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Fast-slow wave transitions induced by a random mean flow
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Motivated by recent asymptotic results in atmosphere-ocean fluid dynamics, we present an idealized numerical
and theoretical study of two-dimensional dispersive waves propagating through a small-amplitude random mean
flow. The objective is to delineate clearly the conditions under which the cumulative Doppler shifting and
refraction by the mean flow can change the group velocity of the waves not only in direction, but also in
magnitude. The latter effect enables a possible transition from fast to slow waves, which behave very differently.
Within our model we find the conditions on the dispersion relation and the mean flow amplitude that allow or rule
out such fast-slow transitions. For steady mean flows we determine a finite mean flow amplitude threshold below
which such transitions can be ruled out indefinitely. For unsteady mean flows a sufficiently rapid rate of change
means that this threshold goes to zero, i.e., in this scenario all waves eventually undergo a fast-slow transition
regardless of mean flow amplitude, with corresponding implications for the long-term fate of these waves.
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I. INTRODUCTION

Nonlinear interactions between waves and nonuniform
mean flows have been recognized as important in atmosphere-
ocean fluid dynamics since the 1960s. Prominent examples
include the driving of long-shore currents by surface waves
[1], or the driving of the meridional circulation in the middle
atmosphere by internal gravity and Rossby waves [2]. Much
of the early work was based on monochromatic waves encoun-
tering critical layers induced by large-amplitude steady shear
flows [3], but since then theory and simulations have extended
these concepts in many ways (e.g., see the textbooks [4,5]).

Recently, the cumulative impact of wave refraction due to
a small-amplitude random mean flow has been investigated
in a number of geophysical settings by building on classical
scattering theory for sound or light waves in random media
(e.g., Refs. [6–9]). This is most easily studied by assuming a
scale separation between waves and mean flows, which allows
the use of well-established ray-tracing techniques for slowly
varying wave trains. (This is a relevant though by no means
universally valid assumption in atmosphere-ocean dynamics,
and some recent scattering studies have gone beyond that
assumption.) However, geophysical waves are strongly dis-
persive and thus can behave in ways that are not possible for
sound or light waves. Most importantly, the group velocity of
such waves can transform significantly not only in direction
but also in magnitude, for instance turning fast waves into
slow waves in a manner to be defined precisely below, and
this inevitably has important consequences for the long-term
evolution of the waves (e.g., one may recall that at a critical
layer the group velocity goes to zero).

The present study combines detailed ray-tracing simu-
lations with idealized theory to investigate such fast-slow
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transitions in a two-dimensional model for dispersive waves
exposed to a random mean flow. This setup allows us to delin-
eate clearly under what a priori conditions on the dispersion
relation and mean flow amplitude the waves may or may not
undergo a fast-slow transition. We also demonstrate the vivid
differences between fast and slow wave evolution, such as the
trapping of slow waves in coherent vortices.

II. RAY TRACING FOR DISPERSIVE WAVES
ON MEAN FLOWS

In a slowly varying wave train the wave action density A is
defined as the wave energy density E divided by the local in-
trinsic frequency ω, i.e., A = E/ω. It is the domain-integrated
wave action, and not the wave energy, that is then conserved
even in the presence of a slowly varying mean flow U [10]. In
the special case of a wave packet this implies conservation of
packet-integrated wave action along the wave packet trajecto-
ries, or rays. Changes in the wave packet energy E = ωA are
then proportional to changes in ω along the rays, so changes in
ω are of particular relevance in wave-mean interactions. Both
the wave packet dynamics and the wave action conservation
are neatly summarized in a Liouville equation

∂t A + ∇k# · ∇xA − ∇x# · ∇kA = 0 (1)

for the wave action density in phase space A(x, k, t ). Here
k is the wave-number vector and the action density in real
space is the integral of A over k. This allows for the incoherent
superposition of different wave packets at the same location,
which is an advantage in many practical applications [11]. The
characteristics of (1) are the wave packet rays

[ẋ(t ), k̇(t )] = (∇k,−∇x)#(x, k, t ) (2)

in phase space. The absolute frequency # acts as a Hamil-
tonian function for the phase space flow in (2). In general,
# is the sum of the usual intrinsic frequency ω plus a
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Doppler-shifting term involving the mean flow

