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Abstract
We combine theory and high-resolution direct numerical simulation to resolve a long-
standing puzzle concerning the forced–dissipative statistics of a one-dimensional
model for dispersive wave turbulence, which was introduced by Majda et al. (J Non-
linear Sci 6:9–44, 1997. https://doi.org/10.1007/BF02679124) as a test bed for wave
turbulence theory (WTT). Numerous earlier studies had indicated significant discrep-
ancies between the inertial range power law predictions ofWTT and those observed in
direct numerical simulations of that model. Exactly why and when these discrepancies
would arise had been an open question. On the theoretical side, we utilize an exact
scaling symmetry of the model to derive a one-parameter family of exact self-similar
power laws for the inertial range, which includes theWTT prediction as a special case.
We follow this up by numerical simulations at unprecedented resolution, combining
white-noise forcing, infrared and ultraviolet dissipation, and a novel averaging tech-
nique for the estimation of mean values. Our converged numerical results refute an
earlier hypothesis that the discrepancies might be due to variations in wave amplitude.
Instead, we find incontrovertible evidence that theWTT prediction is always achieved
across a wide range of wave amplitudes, but only if the inertial range is wide enough
when measured in the ratio of wave frequency at the forcing scales to wave frequency
at the dissipation scales. For a concave dispersion relation (as for deep water waves),
frequency bandwidth is a much more stringent criterion than wavenumber bandwidth.
At finite resolution, the observed power law is always steeper than the WTT pre-
diction, but to excellent approximation the discrepancy in the exponent is simply
proportional to the aforementioned frequency ratio. The picture that emerges is that
of a self-similar WTT inertial range that is robustly ‘frustrated’ by finite bandwidth
effects in a predictable manner. We test our predictions by varying the differential
character of the nonlinear terms in the model and excellent agreement is found at low
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wave amplitudes in all cases. At high amplitude, however, one case exhibits a novel
‘breakthrough’ turbulent regime that has not been observed before and for which no
theory presently exists. Finally, we discuss the observable implications of our findings
for other systems featuring wave turbulence, including the important case of oceanic
inertia–gravity waves, for which the admissible frequency range is bounded above and
below, thus limiting the achievable size of an inertial range a priori.

Keywords Majda–McLaughlin–Tabak model · Zakharov–Kolmogorov spectra ·
Wave turbulence · Dispersive waves · Inertial range
Mathematics Subject Classification 76B15 · 76F99 · 76F65 · 35Q86

1 Introduction

Wave turbulence theory (WTT) for ensembles of weakly interacting waves was
invented by Peierls in his pioneering work on heat conduction in crystals (Peierls
1929). Much of the later development of WTT in the 1960s centered on the study of
surface waves (Hasselmann 1962, 1963; Zakharov 1968) and since then the theory
has been applied to very many wave systems in physics, including important recent
applications to budgets of internal wave activity in the ocean (McComas et al. 1977;
Lvov et al. 2010, 2012; Dematteis and Lvov 2021; Dematteis et al. 2022), which are
important for the long-term dynamics of the ocean (Whalen et al. 2020). The central
object in WTT is the kinetic equation, which governs the evolution of a suitable statis-
tical measure of wave activity nk(t) ≥ 0 as a function of wavenumber k and time t (e.g.
Zakharov et al. (1992); Nazarenko (2011)). The main feature of the kinetic equation
that has been utilized to date is the prediction of non-trivial steady states that exhibit
power laws and are associated with a cascade of conserved quantities through the so-
called inertial range, i.e., through the band of wavenumbers that is well separated from
both the wave forcing scales and the wave dissipation scales. This is reminiscent of the
famous Kolmogorov k−5/3 power law in three-dimensional hydrodynamic turbulence
(Frisch 1995) and the associated power law exponents (or slopes in a log-log plot) are
called Zakharov–Kolmogorov (ZK) slopes.

The measurement of such power laws in experimental, observational, or numerical
wave studies has been the main test of WTT in real settings. Of course, observing an
inertial range power law is only possible under a number of restrictive assumptions,
not least the assumption that the bandwidth of the inertial range is wide enough. In
practice, this makes it very hard to obtain unequivocal evidence for or against the
validity of WTT in a given situation. Naturally, high-resolution direct numerical sim-
ulations of nonlinear waves are playing an increasingly important role in this area.
In this connection, the Majda–McLaughlin–Tabak (MMT) model was proposed in
Majda et al. (1997) (MMT97 hereafter) as a convenient one-dimensional toy model
in which to explore the predictions of WTT. The restriction to one spatial dimen-
sion allows simulations with very high spectral bandwidth (two-dimensional versions
of the MMT model have also been simulated recently in Hrabski and Pan (2022)).
Using the supercomputing capabilities of the time, MMT97 integrated their equation
to a forced–dissipative stationary state and measured the resultant very clear power
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laws. However, none of their many runs showed the ZK power law, which is surpris-
ing as their model satisfies all the basic requirements for a kinetic equation based
on four-wave resonances. This produced a long-standing puzzle, with many proposed
solutions.MMT97 themselves constructed a heuristic scaling theory for their observed
slopes. Subsequently, Cai et al. (1999, 2001); Zakharov et al. (2001, 2004); Rumpf
et al. (2009); and others explored further avenues to explain the differences by exper-
imenting on both the focusing and defocusing MMT model (to be defined below). In
some of these studies the ZK slopes were observed in freely decaying defocusing wave
turbulence experiments, but never in forced–dissipative experiments. Most recently,
Chibbaro et al. (2017) (hereafter CDLO17) speculated that different power laws might
result from different amplitude levels in the system, with the ZK slopes accurate at low
amplitude and the alternative slopes observed by MMT97 arising at higher amplitude.

Here we reconsider this problem with a new combination of theory and numerical
experiments aimed at the forced–dissipative energy cascade in the defocusing MMT
model, which is assumed to feature an inertial range power law nk ∝ k−p Pr with
exponents p and r . Here P is the constant spectral flux of wave energy from forcing
to dissipation wavenumbers. In WTT for four-wave interactions the value r = 1/3
is hard-wired into the theory and the ZK value for the exponent p then follows from
the kinetic equation (Zakharov et al. 1992). Here we do not make this assumption and
instead find a more general one-parameter family of pairs (p, r) that are compatible
with self-similar cascades. This opens the way to accommodate more than one power
law exponent, and both the ZK value and the alternative MMT value are members
of that family. We follow up on this with very high-resolution numerical simulations
to test our theoretical results and to explore the factors that ultimately control the
spectral slopes. We vary the spectral locations of forcing and dissipation (infrared and
ultraviolet), as well as the level of nonlinearity. This yields a systematic study of the
less-than-unity non-dimensional parameters that collectively determine the dynamics,
which are

(
H2

H
,
ω−
ωF

,
ωF

ω+

)
. (1)

