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Random walk model for dual cascades in wave turbulence
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Dual cascades in turbulent systems with two conserved quadratic quantities famously arise in both two-
dimensional hydrodynamic turbulence and also in wave turbulence based on four-wave interactions. Examples
for the latter include surface waves and nonlinear Schrödinger equations with cubic nonlinearity. However,
numerical simulations in forced–dissipative equilibrium of two-dimensional turbulence and of a one-dimensional
wave system reveal that the physical nature of their cascades is starkly different. This is demonstrated by
comparing their spectra in a finite inertial range and by comparing the temporal fluctuations of their spectral
fluxes. In particular, the flux fluctuations are much larger in the wave case and frequently lead to instantaneous
flux values that have the opposite sign of the mean flux, a phenomenon that is completely absent in the
hydrodynamic case. A simple random walk model for the dual cascade in wave turbulence is then formulated
that is very successful in explaining these effects. In particular, the model is able to replicate the detailed shape of
the observed turbulent spectrum in a finite inertial range, and it also offers a ready explanation for the large flux
fluctuations. It is also shown that a nonlinear diffusion model for the wave system cannot explain the observed
spectral shapes. Overall, this suggests that in wave turbulence the systematic spectral fluxes observed in a dual
cascade do not require an irreversible dynamical mechanism, rather, they arise as the inevitable outcome of blind
chance.

DOI: 10.1103/PhysRevE.109.055102

I. INTRODUCTION

The elementary notions of turbulent cascades in hydrody-
namic and wave turbulence are discussed, with a focus on dual
cascades in forced–dissipative equilibrium. These cascades
have the remarkable property that exact turbulent fluxes and
flux directions in spectral space can be computed a priori, i.e.,
based only on knowledge of the forcing and dissipation wave
numbers.

A. Hydrodynamic turbulence cascades

Spectral energy cascades and inertial ranges are key
concepts in hydrodynamic turbulence, going back to the
foundational work by Kolmogorov in the 1940s on homo-
geneous isotropic turbulence [e.g., 1,2]. For example, in
three-dimensional incompressible fluid dynamics, the kinetic
energy E ! 0 is conserved by smooth solutions of the Euler
equations, and because E is quadratic in the velocity field there
is a well-defined spectral energy density E (k, t ) ! 0 such that

E =
∫ ∞

0
E dk = const. (1)

Here k ! 0 is the wave-number magnitude of the Fourier
components. A forced–dissipative stationary state can be
reached if energy is continually injected at some forcing
wave number k f and also continually extracted at some
larger dissipation wave number k+ (e.g., by the usual Navier–
Stokes dissipation terms, but other dissipation choices exist
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in numerical practice). Then E (k, t ) can be replaced by a
time-averaged density E (k), and the spectral energy budget
acquires source and sink terms at k f and k+, respectively. If
the forcing scale is much larger than the dissipation scale, then
there is an inertial range of wave numbers k such that

k f ≪ k ≪ k+. (2)

A constant spectral flux of energy through the inertial range
from k f down to k+ ≫ k f is then possible. In particular, if
P is the energy (per unit time and space) injected at k f and
P+ is the energy extracted at k+ then P = P+. (Here P has
units of length squared divided by time cubed.) The physical
mechanism behind this downscale (or “forward” or “direct”)
cascade is three-dimensional vortex stretching. Assuming that
E in the inertial range depends only on k and P then produces
the famous Kolmogorov spectrum E = CP2/3k−5/3 from ei-
ther dimensional analysis or, equivalently, from assuming that
the spectrum is self-similar under the scaling symmetries of
the Euler equations.