#(x, k, t ) = ω(k) + U(x, t) · k. (3)

Physically, # is the frequency observed in a reference frame
at rest and ω is the frequency observed in a reference frame
moving with the local velocity U. In general, ω may depend
on x and t as well, but we restrict to ω(k) in our study. The
absolute group velocity is ∇k# = cg + U where cg = ∇kω is
the intrinsic group velocity. So the wave packet is advected
by the mean flow and also moves relative to it with cg. The
key dynamical process in (2) and (3) is the refraction of k by
the variable mean flow, i.e., k̇ = −(∇xU) · k. Notably, in the
important special case of a steady flow U(x), the Hamiltonian
function #(x, k) has no explicit time dependence and hence,
despite refraction, the value of # is constant along a ray. This
provides some forever memory of the wave packet’s initial
conditions, which will be shown to be important below.

A. Fast and slow waves

Fast and slow waves are distinguished based on the relative
magnitude of cg vs. U. For slow waves |cg| " |U| holds and
therefore advection by the mean flow dominates the wave
propagation, which implies that slow wave rays closely re-
semble particle trajectories. Indeed, in the limiting case where
cg is completely negligible in (2), we have # ≈ U · k and the
evolution of k(t ) becomes identical to that of the gradient of a
passive scalar. This limiting regime was explored in detail for
internal gravity waves in Ref. [12].

Alternatively, for fast waves |cg| $ |U| holds, which is
evidently relevant for light or sound waves, but also for sur-
face waves relative to the typical current speeds in the ocean.
To first approximation the waves are then unaffected by the
mean current and simply travel along straight lines while
maintaining constant k. Meaningful interaction effects accrue
slowly over long propagation times, which makes their study
amenable to asymptotic analysis based on a small parameter
such as

ε0 = U0

cg0
" 1. (4)

Here U0 is the typical amplitude of |U| and cg0 = |cg(0)| is the
initial group velocity [7,13,14]. The Doppler-shifting term is
then small in (3) and therefore # ≈ ω. Crucially, for a steady
mean flow the exact invariance of # then implies the approx-
imate invariance of ω along a ray. Wave action conservation
then implies wave energy conservation even in the presence
of a mean flow, which severely limits the interactions between
the waves and the mean flow.

This was exploited by asymptotic analysis and numeri-
cal simulation in a study of three-dimensional (3D) internal
gravity waves by Kafiabad et al. [7]. Building on the earlier
work of McComas and Bretherton [15] and Ryzhik et al.
[16], these authors modeled U as a steady random mean flow
with homogeneous statistics and this allowed them to derive a
diffusion approximation to (1) of the form

∂t A + cg · ∇xA = ∇k · (D · ∇kA), (5)

where, for internal waves,

ω =

√

N2 |k⊥|2
|k|2

+ f 2 |kz|2
|k|2

⇒ cg = |cg| ∝ 1
|k| , (6)

with k⊥ the horizontal component of the wave vector, kz its
vertical component, and N and f the Brunt-Väisälä and the
Coriolis frequencies, respectively.

Here, D is a symmetric O(ε2
0 ) diffusion matrix that de-

scribes the scattering in wave number space due to refraction
by the mean flow. The details of D depend on the power spec-
trum of the mean flow, but for all steady mean flows D has the
property that the diffusive flux D · ∇kA is always perpendic-
ular to the surfaces of constant ω in three-dimensional wave
number space. In other words, there is diffusion along surfaces
of constant ω, but none across them. This recovers the ap-
proximate conservation of ω alluded to before. Recently, this
study has been extended to include weakly time-dependent
U, which did not change the results significantly [8]. The
frequency of internal waves depends only on the angle that
k makes with the vertical, so the diffusion takes place along
unbounded cones in three-dimensional k space and this allows
k = |k| to grow without bound even at constant ω.

