregions marked in the right panel of Fig. 8.

Denoting the longitude and the latitude of two drifters in a

drifter pair as (l1, u1) and (l2, u2), themeridional separationDy
and the zonal separation Dx of the drifter pair are evaluated as

Dy5R(u
2
2 u

1
) , (48)

Dx5R(l
2
2l

1
)[cos(u

2
)1 cos(u

1
)]/2 , (49)

where R is the radius of Earth. We have tested that the results

are insensitive to other reasonable choices such as

FIG. 7. Helmholtz decomposition of second-order structure functions at (left) n 5 0, (center) n 5 2, and (right) n 5 4 modes in the

second synthetic example. The line legends in the left panel are the same as in Fig. 5. In the center and right panels, the gray lines still mark

the ‘‘true answers,’’ and the colored lines are reconstructed under the angle-weighted approach.

FIG. 8. (left) Histogram of drifter positions in the LASERdataset. Uniformly divided 20003 2000 bins in latitude

and longitude are applied to compute the histogram and all snapshots and locations available in the dataset are

included. (right) Four regions of interest, to be individually analyzed in section 6c. Each region is of a circular shape

in the latitude–longitude space, and the radius of each circle is 0.38.
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Dx5R(l
2
2l

1
)fcos[(u

2
1 u

1
)/2]g , (50)

which was used in Balwada et al. (2016).

As the error in the drifter positions is roughly 10m, we

discard all the drifter pairs whose separation distances are

smaller than 0.1m and group all the drifter pairs whose sepa-

ration distances are between 0.1 and 30m into a single first bin

in r. We have verified that if we, say, only require the separa-

tion distances smaller than 10m to be grouped into the first bin,

the diagnosed rotational or divergent structure functions

change little at scales larger than 100m. To make the statistical

error more uniform across scales, we set the bin widths at

separation distances larger than 30m such that the numbers of

drifter pairs is similar in each bin. As a result, the bin centers of

r are not guaranteed to be equally spaced.

b. Global statistics

We first apply our algorithm to all the available observations

in LASER, as depicted in Fig. 8. This is a brute force test of the

robustness of our method, as it is unlikely that this large-scale

dataset will be well described by homogeneous or stationary

statistics. In Fig. 9 we plot a histogram of separation vectors

to get a sense on how anisotropic the distribution is. The

distribution of separation vectors is not generally isotropic,

and at r . 400 km, there are significant gaps in angles in the

histogram. Hence we discard all drifter pairs with r . 300 km.

We apply 1000 bins for r . 30m, in each of which there are

some 592 000 drifter pairs. Increasing or decreasing the number

of bins by a factor of 4 did not significantly change the results.

The n 2 {0, 2, 4} modes of DLL, DTT, and DLT estimated from

data are plotted in Fig. 10. At r/ 300 km, not all themodes are

consistent with the decorrelation limits derived in (36) and

(37). Hence, it is likely that the data are not decorrelated there.

We note that this would not affect the Helmholtz decomposi-

tion of structure functions: observing formulas (41), the data

at larger separation distances do not affect the outcomes.

Nevertheless, if one further conducts a spectra analysis based

on structure functions, which involves Fourier transforms that

require information at all r in the computations of spectral

quantities (i.e., power spectra), this should be kept as a caveat.

From Fig. 10, at distances smaller than 100 km, the isotropic

modes Dc0
LL(r) and Dc0

TT(r) are stronger than the anisotropic

modes. Hence, unless there are significant cancellations in the

Helmholtz decomposition formulas (41), the same should be

true for the Helmholtz modes at these distances. Moreover, as

the underlying functions are nearly isotropic at these distances,

the angle weighting is not expected to make a difference at

distances smaller than 100 km. These turn out to be the case, as

reflected in the Helmholtz decomposition outcomes presented

in separate modes, plotted in Fig. 11. The angle weighting does

FIG. 9. Histogram of drifter pair separation vectors accumulated from all available observations in

the LASER dataset. Uniform 10003 1000 bins in (Dx, Dy) are applied to compute the histogram.