The situation is completely different for two-dimensional
incompressible flows [1,2], for which the curl of the velocity
field has only a single nonzero component q, which is then
materially advected by the flow. Physically this means vortex
stretching is absent. The material invariance of q along parti-
cle trajectories then implies the trivial integral conservation
of all smooth functions F (q). This is because the two-
dimensional flow is an area-preserving map that advects the
level sets of q and therefore equally the level sets of any F (q).
Of primary importance in turbulence theory is the quadratic
choice F (q) = q2/2, which leads to the integral conservation
of the so-called enstrophy Z ! 0. This is because, like energy,
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enstrophy is also sign-definite and quadratic in the velocity
fields, and therefore it, too, has a well-defined spectral density
Z (k, t ) ! 0. Moreover, Z = k2E follows from the definition
of the curl q and therefore

Z =
∫ ∞

0
Z dk =

∫ ∞

0
k2E dk = const. (3)

The importance of (3) is that it provides a second integral
conservation law for E , which is a significant constraint on its
evolution. For example, this second constraint makes it clear
that the three-dimensional forced–dissipative inertial range
scenario is not possible in two-dimensional turbulence. This
is because injection at k f of energy at rate P now also im-
plies injection of enstrophy at rate k2

f P. Dissipating energy
at k+ with P+ = P then implies enstrophy dissipation at a
rate k2

+P ≫ k2
f P, so no stationary state is possible because the

enstrophy budget is not closed.
This led to the realization that for stationary two-

dimensional turbulence it is necessary to have dissipation
both at large wave numbers k+ ≫ k f and also at small wave
numbers k− ≪ k f . This is the scenario of a dual cascade: a
forward cascade from k f to k+ and an inverse cascade from k f
to k−. Energy and enstrophy participate with nonequal rates
in these cascades and these rates can be computed exactly,
a remarkable fact that was first pointed out by Fjørtoft ([3]
hereafter F53). This follows from the twin budget constraints

P = P− + P+ and k2
f P = k2

−P− + k2
+P+. (4)

In particular, the proportion of energy dissipated at the low
wave number k− is

P−

P
=

k2
+ − k2

f

k2
+ − k2

−
, (5)

which tends to unity in the ideal limit of an infinitely
wide direct inertial range k+ → ∞. Hence energy goes pre-
dominantly upscale in two-dimensional turbulence while the
opposite is true for enstrophy, which goes predominantly
downscale. Physically, in free evolution this corresponds to
the formation and merging of large-scale vortices that con-
tain most of the energy, while most of the enstrophy resides
in small-scale filamentary vorticity structures, which are ad-
vected and elongated further by the vortices in a nearly passive
way. In summary, two-dimensional and three-dimensional hy-
drodynamic turbulent cascades function very differently, but
in both cases there are clear physical mechanisms related to
vorticity dynamics that explain these differences and thereby
lend robustness to the inertial range theories.

B. Wave turbulence cascades

In wave turbulence flow amplitudes are low by assumption
and the dynamics is dominated by dispersive wave modes
that evolve slowly in amplitude due to weak interactions with
other wave modes [e.g., Refs. 4–7]. Such interactions are
strongest when the participating wave modes form nonlinear
products whose time dependence projects onto other linear
wave frequencies in a resonant or nearly resonant fashion.
The dispersion relation and the form of the nonlinear terms
dictates the minimum size of interacting wave modes (triads,

quartets, etc.) that can form such a resonant group. For deep-
water surface waves (and also for the nonlinear Schrödinger
equation with cubic nonlinearity) the smallest resonant group
is a quartet of four wave modes that satisfy the conditions

k1 + k2 = k3 + k4 and ω1 + ω2 = ω3 + ω4, (6)

where the frequencies ωi = ω(ki ) ! 0 satisfy the linear dis-
persion relation. [Other sign choices in (6) are relevant to
capture all interactions in systems with multiple frequency
branches, but this is not important here.] Wave turbulence
theory then builds a statistical closure for these interacting
quartets, which leads to a kinetic integral equation for the
evolution of the mean spectral wave energy density. From
hereon we will assume that ω(k) is isotropic and therefore
depends only on k = |k| and also that ω(k) is increasing
with k.