The situation is somewhat different in two-dimensional
cases of geophysical interest. For example, Villas, Boas, and
Young [6] adapted Kafiabad et al. [7] to the case of deep-
water surface waves, where ω =

√
gk with gravity g. Now

the contours of constant ω in two-dimensional k space are
circles around the origin, so constant ω implies constant k and
therefore the diffusion takes place on a bounded manifold. For
isotropic two-dimensional wave systems the diffusion previ-
ously introduced is therefore only angular: the wave vector k
keeps a constant magnitude, and the diffusion only acts on its
orientation.

In this situation the assumption of a steady mean flow U(x)
is in fact crucial for the long-term development of k. This was
demonstrated by Dong et al. [17] in a ray-tracing study of
rotating shallow water gravity waves exposed to steady and
unsteady random mean currents. Here the isotropic dispersion
relation is ω =

√
f 2 + gHk2 with Coriolis parameter f and

undisturbed layer depth H . For steady flows with small Froude
number F = U0/

√
gH " 1 it follows that ω can drift from

its initial value only by an O(F ) amount and this bound is
valid uniformly in time. However, this changes completely
for unsteady mean flows U(x, t ), which breaks the forever
memory and allows # and therefore ω to drift away from
their initial values. A robust evolution toward increased values
of ω was then observed numerically, which meant the waves
robustly extracted energy from the mean flow.

B. Fast-slow transitions

Whether transitions between fast and slow wave regimes
are possible depends foremost on the specifics of the dis-
persion relation ω(k). For example, in the aforementioned
studies of internal gravity waves both regimes were possible
for oceanic conditions, so a transition from fast to slow inter-
nal waves is of particular interest both from a theoretical and
a practical perspective. This prompted a detailed ray-tracing
study for three-dimensional internal gravity waves reported in
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Ref. [14], in which all wave packets start out as fast in the
sense of ε0 " 1. Surprisingly, it was found that even steady
mean flows already induced a fairly rapid fast-slow transition
along the wave rays. Indeed, this led to the spontaneous gener-
ation of a broadband spectrum in ω, in seeming contradiction
with the constant-ω prediction of the diffusion theory based
on ε0 " 1. These numerical results can be reconciled with the
diffusion theory upon noting that that theory is not uniformly
valid in time, i.e., its validity is restricted O(ε−2

0 ) time and
length scales. The observed fast-slow transition occurred after
an initial phase that was indeed well described by the diffusion
theory.

The mechanism for this dramatic departure from the
constant-ω regime is easy to understand in principle. For
internal waves the group velocity at fixed frequency is propor-
tional to k−1, a fact that can be corroborated either by direct
calculation or by observing that for these waves ω(k) is ho-
mogeneous of degree zero in k and therefore cg = ∇kω must
be homogeneous of degree minus one in k [5]. In general,
wave refraction by mean-flow shear and strain has a tendency
to shorten the wavelength and therefore to increase k, which
for internal waves means that cg decreases along a ray. Hence
a ray may start with large cg0 compared to U0 but then cg de-
creases substantially, making both speeds comparable, or even
leading to the wave-capturing regime discussed in Ref. [12],
which is characterized by cg " U0.

The fast-slow transition marks the departure from the
constant-ω dynamics described by the diffusion equation and
opens the door to strong wave-mean interactions, in which
significant energy can be exchanged between the waves and
the mean flow. Conversely, for some wave systems the reverse
transition can also take place, i.e., slow waves may turn into
fast waves.

We investigate this via simple theory and detailed numer-
ical simulations of idealized two-dimensional wave packets
based on a dispersion relation that is isotropic in k = (kx, ky)
and involves an adjustable power-law exponent α

ω(k) =
{

1
α

kα, α )= 0
log(k), α = 0,

(7)

yielding

cg = kα−2 k, cg = |cg| = kα−1. (8)

This family includes as special cases nondispersive
waves (α = 1), deep-water waves (α = 1/2), and
quantum-mechanical matter waves (α = 2). If |α| " 1 it
also mimics the aforementioned cg ∝ 1/k scaling behavior
of internal waves. The singular limit α → 0, corresponding
to a group velocity cg = k−1 as in the case of internal waves,
is regularized numerically by using the dispersion relation
ω(k) = log(k). Of course, this simple two-dimensional
model differs from three-dimensional internal waves in other
respects. Most importantly, perhaps, is that in our model the
sets of wave numbers sharing the same intrinsic frequency
are circles and therefore bounded, whereas for internal waves
they are cones and therefore unbounded.