Here ω± are the wave frequencies at the ultraviolet or infrared dissipation wavenum-
bers, respectively, ωF is the wave frequency at the forcing wavenumber, and H2/H is
the ratio of nonlinear energy to total energy (full details are given in Sect. 2). Idealized
WTT corresponds to a subtle limiting process in which all three of these parameters
go to zero, but they are of course nonzero in any practical application. The parameters
contain information about the finite size of the spectral domain, which we shall find
crucial for the prediction of spectral slopes. In essence, our results show that for the
direct cascade the most important non-dimensional parameter is ωF/ω+, which is
small when the inertial range bandwidth is large. The robust result is that the observed
slope differs from the ZK value by an amount that is proportional to an order one factor
times ωF/ω+, hence the observed slope is always steeper than the ZK prediction. The
impact of the other parameters is weak in comparison. In particular, in contrast to the
findings in CDLO17, we find no evidence for a systematic change in the slope due to
the nonlinearity level of the system.
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Our simulations explain previous results that were obtained at lower numerical
resolution and they delineate the stringent requirements that are necessary to reach
the idealized regime of WTT. In a nutshell, in order to get close to the ZK slope
values the inertial range must be wide when measured by frequency separation, not by
wavenumber separation. In the MMTmodel the linear wave frequency is proportional
to the square root of the wavenumber, so the frequency separation is a much more
stringent requirement than the wavenumber separation. Our simulations achieve a
clean inertial range with 2 decades in wavenumber and hence 1 decade in frequency.
Previous simulations typically achieved inertial ranges with a decade in wavenumber
and therefore only a factor three in frequency, which is the reason why the ZK value
was not observed. On the one hand this might make it look hopeless to obtain clean
power law exponents close to the ZK values for simulations of multi-dimensional
forced–dissipative surface waves, for instance. On the other hand, the clear linear trend
with ωF/ω+ allows the robust deduction of the limiting slope values by Richardson
extrapolation from a few simulations with different ωF/ω+, which could be very
useful for numerical simulations.

To test the validity of our conclusions for other systems we performed additional
simulations of the defocusing MMT model with a modified differential form of the
nonlinear terms. At low wave amplitude these always replicated our earlier results,
which indicates that they might be of general interest to WTT. Surprisingly, at high
wave amplitude one of the modified cases exhibited a fundamental transition to a
completely new and different turbulent regime, which is not compatible with the
familiar notions of a turbulent inertial range. Understanding this new regime is the
subject of further research.

Thismanuscript is organized as follows. Section2 describes theMMTmodel and its
elementary properties. The generalized symmetry group argument for inertial ranges
is developed in Sect. 3 and the numerical methods are described in Sect. 4. Compre-
hensive numerical results are provided in Sect. 5 and further simulations withmodified
nonlinearity are included in Sect. 6. Some concluding remarks are offered in Sect. 7.

2 Governing Equation and Properties

The defocusing MMT model describes the evolution of a complex-valued wave func-
tion ψ(x, t) in one space dimension via the Schrödinger-like equation

i
∂

∂t
ψ = Lαψ + Lβ/4

(∣∣∣Lβ/4ψ

∣∣∣2 Lβ/4ψ

)
. (2)

Here α, β ∈ R are parameters and the pseudo-differential operators are defined by
their action on Fourier modes such that

Lα exp(ikx) = |k|α exp(ikx). (3)

If α = 2 and β = 0 then (2) is the standard nonlinear Schrödinger equation. Following
the naming convention of the nonlinear Schrödinger equation, we study the defocusing
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version of the model; the focusing version has the sign of the nonlinear term reversed.
Like the Schrödinger equation, the MMTmodel is symmetric under spatial reflections
x → −x and under the combined action of time reversal t → −t and conjugation
ψ → ψ∗. The dispersion relation for linear plane waves ψ = A exp(i[kx − ωt]) is

ω(k) = |k|α. (4)

Actually, a single plane wave is also an exact nonlinear solution, with amplitude-
dependent frequency ω = |k|α + |A|2|k|β . Broadly speaking, depending on its sign,
the parameter β strengthens or weakens the nonlinearity at small scales.1 The cubic
nonlinearity implies that amodewithwavenumber k interactswith three othermodes if

k1 + k2 = k3 + k. (5)

The standard four-wave WTT for this system is based on the existence of resonant
quartets, i.e., sets of four wavenumbers for which (5) holds as well as

ω(k1) + ω(k2) = ω(k3) + ω(k). (6)

In particular, this holds if α = 1/2, which replicates the dispersion relation of deep-
water waves. We use periodic boundary conditions in a finite domain x ∈ [0, L],
which makes La a self-adjoint operator with respect to the standard inner product. We
also have the group property LaLb = La+b and the useful identity

∫ L

0
(Laψ∗

1 )(Lbψ2) dx =
∫ L

0
(Lcψ∗

1 )(Ldψ2) dx (7)

whenever a+b = c+d (the star denotes complex conjugation). We define the Fourier
series as

ϕk(t) =
∫ L

0
exp(−ikx)ψ(x, t) dx and (8)

ψ(x, t) = 1

L

∑
k∈ZL

ϕk(t) exp(ikx) (9)

where ZL = Z · 2π/L . In all simulations we set L = 2π , so the wavenumbers are
integers.

2.1 Conservation Laws

TheMMTmodel in (2) is a canonicalHamiltonian systemwithHamiltonian functional

H = H1 + H2 =
∫ L

0

∣∣∣Lα/2ψ

∣∣∣2 dx
︸ ︷︷ ︸

=H1

+ 1

2

∫ L

0

∣∣∣Lβ/4ψ

∣∣∣4 dx
︸ ︷︷ ︸

=H2

. (10)

1 Our β has the opposite sign of the β in MMT97.
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(In the focusing version the sign of H2 is reversed, hence H is not sign-definite.) The
total energy H = H1 + H2 is exactly conserved and at small amplitude its linear part
H1 is approximately conserved, which is exploited in WTT. The Fourier expression
for H1 is

H1 = 1

L

∑
k∈ZL

ω(k)|ϕk |2. (11)

The MMT model also conserves the L2-norm of ψ , so the total wave action

N =
∫ L

0
|ψ |2 dx = 1

L

∑
k∈ZL

|ϕk |2 (12)

is constant. A canonical momentum with density Im(ψ∗ψx ) is also conserved, but it
is not sign-definite and has zero expected value for reflection-symmetric ensembles
of solutions, so we do not consider it further.

2.2 Scaling Symmetry Group

The MMT model has a one-parameter scaling symmetry group that we will exploit
in Sect. 3 to constrain self-similar spectral power laws. Consider an MMT solution
ψ(x, t) and apply the scaling group

ψ → aψ, x → bx, t → ct (13)

with positive (a, b, c) to define (x̃, t̃) = (bx, ct) and ψ̃(x̃, t̃) = aψ(x, t) =
aψ(x̃/b, t̃/c). The chain rule then implies ψ̃t̃ = (a/c)ψt and L̃αψ̃ = (a/bα)Lαψ ,
for example, and then we can rewrite the MMT equation in terms of the rescaled
ψ̃(x̃, t̃). Demanding that ψ̃(x̃, t̃) again solves the MMT equation then yields the two
conditions

c = bα and a2 = bβ−α. (14)

Combining (13) and (14) means that any MMT solution ψ(x, t) gives rise to a one-
parameter group of scaled MMT solutions

ψb(x, t) = aψ(x/b, t/c) = b
β−α
2 ψ(x/b, t/bα) (15)

indexed by the spatial rescaling parameter b > 0. For example, by using b = 2π/L
a solution ψL(x, t) on a periodic domain of size L can be mapped to a solution on a
circle via

ψ2π (x, t) =
(
2π

L

) β−α
2

ψL(x(L/2π), t(L/2π)α). (16)
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2.3 Forcing and Dissipation