Conservation laws are as important in wave turbulence as
they are in hydrodynamic turbulence. Each resonant quar-
tet (6) conserves the total wave energy, i.e., if Ei is the wave
energy in mode i then

E1 + E2 + E3 + E4 = const. (7)

This therefore implies conservation of total wave energy. But
each resonant quartet also conserves the so-called wave action
per mode, which is Ni = Ei/ωi. Combining this with (7), we
obtain the twin conservation laws for total action and energy
as

∑

i

Ni = const. and
∑

i

ωiNi = const., (8)

where the sum extends over all wave modes in the system.
There is now an obvious formal analogy with the twin two-
dimensional conservation laws (1) and (3) via

(E , Z, k2) ↔ (N, E ,ω). (9)

This implies a dual cascade in wave turbulence and that a ver-
sion of F53’s rule (5) holds for wave turbulence. Specifically,
if the waves are forced at ω f and dissipated at both ω− < ω f
and ω+ > ω f , then

Q−

Q
= ω+ − ω f

ω+ − ω−
(10)

holds for the total action input rate Q and its low-frequency
dissipation rate Q−. Hence wave action flows predominantly
upscale and wave energy flows predominantly downscale.
This is a convincing mathematical fact, but no ready physical
mechanism comes to mind that explains it.

Indeed, the similarity of (10) and (5) may mask sig-
nificant differences in the nature of the dual cascades in
two-dimensional hydrodynamic turbulence and those in wave
turbulence. For one thing, wave turbulence is similar to two-
dimensional turbulence because of the dual cascades, but it
is also similar to three-dimensional turbulence because wave
energy goes downscale, not upscale. Another point is that
the conservation of hydrodynamic enstrophy is exact whereas
the conservation of wave action is sometimes fragile and re-
stricted to resonant wave interactions and the kinetic equation,
i.e., it does not hold for the full nonlinear dynamics. For exam-
ple, this occurs in the case of deep-water surface waves. But
arguably most important is the lack of a compelling dynamical

055102-2



RANDOM WALK MODEL FOR DUAL CASCADES IN WAVE … PHYSICAL REVIEW E 109, 055102 (2024)

10 0 10 1 10 2

|k|

10 -6

10 -4

10 -2

10 0

E k

(a) - Kinetic energy spectrum for 2d turbulence (b) - Flux fluctuations for 2d turbulence
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FIG. 1. Left: Energy spectrum in forced–dissipative two-dimensional hydrodynamic turbulence. The flow is forced at k f = 5, and the
separate line is the theoretical enstrophy cascade spectrum with slope −3. Right: Histogram of enstrophy flux values (normalized to have unit
mean) collected at k = 20 (dashed line on the left panel). The standard deviation is 20% of the mean flux, all observed values are positive,
there is a poor fit with a normal distribution (solid line), and a better fit with a γ distribution (dashed line).

process that explains the wave cascades physically, in con-
trast to the well-understood advective dynamics of vorticity in
both three-dimensional and two-dimensional hydrodynamic
turbulence.

II. NUMERICAL SIMULATION OF DUAL CASCADES

We compare forced–dissipative dual cascades in two-
dimensional hydrodynamic turbulence against those in a
one-dimensional wave turbulence model. In both cases the fo-
cus is on the forward cascade, which in the first case involves
enstrophy and in the second case wave energy. Of course, even
though we restrict numerical attention to the forward cascade,
it is the underlying existence of twin conservation laws and
therefore of dual cascades that is absolutely essential.

The hydrodynamic simulation was performed using a stan-
dard pseudospectral model with 512 × 512 Fourier modes.
The flow was forced isotropically at wave numbers with mag-
nitude k f = 5 and run to a stationary state. The corresponding
mean energy spectrum is shown as the black line in the left
panel of Fig. 1. The other lines are snapshots of the instan-
taneous energy spectrum, which are all close to the mean
spectrum. Also indicated by the separate line is the ideal theo-
retical spectrum E (k) ∝ k−3 for the forward cascade, which
holds well throughout most of the inertial range. In other
words, the impact of the dissipation range onto the spectral
shape in the inertial range is weak.