FIG. 10. The n 5 0, n 5 2, and n 5 4 modes of (left) DLL, (center) DTT, and (right) DLT from all data available in LASER, estimated

from the angle-weighted approach. The dash–dot lines mark the estimated decorrelation limits as r / ‘, from (36) and (37). As in the

synthetic examples, for anisotropic modes, the absolute value of the modes defined in (11) are presented for convenience. Note that from

now on we will present figures in logarithmic scales, which was not the case in the synthetic experiment.
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make a difference in the Helmholtz decomposition outcome

(Fig. 11, first panel) at distances larger than 100 km, where the

anisotropic components in the underlying velocity structure

functions are strong (Fig. 10). At these large distances, the

unweighted results give a near equipartation between rota-

tional and divergent components, while the angle-weighted

results still present a larger rotational component over the di-

vergent component at the zeroth mode.

The outcomes could be confusing in their physical implica-

tions. For example, at the largest separation distances r .
100 km, even thoughDc0

RR(r) is consistently larger thanDc0
DD(r),

they differ by just about a factor of 2. Meanwhile, the aniso-

tropic component in DRR(r, a) is about as strong as Dc0
RR(r)

(Fig. 11, second panel) there. If we add the zeroth mode and

the two anisotropic modes together, reconstructDRR(r, a) and

DDD(r, a) in 2D by the truncated Fourier series (7), it would

turn out that at certain angles, DRR(r, a) is sometimes weaker

thanDDD(r, a) at distances larger than 100 km. It seems likely

that this is not a physical effect, but to do with error or viola-

tions of our assumptions, such as the inhomogeneity of the data

at such large separation distances.

c. Statistics in different subregions

We now apply the Helmholtz decomposition on data spa-

tially confined in four different smaller regions marked in

Fig. 8, each of which spans 0.38 in latitude and longitude. We

select the four regions roughly based on the spatial density of

available observations, picking the four most densely observed

regions. Among those that entered the regions, on average,

drifters stayed for about 137 h in region 1, 238 h in region 2, 55 h

in region 3, and 174 h in region 4. The regions 1 and 2, which

appear as strong convergence zones, are close to the deploy-

ment locations of 840 drifters, some of which got caught into a

mesoscale oceanic front (Nouguier et al. 2018) and passed

region 3. About 150 drifters were then further advected into

region 4, while the remaining joined the surrounding eddies.

Our motivations to study the smaller spatial regions is

mainly concerned with inhomogeneities in data. Most drifters

in the LASER operation are deployed in a conscious effort to

focus on frontal areas (Novelli et al. 2017, p. 20), and the

drifters that sketch the surrounding mesoscale features are

rather sparsely distributed in comparison. As reflected the

histogram of drifter positions shown in Fig. 8, there is a clear

concentration of observations in a relatively narrow spatial

range (D’Asaro et al. 2018; Pearson et al. 2019). Including the

very sparsely observed regions could then introduce statistical

error at larger separation distances. Moreover, the underlying

dynamics does not appear homogeneous across the range

covered in the LASER operation. Due to the rich variety of

dynamics sampled, if we average over all data covered in

LASER, it becomes less clear what does the location-smeared

quantities mean physically. Especially, as we do not weight

observations based on deployment locations or surrounding

dynamical conditions, spatial areas that are densely observed

are likely the main contributors to the averaged statistics. We

will find out that this is indeed the case: the outcomes from

region 2 will appear similar to outcomes from the ‘‘global

statistics.’’ By inspecting smaller regions, within each of which

the area ismore uniformly sampled and the underlying dynamics

are less qualitatively different, we could hopefully get location-

smeared quantities that are more meaningful physically.