We add forcing and dissipation to the MMT model to study the statistics of stationary
turbulent states. Specifically, we force the system (2) at a few central wave numbers
and induce significant dissipation at very small (infrared) and very large (ultraviolet)
wavenumbers. This yields

i
∂

∂t
ψ = Lαψ + Lβ/4

(∣∣∣Lβ/4ψ

∣∣∣2 Lβ/4ψ

)
− iDψ + F . (17)

The spectral dissipation operator D is the same as the one used in MMT97, namely

D exp(ikx) = (ν−|k|−8 + ν+|k|8) exp(ikx) (18)

where (ν−, ν+) are tunable hypo- and hyper-viscosity parameters. We use stochastic
forcing

F(x, t) =
∑
k∈ZL

Fk exp(ikx)[ξ k1 (t) + iξ k2 (t)]. (19)

The forcing amplitudes Fk ∈ R are non-zero only for a small set of reflection-
symmetric wavenumbers (i.e., Fk = F−k). The ξ ki (t) are independent white noise
processes such that the standard relations

Eξ ki = 0 and Eξ ki (t1)ξ
k
j (t2) = δi jδ(t1 − t2) (20)

hold for expected values denoted byE. The advantage of (19-20) over the deterministic
instability forcing used inMMT97 and elsewhere is that the expected action and energy
input rates can be computed a priori. Specifically, if D = 0 then

E

(
1

L

dN

dt

)
= Q =

∑
k∈ZL

2|Fk |2 and (21)

E

(
1

L

dH1

dt

)
= P =

∑
k∈ZL

2|Fk |2ω(k) = ωF Q (22)

are the expected action/energy injection rates per unit time and unit length. Note that
the rates P and Q are intensive quantities whilst the conserved N and H are extensive
quantities, proportional to the domain size L . The ratio ωF = P/Q is the effective
wave frequency of the forcing.

Equilibrated states of (17) result in a stationary and homogeneous random function
ψ(x, t) described by the invariant measure of the system. We denote by (·) the mean
value with respect to that invariant measure. In principle, this is an ensemble mean,
but in practice we make the ergodic assumption and estimate it from suitable time-
averaging over a long simulation run (cf. Sect. 4.2 below). Of primary interest in wave
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turbulence are the mean values of |ϕk |2, so we define the one-sided spectral action
density nk for k ≥ 0 as

nk = 1

L

(
|ϕk |2 + |ϕ−k |2

)
= 2

L
|ϕk |2 (23)

if k > 0, and as n0 = |ϕ0|2/L for k = 0. This suffices for a reflection-symmetric
invariant measure and N = ∑

k≥0 nk holds by construction.

2.4 Action and Energy Cascades

The free evolution of the MMT model conserves (12) while one with small amplitude
approximately conserves (11). Because ω(k) is a monotonically increasing function
of |k|, (linear) energy tends to flow to larger wavenumbers and action tends to flow
to lower wavenumbers. In a forced–dissipative statistical equilibrium a standard argu-
ment then yields precise cascade predictions if the forcing and dissipation occur at
specific frequencies ωF and (ω−, ω+) where ω− < ωF < ω+ (Fjørtoft (1953),
MMT97). Let Q− and Q+ be the expected action dissipation rates at (ω−, ω+) and
define the corresponding energy dissipation rates P± by multiplication with the cor-
responding frequency. In statistical equilibrium the two budgets Q = Q+ + Q− and
ωF Q = ω+Q+ + ω−Q− then yield

Q−
Q

= ω+ − ωF

ω+ − ω−
and

Q+
Q

= ωF − ω−
ω+ − ω−

. (24)

If ω− � ωF � ω+ then most action flows to the infrared and most energy flows to
the ultraviolet, i.e., Q− ≈ Q and P+ ≈ P . In this regime the system has two well-
defined inertial ranges that contain distinct turbulence cascades. Between the forcing
and infrared dissipation, there is an inverse cascade where action flows to smaller
wavenumbers; and between the forcing and ultraviolet dissipation, there is a direct
cascade where (linear) energy flows to large wavenumbers.

Numerical simulations can only afford a finite range of wavenumbers and this is
exacerbated by a concave dispersion relation such as ω = √|k| (i.e., α = 1/2),
which leads to an even smaller range of frequencies. This is why the simulations in
MMT97 and Zakharov et al. (2004) had the forcing wavenumbers very close to the
infrared dissipation wavenumbers. Similar issues arise in laboratory experiments in
finite domains and with finite dissipation strength. To accommodate these situations,
we only assume that ω− � ω+, but put no requirement on the position of ωF (except
that ω− < ωF < ω+). This leads to

Q−
Q

≈ 1 − ωF

ω+
and

P+
P

= ω+Q+
ωF Q

≈ 1 − ω−
ωF

. (25)

Clearly, the frequency ratios are the dynamically relevant measures of the inertial
range size rather than the corresponding wavenumber ratios. This means that the size
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of the inertial range is in effect much smaller than suggested by the corresponding
wavenumber ratio. We will return to this crucial point in Sect. 5.3 below.

3 Self-similar Inertial-Range Spectra

In a perfect inertial range it is assumed that neither the forcing nor the dissipation
details matter, and hence the spectrum nk is given by some universal function of k and
the mean spectral flux of the respective cascading quantity, action in inverse cascade
and energy in the direct cascade.Withwhite-noise forcing thesemeanfluxes are known
a priori to be equal to the expected input rates, i.e., P = P and Q = Q. Hence in a
perfect direct inertial range

nk = f (k, P) (26)

for some function f (·, ·) to be determined. Standard dimensional analysis applied to
wave turbulence proceeds at this stage by assuming a power law between nk and P
based on the number of wave modes in a resonant set, e.g., nk ∝ P1/3 for resonant
quartets (Connaughton et al. 2003; Zakharov et al. 1992). We avoid this assumption
and instead use the scaling symmetry of the MMT system from Sect. 2.2 to explore
the implications of (26).

With each ψ(x, t) in the averaging ensemble we can associate a rescaled solution
ψ̃(x̃, t̃) = aψ(x̃/b, t̃/c). The rescaled ensemble average of solutions then presumably
again satisfy (26), i.e.,

ñk̃ = f (k̃, P̃) (27)

holds with the same function f . This is the hallmark of a self-similar inertial-range
spectrum. The validity of (27) for all b > 0 in (14) restricts the form of the function
f . For this we need to work out the rescaling of nk , k, and P . Evidently, L̃ = Lb,
k̃ = k/b, and then ϕ̃k̃ = ab ϕk follows from its definition in (8). Combining these
yields ñk̃ = a2b nk . The rescaling of P is the the same as the rescaling of ∂tω(k)|ψ |2
and therefore P̃ = a2b−αc−1 P . Combining these with (26) and (27) leads to

ñk̃ = f (k/b, a2b−αc−1 P) and ñk̃ = a2b nk = a2b f (k, P). (28)

Equating these two implies the functional restriction

a2b f (k, P) = f (k/b, a2b−αc−1 P) ⇒ bβ−α+1 f (k, P) = f (k/b, bβ−3α P),

(29)

which holds for all b > 0.
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3.1 Power Laws Based on Scaling Group

The general solution to (29) is given in Section A, but here we restrict to power laws

nk = f (k, P) = C k−p Pr . (30)

Substituting (30) into (29) yields the condition

SG energy: p(r) = 1 + β − α + r(3α − β). (31)

This shows that self-similar power laws in the energy inertial range form a one-
parameter family defined by this p(r). Only in the special case 3α = β is there a
unique wavenumber power law exponent p = 1 + 2α, regardless of r .