The right panel shows a histogram of 10 000 instantaneous
enstrophy flux values measured at wave number k = 20,
which corresponds to the dashed vertical line well inside the
forward inertial range. These flux values have been normal-
ized by their mean value, and the standard deviation is just
20% of the mean value, so the instantaneous flux values are
dominated by their mean value and they are never negative.
This allows fitting normal and gamma distributions to the data,
and the latter seemingly yields a better fit. Collecting flux
values at other wave numbers inside the inertial range gives
virtually identical results, with the standard deviation ranging
from 10% to 30%.

Turning to wave turbulence, a detailed study of the for-
ward branch of a dual cascade was recently published in [8]
(hereafter DB23). The underlying model was a member of
the one-dimensional MMT model family developed in [9]
and used as a testbed for wave turbulence theory ever since.
The model is based on a complex wave function ψ (x, t ) that
satisfies

iψt = Lαψ + |ψ |2ψ (11)

in a periodic domain. This is the nonlinear Schrödinger equa-
tion with cubic nonlinearity and a modified linear term, which
is defined on Fourier modes by Lα exp(ikx) = |k|α exp(ikx).
Four-wave resonances are possible if 0 < α < 1 and the sim-
ulations used α = 1/2, for which the linear dispersion relation
ω(k) =

√
|k| resembles that of deep-water surface waves.

However, the precise value of α is not essential for the results,
which has been validated using a comparison run with α =
3/4 that did not change the outcome. [The full MMT model
has an additional parameter that modifies the nonlinear terms,
but here (11) is sufficient.] Standard white-noise forcing at
k = k f and dissipation operators at k− and k+ were added, see
DB23 for details. A forced–dissipative stationary state was
reached and the power-law exponent of the spectral action
density n(k) in the forward inertial range was carefully mea-
sured. The prediction from the kinetic equation is n ∝ k−1,
but the observed power law k−s was invariably steeper, with a
very slow convergence towards the k−1 slope (see left panel in
Fig. 2). Crucially, the impact of the value of k+ was felt across
the entire inertial range and not just in the dissipation range.
A reasonable empirical fit for s was [cf. (48) in DB23]

s ≈ 1 + 3
2

ω f

ω+
. (12)

Achieving convergence is computationally demanding if ω =√
|k|, because then the frequency bandwidth is just half of

the wave-number bandwidth. The right panel in Fig. 2 shows
a histogram of (normalized) instantaneous wave energy flux
values at k = 400 in the inertial range. In contrast to the
situation in two-dimensional turbulence, there is now a much
larger random component, the normalized standard deviation
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(b) - Flux fluctuations for MMT model
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FIG. 2. Left: Action spectra and measured power laws in the forward inertial range for six MMT model simulations. The forcing is at
k f = 100, and the small-scale dissipation wave number k+ doubled from run to run. A power law k−s is fitted in the indicated observation
window k ∈ [400, 800] with results for s in the legend, showing very slow convergence to the ideal value s = 1. Right: Histogram of energy
flux values (normalized to have unit mean) collected at k = 400 for the run with the second-smallest k+. The standard deviation is 345% of the
mean flux, almost 40% of observed values are negative, and there is a good fit with the normal distribution (solid line).

is a massive 340%, and almost 40% of observed values were
negative, i.e., they had the opposite sign of the mean flux!

Comparing the two cases it is clear that the spectral slope is
affected by the dissipation wave number much more strongly
in the wave case, where it affects a large part of the inertial
range. Second, the instantaneous wave energy flux values have
a much stronger random component than the corresponding
enstrophy fluxes, so much so that almost 40% of wave energy
flux values were negative. This contrasts with 0% negative
values in the hydrodynamic case. Finally, the flux fluctuations
follow a normal distribution to a very good approximation in
the wave case but decidedly not in the hydrodynamic case.