The wave packets propagate through a nondivergent mean
flow U modeled as a Gaussian random function with ho-
mogeneous and isotropic statistics. For most simulations U
is steady, but an unsteady case with stationary statistics is

also considered in Sec. V. A large number of ray-tracing
experiments are then performed to extract the statistics of the
wave behavior. These experiments together with some simple
theory then answer two questions: first, for what dispersion
relations is either the slow or the fast wave regime the only
long-time attractor? And second, are there dispersion relations
that allow both regimes to be long-time attractors, so that the
ultimate behavior depends forever on the initial conditions?

III. NUMERICAL METHODS

We scale the mean flow explicitly as ε0U and therefore (2)
and (3) become

ẋ(t ) = ∇k# = cg + ε0U (9)

k̇(t ) = −∇x# = −ε0(∇xU) · k (10)

and

# = ω(k) + ε0U · k. (11)

Here U is normalized such that its root-mean-square value
(RMS) is equal to unity, i.e., U0 = 1. The starting locations
of the rays are chosen deterministically on a uniform grid and
the initial direction of k is chosen randomly for each ray. All
waves start with k0 = 1 and therefore cg0 = 1 from (7). As
an aside, it is easy to check that for steady U(x) the choice
k0 = 1 does not limit the generality of our setup, as any other
choice can be rescaled to this one. However, this is not true
for unsteady U(x, t ). As the wave packets evolve the ratio of
mean flow to group velocity is monitored along rays (with a
slight abuse of notation) as

ε(t ) = ε0
|U|
|cg|

. (12)

Hence ε(0) ≈ ε0 and a fast-slow transition corresponds to ε(t )
reaching large values even though ε0 " 1.

The steady mean flow derives from a stream function ψ as

U(x) = (−∂yψ, ∂xψ ), (13)

where ψ (x) is modeled as a zero-mean Gaussian random
function with isotropic and homogeneous covariance func-
tion. This is realized as best as possible in a doubly periodic
domain by choosing the Fourier coefficients of ψ as inde-
pendent random variables drawn from a zero-mean normal
distribution. Explicitly, the Fourier coefficients are

ψ̂ = 1
q

√
C
2

q−n−1 (a + ib), (14)

where q is the magnitude of the wave number of the Fourier
component, (a, b) are independent standard normal variables
for each Fourier component, and C a normalization constant
that ensures that the RMS of U is U0 = 1. Only a finite band
of wave numbers between qmin = 1 and qmax = 30 is allowed
and care is taken to ensure the reality condition. Setting qmin >
0, ensures that the mean value of the mean flow is 0. The
parameter n > 0 sets the slope of the one-dimensional kinetic
energy spectrum to q−n.

We generated two sets of ten mean flows that we used
throughout the study, with n = 3 (corresponding to the direct,
enstrophy cascade of 2D turbulence) and n = 5/3 (corre-
sponding to the inverse, energy cascade in the same situation).
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FIG. 1. Sample rays in two cases. The first column shows the ray path as dots in physical space, superimposed on the stream function of
the mean flow; the spacing of the dots becomes denser and resembles a solid line if the ray slows down. Lighter red color refers to later times
for orientation. The second column shows the path of the ray in the phase space and the third column shows the logarithm of the intrinsic
frequency ω as a function of time. Top row: α = 1.2 and ε0 = 0.5, corresponding to an ergodic trajectory with no shift in frequency and no
fast-slow transition. Bottom row: α = 0.5 and ε0 = 0.5, corresponding to a trapped trajectory with shift in frequency, indicative of the fast-slow
transition.

The flows are defined on a 2π × 2π doubly periodic domain,
with 512 × 512 grid points. These values ensured numerical
convergence, but our results remained qualitatively insensitive
to decreasing or increasing the grid resolution.