This derivation is readily repeated for the inverse action cascade by replacing P with
Q, whose scaling follows from ∂t |ψ |2 as Q̃ = a2c−1 Q. This yields the functional
restriction

bβ−α+1 g(k, Q) = g(k/b, bβ−2α Q) (32)

for nk = g(k, Q). Power law solutions g(k, Q) = Dk−pQr are then possible if p(r)
satisfies

SG action: p(r) = 1 + β − α + r(2α − β). (33)

Here the special case 2α = β has the unique exponent p = 1 + α.

3.2 Comparison with Other Power Laws

Other power laws suggested for the MMT system are special cases of the self-similar
spectra derived above. Most important are the Zakharov–Kolmogorov (ZK) spectra,
which are the power law solutions to the wave kinetic equation. The ZK power law
for the energy (direct) cascade in the MMT model is nk = C k−z P1/3 with

ZK energy: z = p(1/3) = 1 + 2β

3
, (34)

and for the action (inverse) cascade it is nk = D k−z Q1/3 with

ZK action: z = p(1/3) = 1 + 2β − α

3
. (35)

In both cases the flux exponent is pinned to r = 1/3, which as mentioned before
is generic for a kinetic equation based on resonant quartets. The integrand in such a
kinetic equation scales as O(n3k) and therefore the flux scalings Q ∝ n3k and P ∝ n3k
are built-in and correspond to r = 1/3. The ZK exponents are a special case of the
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SG exponents p(r) for r = 1/3, i.e., z = p(1/3). Not surprisingly, this confirms that
the ZK spectra are consistent with self-similar solutions of the original equation.

Another reasonable value for the flux exponent is r = 1/2, which stems from the
‘bare’ MMT equation (2) before statistical averaging, in which the action flux scales
as O(|ψ |4) by simple inspection of the nonlinear term. If this scaling survives under
averaging then Q ∝ n2k , or r = 1/2. It is characteristic for the kinetic equation that
for small nk its implied flux Q ∝ n3k is much weaker than the ‘bare’ flux Q ∝ n2k .
Setting r = 1/2 yields the exponents

MMT energy: m = p(1/2) = 1 + α + β

2
(36)

for the energy cascade nk = Ck−m P1/2 and

MMT action: m = p(1/2) = 1 + β

2
(37)

for the action cascade nk = Dk−mQ1/2. Historically, the energy power law exponent
(36) was observed in all the simulations reported in the original paper MMT97, so
we refer to it as the MMT spectrum. It appears plausible that in practice the relevant
range of the exponent r is between 1/3 and 1/2. As an aside, MMT97 also derived
a new heuristic turbulence closure, which for α = 1/2 agrees with the energy power
law (36). However, for other values of α in the energy cascade, and for any value of α

in the action cascade, this new closure is not compatible with the self-similar spectra
derived here. Hence we will not consider their closure any further.

As mentioned before, CDLO17 speculated that the ZK spectrum appears at low
wave amplitude and is replaced by the MMT spectrum at high wave amplitude. In the
present framework this corresponds to a transition from r = 1/3 to r = 1/2 as the
amplitude increases. However, as detailed below, we have found no evidence of such
an amplitude-dependent transition.

4 Numerical Methods

Our pseudo-spectral numerical methods are similar to those in MMT97, except for
the white-noise forcing and for our use of a different technique to estimate mean
quantities. Care is taken to eliminate spectral aliasing effects and the mean fluxes of
energy and action are continuously monitored throughout the runs and compared to
theoretical predictions. This is illustrated with a test run that exhibits both cascades.

4.1 Time-SteppingMethod

The Fourier coefficients ϕk(t) evolve as

d

dt
ϕk(t) = Lϕk(t) + N(t) + F(t), (38)
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where L is the Fourier symbol of the linear operators in (17), N represents the cubic
nonlinear term, and F is the stochastic forcing. For the deterministic part we use an
Integrating Factor method with Runge–Kutta fourth-order time-stepping (IF-RK4),
which treats the stiff linear part of the equation exactly and hence allows the use of
large numerical timesteps (Milewski et al. 1999; Yang et al. 2021). For a timestep
between tn and tn+1 = tn + �t the exact solution of (38) is

ϕk(tn+1) = exp[L�t]
(

ϕk(tn) +
∫ tn+1

tn
exp[−L(τ − tn)] [N(τ ) + F(τ )] dτ

)
.

(39)

How to use Runge–Kutta methods to approximate the deterministic integrand in (39)
is studied in detail in Yang et al. (2021) and shown there to be the best choice for
our MMT model. It is convenient and fast to evaluate N in real space using the Fast
Fourier Transform (FFT), thus making this algorithm pseudo-spectral. For the white
noise forcing F in (39) we use the Euler–Maruyama scheme. Focusing only on the
stochastic term this means the explicit update step

ϕk(tn+1) = exp[L�t]
[
ϕk(tn) + Fk(�Wk

1 + i�Wk
2 )

]
, (40)

where the Wiener increments �Wk
i are Gaussian random variables such that

E�Wk
i = 0 and E�Wk

i �Wk
j = δi j�t . (41)

Thus, after the deterministic IF-RK4 step we add an additional exp[L�t]Fk(�Wk
1 +

i�Wk
2 ) to account for the forcing. Note that the phase rotation part of exp[L�t] has

no effect since the complex Gaussian is isotropic. And when the forcing is far from
the dissipation in wavenumber, the dissipation part of L is also negligible. However,
we always implement this IF correction to the forcing to be consistent. Finally, we
de-alias in space by adjusting the ultraviolet dissipation such that the action density is
negligibly small at half the maximally resolved wavenumber, which is the de-aliasing
requirement for the cubic nonlinearity in the MMT system (17). The IF-RK4 method
does not impose an obvious a priori stability requirement on the time step �t , so in
practice we ensured that �t was small enough such that the statistics were insensitive
to any further reduction of it. This led to typical time steps of size �t ≈ 10−3.

4.2 Exponential Moving Time Average

Statistical mean quantities such as nk are commonly estimated by time-averaging over
long simulation runs, usually after discarding some initial data to eliminate start-up
transients.We implement the time average in a different way, namely by estimating the
mean quantities frommoving time averages with an exponential kernel. This has three
distinct advantages. First, it does not require treating the initial data differently, so runs
can easily be stopped and restarted even after changing some parameters. Second, there
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is an adjustable parameter for the exponential decay rate and by varying this parameter
one can gain some insight into the autocorrelation time of the fluctuations. And third,
the exponential averaging can be implemented with a simple explicit time stepping
method and without the need to store additional data from earlier times.

So, with any time series X(t) in the simulation we associate the estimator

Y (t) = γ

∫ t

0
e−γ (t−s)X(s) ds (42)

for X . Here γ > 0 is a decay rate chosen such that 1/γ is much larger than the
autocorrelation time of the fluctuations in X(t). In our simulations 1/γ was thousands
of time units. Clearly, Y (t) is a weighted average of X(t) and it ‘forgets’ data that is in
the distant past. The estimator is implemented by time-stepping the equivalent ODE

d

dt
Y (t) = −γ (Y (t) − X(t)). (43)

Approximating X(t) as constant X(tn+1) over a time step�t yields the simple explicit
formula

Y (tn+1) = Y (tn) + (1 − e−γ�t )(X(tn+1) − Y (tn)). (44)

We calculate (1 − e−γ�t ) at the beginning and this is the only explicit occurrence of
γ .