In Fig. 12, we present the histograms of separation vectors in

the four regions. In the calculations of structure functions, we

will cut off at r 5 30 km for all the four regions, which are

marked by the dashed half-circles in Fig. 12. Beyond this ra-

dius, the outcomes in region 3 and 4 would suffer significantly

from statistical error due to the gaps in separation angles. We

have checked that the velocity structure function modes do not

approach the decorrelation limits derived in (36) and (37),

which is not surprising at such a small cutoff distance. The

binning in r in the four regions is detailed as follows. Between

r5 30m and r5 30 km, in region 1, there are 1000 bins, each of

which contains about 26 000 drifter pairs; in region 2, there are

244 bins, each of which contains 200 000 drifter pairs; in region 3,

there are 248 bins, each of which contains 6500 drifter pairs; and

in region 4, there are 999 bins, each of which contains 3800 pairs.

FIG. 11. Helmholtz decomposition of second-order structure functions at (left) n 5 0, (center) n 5 2, and (right) n 5 4 modes from all

data available in LASER. Line legends and colors are as in Fig. 7, but that the gray lines now denote nonphysically negative components of

Dc0
DD(r) diagnosed from the angle-weighted approach, as marked by ‘‘neg’’ in the line legends. The n5 0 modes diagnosed from the angle-

weighted approach are reproduced in the middle and right panels for convenience in the comparison of the magnitudes between the n5 0

modes and the anisotropic modes.
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The numbers of bins in the four regions are set differently in

such an odd way mainly because we want the first bins to be all

centered around 20m for conveniences in presentations. The

results would not contain significant differences at scales larger

than 100m if we vary the number of bins by a factor of 4 in

each region.

The Helmholtz decomposition now delivers strikingly dif-

ferent outcomes in the four different regions, as depicted in

detail for the Fourier modes in Fig. 13. To more straightfor-

wardly present which component is dominating, we sum the

Fourier modes and display the ratioDRR/(DRR1DDD) for the

four regions in Fig. 14.

The ratio appears strongly anisotropic in region 1 across all

distances covered, showing that either the rotational or the

divergent component could dominate at different angles. In

region 2, we refrain from making interpretations due to the

nonphysically negative values diagnosed. As to be discussed in

detail in section 6d, these negative values in region 2 might not

be merely a negligible numerical artifact. In region 3, at any

distances, there does not seem to be a strong tendency for either

the rotational or divergent component to dominate. The ratio

revealed in region 4 shows a dominance of rotational component

at larger distances, and a mixture of near-equipartation and

dominance of divergent component at smaller distances. The

transition distance in region 4 is at around 1 km.

These outcomes are interesting in several aspects. First, the

dynamics are qualitatively different between region 1 and re-

gion 2, even though they seem to be both convergent regions

spatially close to each other. Second, at r , 30 km, the

Helmholtz decomposition from region 2 is quite similar to

those from the global statistics (comparing Fig. 11 and Fig. 13,

second row). This is understandable, as region 2 is more

densely sampled than other regions (as reflected in the histo-

gramFig. 8), and the collective statistics would strongly favor the

more densely sampled regions. When one calculates a simple

ensemble average of the global statistics as in section 6b, one

may well be tempted into thinking that the outcome somewhat

reflects the tendency of the general dynamics in the whole re-

gion, while in fact, the outcomes are dominantly contributed by

just region 2 only. This echoes with the rising concerns on the

bias caused by the uneven sampling of Lagrangian statistics

(D’Asaro et al. 2018; Pearson et al. 2019, 2020).

Third, anisotropy in the diagnosedDRR(r, a) and DDD(r, a)

is strong in region 3 at separation distances as small as 1 km,

which is perhaps surprising, as isotropy is usually assumed to

hold at such small scales. Fourth, in regions 1 and 3, the rota-

tional components do not show a tendency to dominate toward

larger distances. We note that this is not in direct contradiction

with the belief that mesoscale eddies are dominated by rota-

tional flows: the largest distance covered here is 30 km, so the

rotational motion could still be dominating at mesoscales, and

we just cannot resolve that here. Nevertheless, what leads to

the strong presence of divergent motion at distances up to

30 km in these regions is intriguing.