The Hamiltonian ray-tracing system is then solved numer-
ically using MATLAB’s ODE45 scheme with adaptative time
stepping, and relative and absolute tolerances were set to
10−3. The random mean flow and its gradient tensor is com-
puted exactly from the Fourier modes at each grid position
and then interpolated to the wave packet positions using lin-
ear interpolation from the closest neighbors. The accuracy of
this interpolation step is the most important element of the
numerical scheme for the purpose of accurate computation of
the ray paths. We checked that changing the error tolerances
to 10−2 and to 10−4 did not change the results, although the
effort required to compute a large number of rays with a
tolerance down to 10−4 is then significantly increased, due to
the adaptative time stepping.

IV. RESULTS FOR STEADY MEAN FLOWS

Throughout this section we consider a random steady mean
flow of the form (14) with power law n = 3. For a steady
mean flow the invariance of # along rays implies that changes

in ω(k) are compensated by changes in the Doppler-shifting
term ε0U · k. In the regime α > 1 changes with k are su-
perlinear in ω but only linear in the Doppler-shifting term,
hence the stretching of k must eventually cease because the
aforementioned compensation becomes impossible. Together
with the increase of cg with k if α > 1, this leads to the simple
prediction that in this regime fast waves remain fast forever,
i.e., that ε0 " 1 implies ε(t ) " 1 uniformly in t . Moreover, it
also appears likely that almost all slow waves will eventually
transition to fast waves, simply because any stretching of k
will reduce ε(t ).

Conversely, if α < 1 then the dynamics is reversed: the
frequency changes sublinearly with k, making the changes in
the Doppler-shifting term dominant, and cg decreases as k is
stretched. This suggests that in this regime slow waves remain
slow, while fast waves may also transition to slow waves.

A. Ergodic and trapped rays

The qualitative difference between these two regimes is
illustrated with a couple of sample runs in Fig. 1. Both runs
start with ε0 = 0.5 but in the first run α = 1.2 whereas in the
second it is α = 0.5. As expected, in the first run the wave
remains fast, traverses the domain in a seemingly ergodic
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FIG. 2. Evolution of k in the case α = 0.5 and ε0 = 0.5. The
wave packet is trapped around t ≈ 100 and afterwards k exhibits
secular growth, with fluctuations around a linear trend (oblique blue
line).

fashion, and there is no discernible trend in k/k0 or ω/ω0. By
contrast, in the second run there is a fast-slow transition, k/k0
and ω/ω0 sharply increase, and the ray gets trapped in a single
vortex.

As an aside, in the second case k eventually grows linearly
in time once the wave has been trapped. This can be explained
by considering the limiting dynamics of passive advection
by a circumferential vortex flow U (r), say. The wave packet
maintains a fixed radius r and its angular momentum is con-
served, so

ṙ = 0 and (k × r)· = 0. (15)

With k = (kr, kθ ) it follows that k̇θ = 0 and, using Eq. (10),
that

k̇r = −rkθ

d
dr

(
U (r)

r

)
. (16)

This makes obvious that any nonuniform angular velocity U/r
eventually leads to secular growth of kr and k. Indeed, Fig. 2
shows k in the α = 0.5 case of Fig. 1: the blue line shows the
mean trend when the ray is trapped, corroborating this simple
explanation.

The two different regimes can be explored statistically by
looking at the sample distribution at t = 200 of 1600 rays
initially distributed evenly on a 40 × 40 grid. The outcome
is shown in Fig. 3 with α = 1.2 and ε0 = 0.5 at the top and
α = 0.5 and ε0 = 0.5 at the bottom (same values as in Fig. 1).
The left plots present the end locations of the rays superim-
posed on the stream function and the center plots coarse grains
this distribution over 20 × 20 bins to estimate the probability
density function (PDF) of the rays. This makes the concen-
tration of rays in the vortex cores qualitatively apparent in
the α = 0.5 case. To measure this quantitatively we exploit
that the stream function ψ is negatively correlated with the
vorticity ∇2ψ and therefore |ψ | is positively correlated with
the vorticity magnitude. Hence |ψ | can be used as a smooth
proxy for vortex cores and the third column shows the time
evolution of the sample Pearson correlation coefficient R(t )

between |ψ | and the ray PDF. In the α > 1 regime R fluctuates
close to zero, but in the α < 1 regime R rises to 0.3 and stays at
this value for the entire time of the simulations. These results
are insensitive to the particular mean flow sample being used.