4.3 Test Run

We illustrate the setup of the model and the extraction of statistical diagnostics with
an MMT test run with α = 1/2 and β = 0. The number of Fourier modes is 217,
which means that the highest wavenumber magnitude is 216 and the highest de-aliased
wavenumber magnitude is 215 = 32768. Thus the usable spectral bandwidth spans
about 4 decades in k and 2 decades in ω(k). The action density input rate (21) is
Q = 7.5 × 10−3 and distributed evenly among the eight modes in the symmetric
forcing wavenumber set |k| ∈ [399, 402]. The dissipation coefficients are ν− = 250
and ν+ = 2.5 × 10−37 in (18), and with these choices the infrared and ultraviolet
dissipation operators become important at k− ≈ 2 and k+ ≈ 25000, respectively. We
obtained these wavenumbers from the action dissipation budget to be introduced in
Sect. 4.4. We start with ψ(x, 0) = 0 and run the system up to t = 2 × 104, which
is well beyond the start-up transients. For the diagnostics we measure the inverse
cascade power law in the range |k| ∈ [40, 133] and the direct cascade power law in
|k| ∈ [1300, 2600].

Figure 1a shows a snapshot of the real part of ψ(x, t) at the final time. The solu-
tion looks turbulent and spatially homogeneous without any appearance of obvious
coherent structures. The estimated action density nk is depicted in the log-log plot in
Fig. 1b and shows clean and straight lines in the inertial ranges, implying the exis-
tence of power laws. We diagnose these power laws by measuring the slope of nk

123



   81 Page 14 of 29 Journal of Nonlinear Science            (2023) 33:81 

(a) (b)

Fig. 1 a Snapshot of Re[ψ(x, t)] at the final time of the simulation (t = 2 × 104). b Estimated action
density nk at the final time. Estimated power laws are k−0.85 in the inverse cascade and k−1.17 in the direct
cascade. The thick vertical lines mark the inertial ranges in which we measure the power law slopes. The
thin solid line is the maximum wavenumber in the numerical resolution and the dashed line is half of that,
illustrating the usable de-aliased wavenumber range

(a) (b)

Fig. 2 a Time evolution of total action (N ) in the simulation. b Same for the total energy (H ), linear energy
(H1), and nonlinear energy (H2) in the simulation. At the final time H2/H ≈ 0.068

in the log-log plot via linear least-squares, which produces k−0.85 in the inverse cas-
cade and k−1.17 in the direct cascade. The plot also shows a reassuring decay of the
action density towards the de-aliasing threshold. Figure2 shows the time evolution of
the instantaneous (N , H , H1, H2). After a short transient they oscillate around their
constant means. H2/H is small, so presumably this run is in the weakly nonlinear
regime.

From nk ∝ Pr or nk ∝ Qr we can diagnose the flux-related exponent r in the
two cascades. To do this we change the forcing amplitude (and hence P and Q)
and average the action density over the inertial range measurement windows used
previously. Figure3 shows log-log plots between the averaged nk and the forcing
inputs and the best fit straight line whose slope is the numerically measured r . The
measured r ≈ 0.38 in both cascades, which is in the ‘reasonable’ range r ∈ [0.33, 0.5]
that we expected from the argument in Sect. 3.2. The value of r is quite close to the
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(a) (b)

Fig. 3 The log-log plot between typical values of nk (diagnosed from taking the average of nk in the inertial
ranges) and values of a action input P and b linear energy input Q. The magenta line is the linear fit over
the first five data points. Their slopes are recorded in the titles as measured r

Table 1 Theoretical and observed power law exponents in the inverse and direct cascades

z m Observed p Observed r SG r = 0.38

Action (inverse) cascade 0.83 1 0.85 0.38 0.88

Energy (direct) cascade 1 1.25 1.17 0.38 1.07

The first column is the Zakharov–Kolmogorov prediction z = p(1/3) and the second column gives the
MMT alternative m = p(1/2). The two next columns (in bold) show observed values. The final column is
the self-similar exponent p(r) computed using the observed value r ≈ 0.38 from the runs

0.33 assumed in the kinetic equation, but the difference is statistically significant. This
is a typical result in our simulations.

Table 1 summarizes the test results and compares the observed slopes to the various
theoretical slopes discussed in Sects. 3.1–3.2. The ZK prediction in the first column
is the best fit in the inverse cascade but not in the direct cascade, and the opposite is
true for the MMT prediction in the second column. The self-similar prediction for p
in the final column is based on the measured value of r , and this gives the best overall
fit in both cascades.

4.4 Flux and Dissipation Diagnostics

From the governing equation (38) we can diagnose the action dissipation as well as the
spectral transport of action due to the nonlinear terms. The instantaneous contribution
of the dissipation operator (18) to ∂t |ϕk |2/L at each wavenumber is

2(ν−|k|−8 + ν+|k|8)|ϕk |2/L, (45)

so the mean value of this gives the net dissipation rate as a function of k. Similarly, if
in (38) we denote the value of N at wavenumber k by bk then the instantaneous time
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(a) (b)

Fig. 4 Time tendency of a action (N ) and b linear energy (H1) by various terms of the equation. Red lines
represent the forcing, blue lines dissipation, and green lines the flux due to the nonlinear term. (Note that
the dissipation blue lines are plotted in ‘area norm,’ that is a multiplication by |k|, to make the dissipation
at high wavenumbers visible.) Dotted vertical lines are the diagnosed location of dissipation. Numerically
diagnosed percentages of a N that goes upscale and b H1 that goes downscale are in the titles of the figures

tendency due to the nonlinear term is

(ϕkb
∗
k + ϕ∗

k bk)/L = 2Re(ϕkb
∗
k )/L (46)

where star means complex conjugate. To diagnose the nonlinear spectral action trans-
port from this we utilize the global conservation of action when summed over all k.
Hence we sum (46) over the wavenumber band k ∈ [−K , K ] with K > 0. By global
conservation, this must be equal and opposite to the sum over all the wavenumbers
outside this band, and therefore this sum is equal to minus the nonlinear transfer of
action across |k| = K . This is a spectral flux but no assumption of locality is made
here. The same can be done for the flux of linear energy H1 by multiplying (46) with
ω(k). Notably, these instantaneous flux values are extremely noisy, with fluctuations
that exceed their mean values by several orders of magnitude, so time-averaging is
crucial here.