Finally, the angle weighting makes a modest difference in

the zeroth modes of the rotational or divergent structure

functions in these four regions. The explanation to this goes

back to the previous observation in section 3 that the angle

FIG. 12. (a)–(d) Histograms of separation vectors of drifter pairs at different spatial subregions in the LASER dataset for regions 1, 2, 3,

and 4, respectively. All snapshots are included. The dashed half-circles mark the radius at r 5 30 km.
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weighting could make a difference only when both the distri-

bution of separation vectors and the underlying functions are

anisotropic. The only region that appears to possess strong

anisotropy in both the distribution and the functionsDRR(r, a)

and DDD(r, a) is region 3. In region 3, although the visual

difference between the weighted and unweighted outcomes is

small in Fig. 13 (third row), they actually differ by about a

factor of 2 at some distances, which is significant quantitatively.

d. Nonphysical negative values

One initial motivation to this work was to investigate if

incorporating anisotropy could mitigate the nonphysically

FIG. 13. Helmholtz decomposition for the four subregions. Four rows correspond to the four different subregions in order. The legends and

line specifications are as in Fig. 11. Magnitudes smaller than 7 3 1025 m2 s22 are omitted in the plots.
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negative values that sometimes occur when isotropy is as-

sumed (Lindborg 2015). In our framework, following the

respective definitions, any negative values diagnosed in the

2D functions DRR(r, a) or DDD(r, a) should be nonphysical,

and so are any negative values in the zeroth modes Dc0
RR(r)

or Dc0
DD(r).

We find in our analysis of LASER data that even with angle

weighting, such nonphysical values still sometimes occur. At

the zeroth modes, there turns out to be negative components in

Dc0
DD in the global statistics and the outcomes from region 2

(Fig. 11 and Fig. 13, second row). In the estimated 2D func-

tions, negative values ofDDD(r, a) appear quite pronounced in

region 2, corresponding to the blank patches in the second

panel of Fig. 14. In region 1 and 3, there are occasional nega-

tives values in eitherDDD(r, a) orDRR(r, a), which correspond

to the smaller blank fragments marked in Fig. 14.

Such nonphysical values can be attributed to violations of our

assumptions [i.e., homogeneity, stationarity, and isotropy of

Ccf(r, a)], or error in our estimations. The error in our estima-

tions can arise from statistical noise and numerical integration

error. Moreover, in the estimations of the 2D functions, there

might also be significant truncation error as we only include the

modes at n5 0, 2, 4 in the azimuthal Fourier series. Even if a 2D

function f(r,a) is nonnegative everywhere, its truncated azimuthal

Fourier series is not guaranteed to be nonnegative. For example,

f (r0, a)5 exp[24 cos(a)2] is nonnegative, but its Fourier series

truncated at n 5 2 is not. As noted before, we cannot include

arbitrarily high modes in the series, as the higher modes would be

more sensitive to statistical noise. Theoretically, one may be able

to find an optimal cutoff number that balances the statistical noise

and the truncation error. We consider the pursuit of this to be

beyond the scope of this project.

In terms of relative error, the negative values diagnosed in

the LASER data are mild in most instances. At the zeroth

modes, when the negative Dc0
DD(r) are diagnosed in the global

statistics and in region 2 (Fig. 11 and Fig. 13, second row), the

magnitude of Dc0
RR(r) are indeed consistently greater (at least

5 times larger) than Dc0
DD(r) in our results. This means that

the relative error in Dc0
RR(r) should be less than 20%. When

such negative values are noted in previous analysis on atmo-

spheric track data (Lindborg 2015) or model outputs (Bierdel

et al. 2016), the situation appears similar.

For the 2D functions, in region 2, we compute the ratio

jDRR(r, a)/DDD(r, a)j when DDD(r, a) is diagnosed negative.

This ratio corresponds to whether or not DRR(r, a) is much

larger than [2DDD(r, a)] when DDD is nonphysical. In region

2, we find out that sometimesDRR(r, a) is about just 2 or 3 times

as large as [2DDD(r, a)], which means that the negative

values diagnosed could constitute a significant relative error in

DRR(r, a), at least in the infinity norm. Hence, we should be

cautious on the validity of our results in region 2.