III. RANDOM WALK MODEL

We describe the model and study its predictive perfor-
mance without attempting any rational justification for it. A
discussion of whether the model can be so justified is deferred
to Sec. IV. The derivation uses basic facts about Itô diffusions
that can be found in textbooks such as [10,11].

A. Formulation of the model

Consider a lump or particle of wave action performing a
continuous one-dimensional random walk in frequency space.
Let %(t ) be the frequency of the particle at time t , and
let %(0) = ω be its initial condition. The frequency domain
I = [ω−,ω+] is bounded, and the walk terminates when the
particle hits either of the two boundary points. The evolution

d%(t ) =
√

2γ (%) dW (t ) (13)

is a drift-free Itô diffusion with multiplicative noise. Here dW
is the increment of a Wiener process, and the function γ (ω) >
0 is arbitrary at this stage, except for the requirement that it is
positive throughout the domain I .

The particle will exit I in finite time and the probability that
it exits at the left boundary is a function of the initial condition
u(ω) that satisfies the boundary-value problem

Lu = 0 with u(ω−) = 1 and u(ω+) = 0. (14)

Here the operator

L = γ (ω)
∂2

∂ω2
(15)

is the generator of the diffusion (13). The assumption γ > 0
reduces (14) to u′′(ω) = 0, and hence u(ω) is the straight line,

u(ω) = ω+ − ω

ω+ − ω−
. (16)

Conversely, the probability of exiting at the right boundary
ω+ is 1 − u(ω). After identifying the forcing frequency ω f
with the initial condition %(0) = ω, we see that the exit prob-
ability for the lump of wave action in (16) is identical to the
action flux rate predicted by Fjørtoft’s dual-cascade argument
in (10). Repeating the particle random walk many times will
therefore result in a mean flux of wave action in agreement
with (10), and the mean wave energy budget is then also
satisfied. This demonstrates that it is possible to achieve the
delicate dual-cascade flux balance in (10) by blind chance.

Persistent insertion of action lumps at ω f at some fixed rate
R > 0 per unit time leads to a forced–dissipative stationary
state. The corresponding stationary action density m(ω) is a
solution to the forced steady Fokker–Planck equation

0 = L†m + Rδ(ω − ω f ), where L†m = ∂2

∂ω2
[γ (ω) m]

(17)
is the adjoint of L, and m(ω−) = m(ω+) = 0. The overall
magnitude of m(ω) is proportional to the injection rate R, but
this does not affect the shape of m(ω). For transparency in the
derivation we use m(ω f ) = 1.

In the forward inertial range ω f < ω < ω+, so (17) reduces
to L†m = 0, which is solved by γ m = a + bω with constants
(a, b). Fitting to the boundary conditions yields

m(ω) = γ (ω f )
γ (ω)

ω+ − ω

ω+ − ω f
. (18)

To determine γ (ω) it is sufficient to postulate a theoretical
power law for an ideal forward inertial range, i.e., an inertial
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range with infinite frequency bandwidth ω+/ω f . This corre-
sponds to the limit ω+ → ∞ while keeping (ω,ω f ) constant.
If the theoretical prediction is m ∝ ω−y, then this implies
γ (ω) = ωy up to an irrelevant factor and hence the final result

m(ω) =
(ω f

ω

)y ω+ − ω

ω+ − ω f
, or m(ω) = ω+ − ω

ωy
(19)

up to a scaling factor. The frequency action density m(ω) is
therefore a linear combination of two power laws, ω−y and
ω1−y, and this is the main prediction of the model. A local
power-law fit of (19) yields

−∂ln m
∂ln ω

= y + ω

ω+ − ω
, (20)

which is always steeper than the ideal slope y. The excess
slope is proportional to ω/ω+ for small ω/ω+ ≪ 1, which
recovers the empirical finding (12) if the observation ratio
ω/ω f is kept constant. However, (12) was obtained for a
wave-number action density n(k), so (19) and (20) need to
be adapted based on ndk = mdω.