Figure 4 shows the spectral action and energy tendencies by the various terms. The
forcing (represented by red lines) is zero except at a few central wavenumbers. The
dissipation (represented by blue lines) is only significant at small and large wavenum-
bers. We use the strongest dissipation densities to define the dissipation wavenumbers
k− and k+ and calculate ω− and ω+ from (4). The N and H1 flux due to the nonlinear
term (represented by green lines) shows both upscale and downscale flux, while most
N goes upscale andmost H1 goes downscale.We use the value of action density fluxes
at the left and right of the forcing, sufficiently far from the effect of dissipation, to
calculate the percentage of action flowing upscale (Q−/Q) and similarly for P+/P .
This provide us with a means to verify the relation (25). For our example, we calculate
from (25), using the measured ω’s, that

Q−
Q

≈ 1 − ωF

ω+
= 0.8730 and

P+
P

≈ 1 − ω−
ωF

= 0.9293. (47)
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Fig. 5 Action density spectrum of a run that resembles the β = 0 case in Fig. 14d of MMT97. The vertical
lines represents the same quantities as the ones in Fig. 1b. In particular, we have chosen the inertial range
to be |k| ∈ [50, 500] following MMT97. The direct cascade spectrum slope is 1.245 and H2/H ≈ 0.0839

These are very close to the diagnosed values in the titles of Fig. 4. So (25) works well.

4.5 Compare with Results fromMMT97

Finally, to anchor our numerical results in precedent, we replicated the numerical
results for the β = 0 case in MMT97. This comparison run used 213 Fourier modes,
as they did, which is 16 times fewer than in the Sect. 4.3 test run. The forcing is at
|k| ∈ [9, 12] and we set ν+ = 1.0737 × 10−27. Figure5 shows the action density
spectrum of the experiment, which is very close to the one shown in Fig. 14d of
MMT97. The nonlinearity of the system is weak, with H2/H ≈ 0.0839. We measure
the inertial range power law in |k| ∈ [50, 500], again following MMT97, and obtain a
slope of 1.245, which is again very close to the results from MMT97. The similarity
of the results gives us confidence that our numerical algorithm works well and that
the switch to white noise forcing did not change the relevant statistics. The new runs
described below were run at much higher resolution, using up to 219 modes.

5 Numerical Study of the Direct Cascade

We continue to use α = 1/2 and β = 0 and now focus on the direct cascade, so for
this purpose we move the forcing to lower wavenumbers in order to maximize the size
of the direct inertial range. Our aim is to explore in detail the dependence of the power
law exponents in nk = Ck−p Pr on the three non-dimensional less-than-unity ratios
in (1) that collectively determine the turbulent statistics of the MMTmodel with finite
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inertial ranges. We find that the nonlinearity parameter H2/H has only a weak impact
on the power law exponent whilst the impact of the frequency parameter ωF/ω+ is
very strong, but also takes a simple and very predictable form. This is a new result. The
impact of the other frequency parameter ω−/ωF is noticeable but much less strong.

5.1 Setup for the Simulations

Values of H2/H from close to zero up to one half (i.e., H1 = H2) are achieved by
varying the energy flux P in (22) over four orders of magnitude. The total integration
time and time step size are taken inversely proportional to the square root of the flux,
since a more nonlinear system evolves faster and enters equilibrium faster. We have
direct control over ωF by selecting the forced wavenumbers and indirect control over
the dissipation frequencies via the dissipation constants ν− and ν+ in (18). If in one
numerical experiment ν+ corresponds to dissipation at k+ then we expect that A−8ν+
corresponds to dissipation at Ak+, roughly. A similar scaling holds for the infrared
dissipation.We also scale ν− and ν+ proportional to the square root of the flux.We use
this to prescribe the rough position of dissipation, but after each numerical experiment
we diagnose of exact ω± values using the methods described in Sect. 4.3.

5.2 Influence of Nonlinearity Parameter

The nonlinearity parameter H2/H mediates between weak and strong turbulence,
with the possibility of attendant changes in the spectral power laws. Specifically, for
α = 1/2 and β = 0, CDLO17 explored the hypothesis that the ZK power law k−1

is attained for weak turbulence H2 � H1 whilst the MMT law k−1.25 is attained for
strong turbulence H2 ∼ H1. In terms of the self-similar spectra discussed earlier, this
would correspond to a transition from r = 1/3 to r = 1/2, which appears plausible a
priori. In CDLO17 this was explored using a large number of runs with varying H2/H1
and support for this hypothesis was found. However, these runs had a relatively limited
spectral bandwidth with only 213 modes (the same as in MMT97), so that the width
of the direct inertial range was only about a decade in wavenumber and only a factor
of about 3 in frequency.

To settle this we performed larger runs with 217 modes forced at |k| ∈ [99, 102],
which allows for direct cascade inertial range of 2 decades in k and 1 decade in ω.
Results are displayed inFig. 6.Thedirect cascade slopedoes steepen as the nonlinearity
increases, however, in contrast with the results in CDLO17, the change in slope is not
very big, and the slope does not seem to range between 1 and 1.25. Note that this
includes runs where the nonlinear energy is as large as the linear energy, indicating
strong turbulence.

To resolve this discrepancy between our results and those inCDLO17,we replicated
their simulations with our model (see “Appendix B” for details). This showed that the
discrepancy was indeed due to the limited bandwidth of the earlier simulations. We
also noticed that the slope results in CDLO17 were sensitive to the definition of the
inertial range:measuring the slopes further from the forcing gave significantly different
slopes from the ones reported in CDLO17.
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(a) (b)

Fig. 6 MMT runs with 217 modes to illustrate the effect of changes in H2/H . The setup is similar to that
in Sect. 4.3, expect forcing is near |k| = 100 and the magnitude of the forcing changes across different
runs. a The action spectrum nk . Its magnitude changes strongly with the forcing, but its slope changes only
moderately. The experiment marked with thicker black line is the same as the one marked with the same
style in Fig. 7. b The measured direct cascade slope as a function of H2/H

Overall, our conclusions here are that the influence of the nonlinearity parameter
H2/H on the MMT dynamics is modest and that it certainly does not explain the
disagreement between the numerical results ofMMT97 and the predictions fromwave
turbulence theory.

5.3 Influence of Frequency Ratios

The ratio ωF/ω+ ≤ 1 measures the frequency bandwidth of the energy inertial range,
with smaller values corresponding to a larger bandwidth. It turns out that this parameter
exerts a surprisingly strong influence on the observed power law, even if the inertial
wavenumber range appears well separated from the forcing and ultraviolet dissipation
wavenumber locations. This is demonstrated in Fig. 7, which displays a sequence of
runs with greatly increasing ω+ facilitated by using up to 219 = 524 288 Fourier
modes. Clearly, as the bandwidth increases the direct cascade power law becomes
shallower across its entire range between the forcing and the dissipationwavenumbers.
Moreover, as ωF/ω+ becomes very small the slope converges to the ZK k−1 power
law in (34), as predicted by wave turbulence theory based on the standard four-wave
kinetic equation. This convergence can be made more quantitative: we found that the
observed power law exponent differs by an amount proportional to ωF/ω+ from its
limiting value. Because ω = √|k|, making this frequency ratio small enough to get
close to the ZK exponent requires a very large spectral domain, explaining why this
limit has not been observed in previous studies of forced–dissipativeMMT turbulence.