B. Phase diagram of fast-slow transitions

We perform a large number of simulations to map out the
long-term behavior of the rays as a function of the parameters
α and ε0, which yields a phase diagram of the fast-slow
transitions. We discretize in steps of 0.025 in either parameter
and choose limits of α = −2.4 through 1.2 and ε0 = 0.025
through 1. The asymmetric range of α focuses on the potential
trapping regime with α < 1. For each (α, ε0) we draw ten
random mean flow samples and launch 16 rays spaced on
a uniform grid for each sample, corresponding to a total of
160 rays for each location in phase space. The evolution of
the intrinsic ω and ε are monitored as a function of time and
averaged over all rays.

The phase diagram of the values of ε at t = 200 is pre-
sented in Fig. 4 for two different mean flows. Both have
qmin = 1 and qmax = 30 but their power-law exponent is dif-
ferent: n = 3 in the top row and n = 5/3 in the bottom row.
The center plots show the corresponding phase diagram with
the ray-averaged ε(200) color shaded such that blue corre-
sponds to fast waves and red to slow waves. We identify two
regimes: (i) a slow regime in which ε(t ) goes to high values
(saturation of the color bar in red), indicating that the group
velocity becomes small compared to the mean flow; and (ii) a
fast regime in which ε(t ) remains bounded and smaller than
1. As discussed in the case of a single ray, these regimes are
associated with (i) a significant shift in intrinsic frequency or
(ii) no such shift and therefore ω remains close to its initial
value. In the shift case, not all rays are trapped in background
flow structures but the system reaches a state in which a
majority of rays are trapped. Moreover, some rays can still
escape this trapped dynamics while others are being trapped in
turn; we observed that this detrapping behavior is more likely
to occur close to the regime boundary. On the other hand, none
of the rays are trapped in the no-shift case, their trajectory
being ergodic.

As previously mentioned, a clear boundary at α = 1 is seen
when ε0 approaches 1, highlighted by a white dashed line;
this boundary has been detected consistently in other runs for
values of ε0 up to 1.5. For α > 1, no fast-slow transitions
have been detected in the simulations and the only attracting
end state is the fast wave regime. For α < 1, however, there
is a threshold for ε0 such that above the threshold the slow
wave regime now becomes the only attracting state (identified
in Fig. 4, right). Conversely, below that threshold the fast
wave regime remained the attractor for the duration of the
integration. We found very little sensitivity of these threshold
values to integration time and domain size, which warrants a
closer inspection of the dynamics near these values.

C. Threshold Boundary

The existence of a threshold in ε0 below which a fast-
slow transition becomes impossible can be made plausible
by considering the detailed consequences of the conservation
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FIG. 3. Top row: no-transition case with α = 1.2 and ε0 = 0.5. Bottom row: fast-slow transition case with α = 0.5 and ε0 = 0.5. Left:
stream function ψ and 1600 rays at t = 200. Center: normalized PDF computed by counting the rays on a coarse-grained grid. Right: sample
correlation coefficient between |ψ | and the ray PDFs, which is close to zero in the no-transition case but significantly positive in the fast-slow
transition case (several graphs for different mean flow samples are plotted).

of absolute frequency in (3) for the illustrative case α = 1/2,
which is relevant to the deep-water surface waves studied in
Ref. [6]. For α = 1/2 the conservation law # = #0 is

2
√

k + ε0Uk cos θ = 1
α

√
k0 = 2. (17)

Here U = |U|, θ is the angle between U and k, and the initial
Doppler-shifting term has been neglected for simplicity. This
is a quadratic equation for

√
k and for small ε0 its roots are

O(1) on one branch and O(1/ε0) on the other. The ray starts
with

√
k0 = 1 on the O(1) branch and a fast-slow transition

corresponds to a continuous transition to the other, O(1/ε0)
branch. This requires that the two branches coincide on a
double root, the condition for which is that