This step depends on α, and assuming an even spectrum
n(k) = n(−k) it suffices to consider k > 0 so that ω = kα .
This yields

n(k) = αkα−1 m(kα ) = αkα−1
(

k f

k

)αy kα
+ − kα

kα
+ − kα

f

. (21)

Comparing (19) to (21) suggests that ω is a better variable
than k. If k+ → ∞ then n ∝ k−z, with

z = 1 + α(y − 1). (22)

The counterpart of (20) is

−∂ln n
∂ln k

= z + α
ω

ω+ − ω
. (23)

So the excess slope in k space is α times the excess slope
in ω space. The theoretical slopes in the forward cascade of
this MMT model are z = y = 1 for all values of α, and hence
n(k) is a linear combination of k−1 and kα−1. Notably, these
consequences of the random walk model do not depend on
fluctuations induced directly by the wave-forcing mechanism,
in contrast with the situation explored in [12].

B. Comparison with direct numerical simulations

We consider again the left panel in Fig. 2, especially the
legend, in which the slow convergence towards k−1 is quan-
tified. To compare with the prediction from the random walk
model

n(k) =
k1/2
+ − k1/2

k
(24)

(up to a factor) requires setting the effective value of k+ for
each simulation, which should be done in a very simple man-
ner to avoid overfitting. The MMT model was simulated using
a pseudospectral code with n Fourier modes so that the max-
imal wave number was n/2. The small-scale dissipation was
tuned to restrict the excited wave-number band to |k| < n/4
for de-aliasing. This motivates the very simple choice

k+ = n
4

(25)

for each run. (This agrees within 10% or so with more elabo-
rate methods for choosing k+ based on the actual dissipation
spectral density computed by the model.) In the simulations
n ranged from to 16 384 to 524 288, so the corresponding k+
ranged from 4096 to 131 072.

First off, for small ω/ω+ the random walk model (23)
predicts an excess slope for n(k) of size ≈0.5ω/ω+ and the
empirical rule (12) had 1.5ω f /ω+. To compare these two, note
that the observation window k ∈ [400, 800] corresponds to
ω ∈ [20, 28], and with ω f = 10 the random walk prediction
therefore ranges from [1, 1.4]ω f /ω+. This appears reason-
ably close to the empirical rule. But a much more precise
comparison is given in the left panel of Fig. 3, which shows
n(k) for k > k f as predicted from (24) for the parameters of
the direct numerical simulations. These look very similar
to the bundle of MMT spectra in the left panel of Fig. 2.
Moreover, the legend shows least-squares estimates for the
slopes obtained by exactly the same least-squares method as
in DB23. These are in very close agreement with the observed
slopes in Fig. 2. Finally, the right panel in Fig. 3 shows in
the same plot the observed and the modeled action spectra
for the two runs with the lowest resolution, because for these
runs the discrepancies from the ideal power law are strongest.
The plots are offset by a decade for illustration purposes. Also
plotted is the ideal slope k−1 as a thin straight line; all curves
are pinned to coincide at k = 169, somewhat above k f = 100.
Clearly, the observed and the modeled spectra agree very well
throughout the inertial range and even in the dissipation range.
By contrast, the straight line for the ideal power law is clearly
inaccurate in much of the inertial range and irrelevant in the
dissipation range. Moreover, as suggested by a referee, it was
checked that this is true also for the transient development
of the spectrum: as the spectrum grows towards its forced–
dissipative stationary state, its shape is already captured well
by the random walk model.