Compared to ωF/ω+, the influence of the other frequency parameter ω−/ωF on
the direct inertial range power law is much weaker. We established this with a number
of runs across a wide range of the parameters ω−/ωF and H2/H . We first look at the
cases with weak nonlinearity (H2/H < 0.1). Figure8a shows that ω−/ωF has some
effect on the direct cascade slope, but it does not change the trend that as ωF/ω+ goes
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Fig. 7 Action density spectrum nk versus ωF/ω+ with weak nonlinearity (H2/H < 0.1). The ratio
ω−/ωF ≈ 0.2 is constant whilst the ratio ωF/ω+ changes from about 0.2 to 0.03 as the bandwidth
increases. The experiment marked with thicker black line is the same as the one marked with the same style
in Fig. 6a

to zero, the slope goes the ZK spectrum slope z = 1. This is even clearer in Fig. 8b.
The parameter ω−/ωF influences the rate of change of the direct cascade slope with
regard to ωF/ω+, but regardless of ω−/ωF , the slope tends to one as ωF/ω+ goes to
zero. The final set of experiments, which is illustrated in Fig. 9, compares runs across a
wide range of both the frequency ratios and the nonlinearity parameter H2/H . We see
that both ω−/ωF and H2/H influence the direct cascade slope, but as ωF/ω+ tends to
zero, the slope invariably tends to the ZK value z = 1. In these plots we also show the
diagnosed r value using the method in Sect. 4.3. Interestingly, this diagnosed r value
is quite stable across runs, hovering around r ≈ 0.4. There is no clear convergence to
r = 1/3, even though that value is expected to go hand-in-hand with the limiting value
z = 1 from the kinetic theory based on four-wave resonances. We can synthesize our
numerical results into the reasonably accurate empirical formula

nk = CP0.4k−p with p ≈ 1 + ωF

ω+

(
1.5 + 2

ω−
ωF

+ 0.7
H2

H

)
. (48)

To first order in the small parameters p − 1 is proportional to ωF/ω+. A theoretical
explanation for this formula is presently lacking.

6 Simulations with Nonzeroˇ

Our simulations so far established a number of facts for the β = 0 MMT model:
the spectral power law exponent in the direct cascade differed from the ZK limit by
a significant amount proportional to ωF/ω+, the impact of the other frequency ratio
ω−/ωF was much weaker, and the nonlinearity parameter H2/H also had a weak
impact and induced no systematic trend even at fairly high nonlinearity levels. A
major question is now whether these facts carry over to other systems, thus allowing
us to make testable a priori predictions in new situations.
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(a) (b)

Fig. 8 Convergence of direct cascade slope for weak nonlinearity. The experiment in MMT97 that is
reproduced in Fig. 5 is recorded with a square marked ‘MMT.’ a The slope is in color and ωF/ω+ and
ω−/ωF are the x and y-axis; note the much larger scale on the y-axis. b Direct cascade slope versus
ωF/ω+, with the three colors marking three groups of experiments with different values of ω−/ωF . The
illustrative values of r on the right y-axis are computed from the observed slope p via (31)

0

0.2

0.4

Fig. 9 Direct cascade slope with regard to ω−/ωF , ωF/ω+, and H2/H . The sub-figures are grouped
depending on the value of ω−/ωF (the same groups as the ones in Fig. 8b). The solid dots represent
measures slopes, and the color is H2/H . The magenta circles represent the diagnosed r value using the
method in Sect. 4.3

Within the MMT model, we can explore this by running an additional suite of
simulations with β = ±1/3, keeping α = 1/2 fixed. Making the scale-selective
nonlinearity parameter nonzero is certainly a substantial change in the model. The
β parameter affects the scale-dependence of the nonlinear term such that β > 0
strengthens the nonlinearity at high wavenumbers and vice versa for β < 0. The ZK
slopes for the direct cascade are

z = 11

9
≈ 1.22 and z = 7

9
≈ 0.77 (49)

for β = 1/3 and β = −1/3, respectively. It turns out that the simulations follow
our predictions closely for low nonlinearity levels, but then the β = −1/3 case also
exhibited a completely new spectral ‘breakthrough’ regime at high nonlinearity, which
changes the spectral shape completely and in a manner that is not compatible with
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(a) (b)

Fig. 10 a nk for MMT model with β = 1/3 versus the the nonlinearity parameter H2/H . The setup is the
same as that of Fig. 6 and the experiment marked with thicker black line is the same as the one marked with
the same style in Fig. 11. b The horizontal line marks the ZK slope z ≈ 1.22

Fig. 11 nk for MMT model with β = 1/3 versus the cascade bandwidth parameter ωF/ω+. The setup is
the same as that of Fig. 7 and the experiment marked with thicker black line is the same as the one marked
with the same style in Fig. 10. The nonlinearity is weak (H2/H < 0.1)

familiar notions of forced–dissipative turbulence. The β = +1/3 case did not show
such a new regime. We expect that this new highly nonlinear regime will require new
theoretical tools to understand.

6.1 Theˇ = 1/3 Case

We set β = 1/3 and explore the same scenarios as in Sect. 5. Figure10 shows that
the nonlinearity parameter (H2/H) again only has a weak, non-systematic effect on
the power law slope. At very large amplitude the slope now becomes shallower, but
nothing else happens. Figure11 shows that the frequency ratio ωF/ω+ also has the
same strong impact as in the β = 0 case: the slope becomes significantly shallower as
ωF/ω+ decreases and the cascade bandwidth increases.We summarize the quantitative
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Fig. 12 Direct cascade slope
versus ωF/ω+ for the MMT
system with β = 1/3, similar to
Fig. 8b. The ZK value is
z ≈ 1.22

0

0.2

0.4

0.6

Fig. 13 Direct cascade slope versus ω−/ωF , ωF/ω+, and H2/H for the β = 1/3 experiments, similar to
Fig. 9

impact of all parameters in Figs. 12 and 13. Again, regardless of theω−/ωF and H2/H
values, the slope converges to the ZK value as ωF/ω+ gets small. This corroborates
the testable predictions from the β = 0 case, giving us confidence that there is some
generality to our theoretical findings. Perhaps the strongest difference to the β = 0
case is that the directly measured r -values in the nk ∝ k−p Pr power law are now
further away from the r = 1/3 value implied by kinetic theory.

6.2 Theˇ = −1/3 Case

Figure 14 shows experiments with β = −1/3 with different nonlinearity H2/H .
The setup is similar to the experiments with β = 0 and 1/3, except that we ran the
experiment twice as long to ensure that all experiments have converged. Here we
encounter a seemingly new turbulence phenomenon: for high nonlinearity there is
a ‘breakthrough’ of the spectrum, i.e., a pile-up of energy at a wavenumber much
larger than the forcing wavenumber kF . In this regime it is no longer sensible to
measure a spectral slope. The reason of this energy pile-up is unclear to us, but we have
ruled out numerical errors by varying both resolution and time step without changing
the result. We restricted to weaker nonlinearity in the remainder of our simulations
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Fig. 14 nk for MMTmodel with β = −1/3 versus H2/H , showing a new highly nonlinear ‘breakthrough’
behavior and concomitant pile up of energy at high wavenumbers. The setup is the same as that of Fig. 6
and the experiment marked with thicker black line is the same as the one marked with the same style in
Fig. 15

Fig. 15 nk for MMTmodel with β = −1/3 versus ωF/ω+ at weak nonlinearity (H2/H < 0.1). The setup
is the same as that of Fig. 7 and the experiment marked with thicker black line is the same as the one marked
with the same style in Fig. 14

(H2/H < 0.1). In Fig. 15 and 16 we see again that the slope converges to the ZK
value as ωF/ω+ gets small. For these experiments the directly observed r -value was
close to 1/3 in all runs, which contrasts with the β = 0 and β = 1/3 cases.
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Fig. 16 Direct cascade slope with regard to ω−/ωF , ωF/ω+, and H2/H , for the β = −1/3 experiments,
similar to Fig. 9. Only Small H2/H results are shown. The ZK value is z ≈ 0.77 and the measured r -values
are close to the 1/3 from kinetic theory

7 Concluding Remarks

Our original expectation was that the different MMT spectra from previous numerical
simulations could be explained asmembers of the one-parameter family of self-similar
spectra nk ∝ k−p Pr thatwe derived in Sect. 3.1. Thiswould also have been compatible
with the hypothesis pursued in CDLO17. However, our high-resolution numerical
simulations painted a different picture, in which the r -parameter is reasonably close
to the WTT value r = 1/3 across the simulations, but the direct cascade wavenumber
power law exponent p differsmarkedly from itsWTTvalue z = p(1/3) unlessωF/ω+
is very small (cf. (48)). Hence, the picture that actually emerges is that of an inertial
range cascade that is ‘frustrated’ by the finite width of the inertial range as measured in
the separation of the forcing frequency ωF from the ultraviolet dissipation frequency
ω+. This finite spectral width breaks the self-similarity of the cascade and leads to the
observed deviations from the ZK slopes.