1 + 2ε0U cos θ = 0 (18)

holds at some moment in time along the ray. If ε0 is small
enough that this condition can never be satisfied then a fast–
slow transition is strictly impossible. For a single flow sample
a strict threshold for ε0 can be computed from this condition
using the maximum flow velocity of the sample. For ran-
dom mean flows the threshold depends on the extreme-value

statistics of the flow, e.g., for a two-dimensional Gaussian
random mean flow with unit variance a restriction to flow
speeds within three standard deviations yields |U cos θ | !
3/

√
2, so ε0 <

√
2/6 ≈ 0.24 would be a reasonable thresh-

old for this random mean flow. This agrees quite well with
the observed threshold for α = 1/2 in Fig. 4. Notably, the
relevant ε0 values for the surface waves studied in Ref. [6]
were significantly below this threshold, which is the consistent
with the lack of fast-slow transitions observed in that study.
The case α = −1 also leads to a quadratic equation, which
then yields the threshold ε0 <

√
2/12 ≈ 0.12, again in good

agreement with Fig. 4. We were not able to derive a general
formula for the threshold as a continuous function of α < 1.
Some heuristic arguments suggest that the threshold is propor-
tional to 1/(1 − α), which appears broadly consistent with the
numerical results, but is not very accurate when comparing the
detailed results for the two cases α = 1/2 and α = −1.

The threshold boundary converges towards a similar shape
for different random mean flows: in Fig. 4, we present the
results for mean flows with power laws n = 3 and n = 5/3,
but we also observed it for various other cases such as n = 2
or n = 10. For example, the threshold at α = 0 varied slightly
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FIG. 4. Comparison between the n = 3 case (top row) and the n = 5/3 case (bottom row), showing a representative stream function (left),
the phase diagram of ε(t = 200) in the (α, ε0 ) space obtained by computing the trajectories of 16 rays on ten mean flows (center), and the
extracted mean boundary with its standard deviation computed over the ten mean flows (right).

but was always in the range 0.2 ± 0.05. This convergence is
also very robust, as the boundary can be obtained only with
statistics on a few set of rays (9 rays for a single mean flow,
for instance, would give qualitatively the same behavior as the
160 rays used to obtain Fig. 4).

V. UNSTEADY MEAN FLOWS

Based on the earlier work on two-dimensional ray dynam-
ics in Ref. [17] it can be anticipated that allowing the mean
flow to be time dependent will have a significant impact on
the fast-slow transitions. We explored this by using a simple
stochastic model for the time evolution of the Fourier coeffi-
cients in (14). Specifically, all the parameters (a, b) undergo
independent Ornstein-Uhlenbeck processes (e.g., Ref. [18])
with unit variance and temporal autocorrelation that decays
exponentially with an adjustable decay rate γ " 0. This pro-
duces a time-dependent mean flow with stationary statistics
and γ = 0 recovers the steady mean flow from before. In
actual fluid dynamics the autocorrelation decay rate is a
modest multiple of the vortex turnover rate, which scales as
the vorticity ε0∇2ψ in our model. Hence the most relevant

parameter range for γ is a modest fraction of the RMS vortic-
ity, which we denote by ε0ξ0, where ξ0 is the unscaled RMS
of the vorticity of the flow.

Phase diagrams computed for various unsteady mean flows
are shown in Fig. 5 for a q−3 mean flow, with γ /ε0ξ0 varying
from 0 (steady flow) to 1 (fast varying flow). The steady
mean flow diagram is consistent with the previously dis-
cussed ones. The fast varying flow diagram, however, shows
a different behavior: the curved boundary present for α < 1
had disappeared, and only remains a sharp cutoff at α = 1,
meaning that frequency shift is always observed for power
laws smaller than 1 no matter the initial ratio ε0 between the
RMS of the flow and the group velocity of the waves. This
constitutes a white noise regime, in which the variations of the
flow are happening so fast that they are decorrelated between
each time step, so the waves are seeing very different and
abruptly changing features. This is ultimately an analogous
regime to the large ε0 case for the steady flow, in which the
group velocity is too small for the waves to follow the flow if
α < 1. Between the steady and the fast-varying flow cases, a
transition occurs for γ /ε0ξ0 ∼ 10−2, although a precise inves-
tigation of this transition was not carried out.
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FIG. 5. Evolution of the phase diagram of ε(t = 200) in the (α, ε0 ) space in the case of an unsteady mean flow. On the far left is the base
case of a steady mean flow. On the far right is the case of a fast varying mean flow that leads to a decorrelated white noise regime for which the
boundary between shift and no-shift is a straight line at α = 1. A gradual transition lies in between and separates these two limiting behaviors.