In summary, in all cases the shape of the power spectrum
is captured in detail by the random walk model after fitting
only one parameter, the dissipation wave number k+, by the
straightforward Eq. (25).

C. Nonlinear diffusion model

Nonlinear diffusion models have a long history in both
hydrodynamic and wave turbulence theory [e.g., Refs. 6,7,
and references therein] and it is natural to compare their pre-
dictions to those of the random walk model. They are derived
based on the assumption of strong locality of interactions
in k space and combine that with further phenomenological
assumptions about the inertial range. This results in a local
conservation law for E (k, t ) in the form

∂E
∂t

+ ∂F
∂k

= 0 (26)

in which the flux F is a function of (k, E , dE/dk). Steady
states of this equation form a one-parameter family of solu-
tions (ignoring a second parameter trivially related to overall
amplitude scaling). By construction, the ideal theoretical
power law is a member of this family, but the additional
parameter allows satisfying a finite boundary condition such
as E = 0 at k = k+. It is therefore natural to compare the
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FIG. 3. Left panel: Shape of wave action spectra in the forward inertial range as predicted from the random walk model (18) for the six
runs in Fig. 2. The dissipation wave number k+ is chosen as in (25). The legend shows the predicted slopes using the same fitting method as
in DB23, which are in very good agreement with those in Fig. 2. Right panel: Detailed comparison of simulated (solid lines) and predicted
(dashed lines) spectra for the two runs with the lowest resolution. The spectra are offset by a decade for clarity. This shows a very good fit,
whereas the ideal slope (indicated by the straight line) is significantly off.

predictions from the random walk model (which led to a
linear diffusion equation) with the predictions of a nonlinear
diffusion model for the MMT equation in the forward cascade.
It is straightforward to derive such a model for the MMT
system, though this does not seem to have been written down
before.

The phenomenological assumptions for the flux F are
threefold. First, F = 0 in a state of thermodynamic equilib-
rium. Second, F = const. for the theoretical power law in
the inertial range. And third, F should scale with E in a
manner consistent with the relevant equations of motion. For
the forward cascade in the MMT model this means F = 0 if E
is constant (equipartition of energy), F = const. if E = ωn =
1/

√
k, and F should be proportional to E3. The latter scaling

is based on the kinetic equation for four-wave interactions
and therefore differs from the scaling obtained directly from
the MMT equation, which would be F ∝ E2; this reduction
in flux efficiency for weak waves is a hallmark of wave

FIG. 4. Predicted shape of wave action spectra in the forward in-
ertial range from the nonlinear diffusion model. Compared to Figs. 2
and 3, the action spectra is very close to the ideal k−1 throughout the
inertial range.

turbulence theory. Hence

F = −k5/2E2 dE
dk

, (27)

and the corresponding family of steady states is

E = (A − Bk−3/2)1/3 (28)

with constants (A, B). Fitting to E (k+) = 0 yields the action
spectrum

ñ(k) = E
ω

=
(k3/2

+ − k3/2)1/3

k
(29)

up to a factor. This differs appreciably from the correspond-
ing shape (24) based on the random walk model. Figure 4
shows plots of ñ and the values of the associated slopes for
the same six runs considered before. Clearly, the nonlinear
diffusion model hews closely to the ideal slope k−1 for almost
the entire inertial range and therefore captures none of the
bending down of the action spectrum that was observed in
the numerical simulations. This is confirmed by the measured
power-law slopes, which are very different from those in the
direct numerical simulations in Fig. 2. Overall, the nonlinear
diffusion model delivers a poor fit to the wave turbulence

TABLE I. Measured power-law slopes vs resolution for direct
numerical simulation, random walk model, and nonlinear diffusion
model.

Slope comparison summary

k+ DNS RWM NDM

4096 1.26 1.30 1.03
8192 1.18 1.18 1.01
16384 1.12 1.12 1.00
32768 1.09 1.08 1.00
65536 1.07 1.05 1.00
131072 1.06 1.04 1.00
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spectra with finite bandwidth, and the opposite is true for
the successful predictions of the random walk model. Of
course, this finding in the present situation does not inval-
idate the productive use of nonlinear diffusion models in
other wave turbulence problems. The results are summarized
in Table I.