For the inverse cascade some preliminary results suggest that, not surprisingly,
the ratio ω−/ωF becomes the most important parameter. However, for a fixed size
domain, there is a minimum value for k− and hence ω−, so this makes the direct and
inverse cascade not entirely the same. Detailed investigation about the inverse cascade
is outside the scope of the current paper.

There seems little doubt that the correct way to measure the width of the internal
range in this context is byωF/ω+ rather than by kF/k+, not least because of the simple
linear appearance of the frequency ratio in (48). For a concave dispersion relation such
as ω = √|k| the frequency bandwidth is much smaller than the wavenumber band-
width, which is what limited earlier simulations in which the wavenumber bandwidth
was about a decade, so the frequency bandwidth was only a factor of 3 − 4. Only in
simulations getting a frequency bandwidth of a decade or more could the ZK slope be
directly observed. We could get close to this for the one-dimensional MMT system,
but many practical applications are systems in two dimension or three. If they behave
similarly as theMMT system, the requirement for spatial resolution gets unachievable
quickly. However, not all hope is lost. We saw in Fig. 9 that the convergence to the ZK
slope as ωF/ω+ → 0 is rather linear, which means Richardson extrapolation from a
few runs with different resolution would be successful.
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In some applications of WTT the frequency bandwidth is bounded a priori, for
example in the case of oceanic internal waves the frequency is bounded between
the Coriolis frequency f and the buoyancy frequency N . In many oceanic regions,
N/ f is only about 30 − 50, so a strong frequency separation is then impossible. If
our conclusions about the necessity of a strong frequency separation for the inertial
range carry over to these waves, then the predictions of WTT will inescapably be
‘frustrated’ by finite spectral width effects in these systems. Interestingly, the same
is not true for pure sub-inertial waves in rotating unstratified systems, in which the
buoyancy frequency N = 0 and the range of admissible wave frequencies now ranges
from zero to f . This again allows for arbitrarily large frequency ratios and might make
this case more amenable for the standard methods of WTT (cf. Monsalve et al. (2020)
for recent experimental evidence in that direction).

A clear theoretical model for the simple impact of finite-width inertial ranges in
WTT is currently missing. If the MMT system wave modes have significant non-local
interactions, then the missing wave modes could perhaps explain the smaller value of
the action density in the inertial range, and thus the steeper slope. Recent advances in
wave turbulence theory for internal waves allow for estimating the relative importance
of local and non-local wave interactions from integration of the wave-kinetic equation
(Dematteis and Lvov 2021; Dematteis et al. 2022). It might be worthwhile to carry
out similar calculations for the MMT system.

Finally, we note again that the amplitude dependence on our MMT turbulence
states was surprisingly modest throughout, with the exception of the new ‘break-
through’ high-amplitude phenomenon for the β = −1/3 model variant as described
Sect. 6.2. We verified that this is not a numerical artifact, but any explanation or cogent
description of this new phenomenon is currently lacking.
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Appendix A: General Self-similar Spectra Beyond Power Laws

The functional condition (29) allows solutions beyond power laws, which can be found
by noting that (29) is a special case of the homogeneity relation

f (λm1x, λm2 y) = λm3 f (x, y) (λ > 0). (50)

This has the general solution

f (x, y) = xs yt C(xm2 y−m1) (51)

provided the exponents are linked by

m3 = m1s + m2t . (52)

The xs yt part of (51) is a power law family, but the second part now allows for an
arbitrary function C(·) whose argument is invariant under the homogeneous scaling
in (50).

To relate this to the direct energy cascade we set λ = b, x = k, y = P , m1 = −1,
m2 = β−3α,m3 = β−α+1, s = −p, and t = r . Hence themost general self-similar
direct cascade spectrum is

nk = k−p Pr C(kβ−3αP) (53)

together with (31). (For the action cascade one finds the analogous result with an
arbitrary function D(kβ−2αQ).) Even with an unknown function C(·) in place a pecu-
liar power law can still be deduced if one were able to track nk as a function of k
along lines of constant kβ−3αP in (k, P) space, as then C(·) is constant and hence the
unambiguous power law nk ∝ k−1−β+α must hold along those lines. Of course, this
requires comparing simulations over a sizable range of k and P .

Appendix B: Reproducing Results from CDLO17

We reproduced the runs in CDLO17 by greatly increasing ν+ in order to reduce the
spectral bandwidth. Also, CDLO17 used a rescaled MMT equation iφt = ε−1

0 Lφ +
|φ|2φ with an explicit nonlinearity parameter ε0. Their φ(x, t) can be mapped to our
ψ(x, t) via ψ(x, t) = √

ε0φ(x, ε0t). Figure17a shows the action density based on
ψ(x, t) for a few experiments with different ε = H2/H1, which is the parameter
they used. The action spectra look very similar to Fig. 2 of CDLO17, after rescaling
by ε0 to change from their |φ|2 to our |ψ |2. The central result of CDLO17 is its
Fig. 3, which we reproduce here in Fig. 17b. The green dots are slopes measured from
|k| ∈ [20, 100], the same as CDLO17, while the orange data are alternative slopes
measured from |k| ∈ [50, 150], a bit further away from the forcing. The green dots
match well with Fig. 3 of CDLO17 up to H2/H1 ≈ 0.8, which is the highest value
reported there. However, after that the slope keeps on increasing with H2/H1, until
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(a) (b)

Fig. 17 A set of experiments to reproduce Fig. 2 and 3 of CDLO17. Forcing is at |k| ∈ [4, 7], and ν+ =
1.4074 × 10−23 and ν− = 50 for the lowest H2/H1 cases, and scale as the increase in forcing. a A few
example action density lines. The vertical lines mark the inertial ranges used in (b), which shows the slope
versus H2/H1. Green dots are slopes measures from |k| ∈ [20, 100] (the same as in CDLO17) and orange
dots are from the alternative |k| ∈ [50, 150]

the trend reverses for H2/H1 > 1. Most importantly, these slope measurements are
sensitive to the selection of inertial range. The orange data deviate much from the
green dots even when H2/H1 is moderate. Note that when H2/H1 is small, the orange
data actually has a slope of about 1.25, close to the result of MMT97. Overall, we
concluded that the small spectral bandwidth of the experiments in CDLO17 does not
allow robust extraction of spectral slopes in the inertial range.
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