Fortunately, in region 1 and 3, whenever a negative com-

ponent is diagnosed, the positive component is always at least

5 times larger than the magnitude of the negative component.

We have checked this is also the case in the global statistics.

Overall, when a negative component is diagnosed in 2D, the

relative error in the positive component appears to be strong

only in region 2.

7. Discussions and summary

Our new algorithm reported here consisted of two parts.

First, we pointed out a potential source of systematic error

from the unweighted ensemble averaging that is traditionally

FIG. 14. The ratio DRR/(DRR 1 DDD) calculated from observations that fall in regions 1, 2, 3, and 4, respectively.

Regions where DDD or DRR are diagnosed negative are left blank. Note the logarithmic scale in r.
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applied in the evaluations of structure functions and proposed

an angle-weighted approach instead, which takes account of

the anisotropic distribution of separation vectors (section 3).

The angle-weighted approach, as well as the analysis of 2D

functions through the lens of azimuthal Fourier expansions to

include anisotropy, can be applied on the estimations of other

spatially dependent scalar-based quantities, such as higher-

order structure functions and relative dispersions too.

Second, a set of Helmholtz decomposition formulas (41),

which diagnoses the azimuthal Fourier modes separately in a

systematic manner, was derived for sparse 2D data. The con-

ditions for this set of formulae to work are stationarity, ho-

mogeneity, and that the correlationCcf(r, a) is either zero or a

function of r only (but see section 4e for an extension to odd

Fourier modes). No further assumptions or constraints were

called upon, and the required observations for the decompo-

sition are the same as the ones for the isotropic Helmholtz

decomposition algorithm (Lindborg 2015). The algorithm was

verified using synthetic examples (section 5) and applied for

the LASER observational dataset (section 6).

In the applications to the LASER data, we first compute the

statistics from all snapshots and locations, and then from four

different smaller spatial regions separately. The strength of

anisotropic modes, as well as the ratio between the rota-

tional and divergent structure functions, turn out quite

diverse across the four different subregions, suggesting

different dynamics underlying them. We also find along the

way that the statistics from region 2 only appear similar to

the statistics from all areas available in the LASER data,

which illustrates that averaging over a region that is sam-

pled highly nonuniformly can be problematic.

Whenever possible we have checked the robustness of our

method by varying details such as bin sizes and averaging al-

gorithms. However, there are still some potentially significant

issues we have not addressed. For the theory we had to assume

that Scf(r, a) is either zero or isotropic, the violation of which

couldmake theHelmholtz decomposition formulas (41) invalid at

anisotropic modes. We have not investigated if stationarity holds

in data. Similar to homogeneity, stationarity may also be consid-

ered as an operation that smears out timedependency, rather than

an assumption about the dynamics, and some small variations in

time would not blur the physical meaning of the averaged out-

comes. However, this could be questioned in the LASER data,

due to for example some high wind events that took place during

the operation (Lodise et al. 2019). The CARTHE drifters in

LASER are drogued close to surface at 0.5m, and we have not

studied the impacts of direct wind forcing yet.

Some minor issues are as follows. The LASER data product

we use could itself contain some space for improvements (Haza

et al. 2018). The subregions in the analysis in LASER as in

section 6 are handpicked roughly based on the density of ob-

servations, and the shapes of these subregions are chosen to be

round in latitude–longitude space for convenience. Othermore

sophisticated clustering approaches (D’Asaro et al. 2018) may

help pick the subregions in a more systematic manner with

better results.

As a direct comparison with previous work assuming isot-

ropy (Balwada et al. 2016), we have also applied our algorithm

to surface drifter observations from the Grand Lagrangian

Deployment campaign in a similar fashion as section 6b. We

find that in the global statistics, the anisotropic components in

DRR, DDD turn out weak compared to the isotropic compo-

nents, and accordingly the angle weighting does not make a

significant difference. Hence, the observations in (Balwada

et al. 2016) stand tested under anisotropy. We include a more

detailed report on this in the supplemental material.