IV. DISCUSSION

The simple random walk model worked remarkably well
for the forward cascade in this wave turbulence model, so it is
natural to consider how to explore and test it in a wider range
of settings and also whether the model could be derived from
the underlying dynamics in a rational fashion.

The simplest extension within the current setup is to adapt
it to the inverse part of the dual cascade based on the theo-
retical slope there, which differs from the z = 1 slope in the
forward cascade. Numerically this regime can be explored
by increasing k+ while keeping k f /k+ constant. This is a
straightforward process, albeit numerically demanding. DB23
did not consider the inverse cascade, so this requires new
high-resolution simulations. The more significant extension
is to work with a two-dimensional MMT system, which fol-
lows in a straightforward fashion from (11) by replacing |k|
with the magnitude of a two-dimensional wave-number vec-
tor. The two-dimensional MMT model covers basically the
whole range of possible nonlinear Schrödinger equations with
cubic nonlinearities, so this would be quite general. One could
expect the flux fluctuations to be affected by the additional
spatial dimension, which presumably reduces the amount of
backscattered, negative flux in the inertial range. Conversely,
it would be interesting to investigate a wave turbulence model
based on three-wave interactions, which does not have a dual
cascade, so it is an open question as to whether the flux
fluctuations in such a model show the same level of apparent
randomness.

Turning to the question of whether the model can be de-
rived from the underlying equations, it is important to be
aware of the shortcomings of the model as an illustration of
the whole dynamics. First off, the model features strong con-
servation of action but only weak conservation of energy, i.e.,
action is conserved on every realization of the random walk
but energy only in distribution, after averaging over many such
realizations. This is, of course, different from the underlying
dynamical system, which conserves both quantities strongly.
A second issue is connected to this problem, namely, that a
single lump of wave action seeded in the spectral domain
manifestly does not behave in the manner envisaged here, if
only for the conservation reason mentioned before. In other
words, a single blob released into an otherwise empty spec-
trum would have to spread immediately if it were to move

at all, as a well-known consequence of the dual conservation
laws.

But this is less damning than it appears, because the parti-
cle in this model should really be interpreted in the spirit of
a “test particle,” a familiar concept in mean field theory and
plasma physics [e.g., 13]. In this view there is a pre-existing
broadband spectrum of waves and the weak test particle is
released into the buffeting and push and pull due to all the
modes in that broadband spectrum, but without feeding back
onto them. Self-consistency is then established by making the
resultant probability density of the test particle proportional to
the spectral density of the broadband wave spectrum. This test
particle concept also resolves the problem of weak conserva-
tion of wave energy, because now the test particle has only a
tiny amount of action and energy compared to all the other
modes. Therefore appreciable budget changes require many
test particles, and this will result in accurate conservation of
both action and energy by the law of large numbers. From
this perspective the only necessary ingredient to the model is
a prediction for the ideal cascade slope. Famously, this slope
can be derived (at least formally) from the kinetic equation,
but it is also well known that in many cases the same ideal
cascade slope can be determined just from the assumption of
self-similarity combined with scaling symmetries of the un-
derlying equations (this is demonstrated for the MMT model
in DB23). So the kinetic equation is not necessary and need
not even be strictly valid for this approach to function.

We return to the fundamental question raised by the suc-
cess of the random walk model in the present wave turbulence
setting: What is the physical mechanism for the subtle bal-
ances in a dual cascade with a finite inertial range? It could
be a complicated action-at-a-distance mechanism whereby the
dissipation range k+ affects the inertial range dynamics even
of k f ≪ k ≪ k+. Or, it could be the inevitable outcome of
blind chance.
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