VI. CONCLUDING REMARKS

Motivated by recent studies in geophysical fluid dynamics
involving internal and surface gravity waves interacting with
a mean flow, we performed detailed ray-tracing simulations
of wave packets based on a simple two-dimensional isotropic
power-law dispersion relation of the form ω ∝ kα . This model
captures some of the pertinent dynamics of internal gravity
waves (such as the possible reduction of group velocity with
increasing wave number), but it also fails in other respects,
which limits that comparison. Foremost of these is that the
wavenumber sets belonging to a single frequency are com-
pact circles here while they are unbounded three-dimensional
cones for internal waves. So this is a partial analogy at best
and our two-dimensional model is more relevant to surface
gravity waves.

Now, the ratio ε of the typical mean flow speed U to the
group velocity cg then demarcates two distinct regimes of
fast (ε " 1) and slow (ε " 1) waves. The markedly different
behavior of these two wave types was illustrated in Fig. 1:
fast waves are barely affected by the mean flow, they traverse
the domain in a seemingly ergodic fashion, and there is no
net drift in their frequency ω. The latter property is particu-
larly important as wave action conservation implies that wave
energy changes are proportional to changes in ω, hence fast
waves do not exchange much energy with the mean flow. In
contrast, slow waves are strongly affected by the mean flow,
they get trapped in coherent flow structures such as vortices,
and their frequency grows significantly (cf. Figs. 2 and 3),
indicating that slow waves are extracting energy from the
mean flow.

Fast-slow transitions, whereby a fast wave becomes a slow
wave or vice versa, depend on α and on the initial value of
ε. Crucially, they also depend strongly on whether the mean
flow is steady or not. This is because for steady mean flows
the ray-tracing equations conserve the absolute frequency #
and this conservation in time provides a nontrivial forever
link to the initial conditions of the wave packet. The profound
implications of this for the long-term dynamics are illustrated

in Fig. 4. Clearly, if α > 1 then fast waves are the only at-
tracting states in the long run, i.e., fast waves remain fast and
slow waves become fast. Alternatively, if α < 1 then there is
a finite threshold value for ε0 (depending on α) below which
fast waves will remain fast forever; this is the main finding of
our study. Above that threshold, on the other hand, fast waves
will inevitably transition into slow waves in the long run,
thereby limiting the validity in time of asymptotic theories
based on fast waves. The underlying mathematical reason for
this finite threshold could be illustrated in detail in the special
case α = 1/2, which is relevant for surface waves.

Now, for unsteady mean flows the conservation of # no
longer holds and this allows more waves to transition from
fast to slow regimes. This is illustrated in the sequence of
(α, ε0) regime diagrams as a function of increased mean
flow unsteadiness in Fig. 5: as the unsteadiness increases the
thresholding behavior for α < 1 gradually fades away until
the only remaining regime threshold is α = 1. This state of
affairs, in which all waves eventually transition to slow waves,
is reached already at fairly modest levels of unsteadiness. For
example, the third panel corresponds to a rate of change of
the mean flow of just 10% of a typical eddy turnover time.
From this it seems plausible that in practice sufficient mean
flow unsteadiness will be the most likely cause of fast-slow
transitions, provided that the dispersion relation links large
values of k to small values of cg.

Of course, our study of unsteady mean flows was re-
stricted to the artificial time evolution of a random stream
function pattern, rather than to realistic fluid evolution. In
particular, this meant that coherent structures such as vortices
did not persist in a Lagrangian fashion in our simulations.
Whether this would affect our conclusions requires further
study.
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