While the kinematic Helmholtz decomposition is indica-

tive of the robustness of geostrophic balance, a further dy-

namical wave–vortex decomposition that can tell different

dynamic components apart is certainly more desirable

(BCF14). Due to lack of potential energy measurements

(such as buoyancy) in the LASER drifter observations, we

are currently unable to conduct this further step exactly. If

structure functions of buoyancy, or other indicators of potential

energy are available, a generalization of the BCF14 linear

wave–vortex decomposition algorithm, ormore ambitiously, the

inclusion of a nonlinear quasigeostrophic correction in the de-

composition (Wang and Bühler 2020), should be possible. Such

measurement of potential energy either calls on technological

advancements of Lagrangian instruments, or a proper synergy of

Lagrangian observations with remote sensing data or model

simulations. The latter may be particularly interesting, in the

prospect of the soon-to-be launched, submesoscale-resolving

satellite mission SWOT (Morrow et al. 2019). In principle, one

could also make additional assumptions about the relations

between different components, such as a Garrett–Munk fre-

quency spectra for the wave energy (BCF14; Cao et al. 2019),

and make a wave–vortex decomposition based on that.

Drifter observations are usually well resolved in time; the

LASER data product we are applying in this work has a res-

olution of 15min. It is intriguing to consider how to combine

the spatial information with temporal information. For moor-

ing data, a frequency-resolved structure function has been

developed (Callies et al. 2020), but its definition cannot be

directly generalized to Lagrangian observations, as Lagrangian

recording devices are constantly changing their relative posi-

tions. One other approach we have contemplated over is to

filter out the higher frequencies, and conduct the Helmholtz

again to see if the remaining motion becomes more rotational.

A similar idea was investigated in (Beron-Vera and LaCasce

2016), where structure functions were found to be different

after inertial oscillations are filtered out. A complication with

this approach is that after velocity observations are filtered, the

trajectories need to be reintegrated for consistency, and how to

determine what are the ‘‘new’’ subregions seems to be a non-

trivial question. This is still under exploration.
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APPENDIX A

Evaluating Azimuthal Fourier Modes

We seek to optimize the numerical approximation of polar

integrals such as

Dcn
LL(r)5F

n

ðp
2p

D
LL

(r,a) cos(na) da (A1)

when the data are given on a regular Cartesian grid. For

example, if n 5 0, we have

Dc0
LL(r)5F

0
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L2�
k,l
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(k, l)ei(kx1ly) da (A2)
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2p

ei[krcos(a)1lrsin(a)] da , (A3)

where the variables (x, y) correspond to (r, a) via the polar-to-

Cartesian coordinate transform, and D̂LL(k, l) are the Fourier

coefficients of DLL(x, y). The integral is

ðp
2p

ei[krcos(a)1lrsin(a)] da5 2pJ
0
(Kr) . (A4)

If n5 2, the evaluation ofDc2
LL(r) similarly involves the integral
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This can be transformed as

ðp
2p

cos(2a) exp

�
iKr cos

�
p

2
2 arctan

�
k

l

�
2a

��
da

5

ð3p

2
2arctan

�
k

l

�

2
p

2
2arctan

�
k

l

�2 cos

�
2 arctan

�
k

l

�
1 2t

��
eiKrcost dt

52 cos

�
2 arctan

�
k

l

��ðp
2p

cos(2t)eiKrcos(t) dt1 sin

�
2 arctan

�
k

l

��ðp
2p

sin(2t)eiKrcos(t) dt

52 cos

�
2 arctan

�
k

l

��ðp
2p

cos(2t)eiKrcos(t) dt

51 cos

�
2 arctan

�
k

l

��
2pJ

2
(Kr) . (A6)

The integral (A5), and hence Dc2
LL(r), are then read-

ily evaluated on a regular grid. Similar identities

useful for the evaluation of other n 5 2 and n 5 4

terms are

ðp
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APPENDIX B

Alternative Angle-Weighted Approaches

There can be several other approaches to estimate integrals

such as (13) with nonuniformly distributed observations. We

will describe one other straightforward approach in detail,

which attempts to estimate the underlying functions at equally

spaced grids in a so as to preserve the spectral accuracy of

trapezoidal integrals.

In this approach, we first divide a into several equally spaced

bins. Taking four bins as an example, the first bin [0, p/4) is

centered at p/8. We conduct a simple unweighted ensemble

average of all the observations at ri that falls into the first bin,

and regard the outcome as our estimate of the underlying

function at the bin center (ri, p/8). Similarly, we estimate the

underlying function at the other three bin centers. A trape-

zoidal integration can then be conducted over the four equally

spaced bin centers. To illustrate this, we conduct a thought

experiment similar to the one in section 3. We suppose that the

underlying function DLL(ri, a) still takes the form

D
LL

(r
i
,a)5 sin(2a)1 1, (B1)

but for purpose of illustration, we now assume that we have

14 drifter pairs that fall into the bin centered at r 5 ri. Their

separation angles a are 08, 58, 108, 158, 208, 258, 308, 358, 408,
508, 808, 1308, 1508, and 1708. The observations are still as-

sumed to be free from statistical noise. The unweighted

ensemble average of Du2
L that fall into the first bin centered

at p/8 is then:

1

8
[sin(23 08)1 � � � 1 sin(23 408)]1 15 1:58: (B2)

We regard the outcome 1.58 as our estimate of DLL(ri, p/8).

Similarly, our estimates of DLL(ri, 3p/8), DLL(ri, 5p/8), and

DLL(ri, 7p/8) are 1.66, 0.02, and 0.40, respectively. The zeroth

mode (13) can then be estimated using the trapezoidal method

on the regular grid:

F
0

2

h
(1:581 1:66)1 (1:661 0:02)1 (0:021 0:40)

1 (0:401 1:58)3
p

4

i
5 0:91: (B3)

In this approach, as the bin centers are equally spaced, the

trapezoidal integration features spectral accuracy (Trefethen

and Weideman 2014). If one conducts the traditional un-

weighted averaging on these observations, the outcome would

be 1.31, which is worse.

At higher modes at n $ 2, as the main motivation of this

angle-weighting approach is to make the best use of the spec-

tral accuracy of trapezoidal integrations of periodic functions,

we propose to evaluate the ensemble average of

Du2
L cos(2g) , (B4)

where g is the center of the angle bin considered, not the sep-

aration angles of each drifter pair recorded. This is another

difference between the approach proposed in the main text

in section 3. For example, in the first bin, g 5 p/8, and

Dc2
LL(ri, p/8) would be estimated as

cos(23p/8)3 1:585 1:12, (B5)

where the value 1.58 comes from the ensemble average of the

zeroth mode (B2). Similarly, our estimate of Dc2
LL(ri, 3p/8) at

the second bin would be 21.17, and so on. As g is a constant

within each bin, one would only need to evaluate the ensemble

average of Du2
L for each bin once, and time them with cos(ng),

which does not change with regard to observations, to get the

estimates of Dcn
LL(ri, a) at any n in each bin. The separation

angle of each pair is only used to categorize the observations

into different angle bins. In case the data size is large, this

approach may save significant computational resources.

One could increase the number of bins in a from 4 to, say 32,

but in our applications, there is no point going much higher,

due to the spectral accuracy of trapezoidal integration, and the

practical obstacle that if the bins get too refined, eventually

there will be a shortage of observations in individual bins.

We have tested this approach in both our synthetic examples

described in section 5 and the analysis of LASER data in

section 6 with 32 bins in a, and the diagnosed structure function

modes we are interested in are not conspicuously different

from the ones diagnosed from the angle-weighted approach

described in section 3.

In the applications to realistic data, the observations suffer

from statistical error, and theoretically, there could be other

better approaches to conduct integration in the presence of

noise, which may involve estimating the probability distribu-

tion density of a (Delyon and Portier 2016). We consider such

finer improvements to be beyond the scope of this work.
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