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Nanoscale metal oxide memristors have potential in the development of brain-inspired computing

systems that are scalable and efficient. In such systems, memristors represent the native electronic

analogues of the biological synapses. In this work, we show cerium oxide based bilayer memristors

that are forming-free, low-voltage (�j0.8 Vj), energy-efficient (full on/off switching at �8 pJ with

20 ns pulses, intermediate states switching at �fJ), and reliable. Furthermore, pulse measurements

reveal the analog nature of the memristive device; that is, it can directly be programmed to intermedi-

ate resistance states. Leveraging this finding, we demonstrate spike-timing-dependent plasticity, a

spike-based Hebbian learning rule. In those experiments, the memristor exhibits a marked change in

the normalized synaptic strength (>30 times), when the pre- and post-synaptic neural spikes overlap.

This demonstration is an important step towards the physical construction of high density and high

connectivity neural networks. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971188]

A memristor is a two-terminal electronic device, in which

a switching layer is sandwiched between two metal electro-

des.1–4 Such devices are important for realizing spike-based

hardware learning systems that are capable of processing

unstructured, temporal data.5–10 However, for memristor-

based technologies to be viable, it should have a compact

nanoscale footprint, operate at a voltage close to 1 V that is

compatible with complementary metal oxide semiconductor

(CMOS) technology, have reproducible electrical characteris-

tics, and possess high switching speed to minimize the energy

consumption.11 Furthermore, the hardware integration of

synaptic connections in advanced neural networks requires

memristors with multiple resistive states.12,13 These are chal-

lenging requirements and are difficult to implement without

significant innovations.

The phenomenological principle of memristor device

operation is based on the change in the physical properties of

a conductive filament (associated with the presence of oxy-

gen vacancies) by applying an electric field across the metal

oxide switching layer.14–16 The resulting motion of the oxy-

gen vacancies alters the device resistance between low (Set)

and high (Reset) states, depending on the direction and the

amplitude of the electric field. So far, a variety of structures

from a large set of have been studied in the literature.4,17,18

The most important finding reveals the trade-off between the

switching energy and the data retention time—that is often

referred to as voltage-time dilemma.19 This trade-off is asso-

ciated with the energy barrier of the device structure. For

example, devices made of metal oxides as titanium oxide

(TiOx) generally exhibit low operating voltage and compro-

mised data retention,20 while devices made of hafnium oxide

(HfOx) demonstrate the opposite.21 However, the fabrication

of devices with bilayer switching stacks has shown to be

effective in mitigating this trade-off. In particular, the

improvement in data retention was obtained by the incorpo-

ration of an ultra-thin metal oxide capping layer (for

example, aluminum oxide).22 On the other hand, the addition

of a reactive capping metal (for example, titanium, hafnium,

etc.) as an oxygen scavenging layer provided a pathway for

reducing the operating voltage of the devices.23,24 Despite

significant advances, a sub-1 V memristive device that simul-

taneously affords built-in analog behavior, energy efficiency

on par with a biological synapse, forming-free operation and

low device-to-device variations is still elusive.

Here, we have developed a memristive-based synaptic

device by engineering the material properties of an HfOx cap-

ping layer in a bilayer structure with a cerium oxide (CeOx)

switching layer. In this structure, the combination of sub-

stoichiometric structural properties of the HfOx capping layer

and its enhanced thermal resistivity at nanoscale dimensions

leads to the significant improvement in switching behavior of

the devices in terms of the operating voltages, device perfor-

mance uniformity, reproducibility, and reliability. Furthermore,

this structure yields an analog resistance state that is inherent.

This key attribute enables the implementation of Hebbian learn-

ing,25 validating the plasticity of the synaptic connection.

Our memristor consists of gold bottom electrode, HfOx/

CeOx switching layer, and aluminum top electrode. The

CeOx layer was reactively evaporated in oxygen plasma

ambient at 0.2 mTorr and an average deposition rate of

�0.06 nm/s. The HfOx layer was formed by plasma-assisted

atomic layer deposition (PE-ALD) using water and tetrakis

(dimethylamido) hafnium (Hf(NMe2)4) precursors. The film

optimization involved varying a wide range of deposition

conditions. The optimal HfOx capping layer was deposited at

200 �C. The pulse width of the hafnium precursor was 0.25 s

and the hold time between each pulse was 5 s. Devices were

isolated using a wet etching process by first patterning the

HfOx film in the buffered oxide etch followed by removing

the CeOx layer in a mixture of hydrochloric acid, potassium

hexacyanoferrate, and de-ionized water. The total thickness

of the bilayer switching layer in all experiments was kept at
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20 nm, while varying the thickness of the HfOx and CeOx

layers. Fig. 1(a) conceptually illustrates the effect of the

engineered HfOx capping layer on the concentration of

oxygen vacancies in the CeOx switching layer. X-ray photo-

electron spectroscopy (XPS) was performed to guide the

development of the bilayer structure (see supplementary

material). Fig. 1(b) shows the Hf 4f spectrum of the engi-

neered HfOx capping layer, revealing the sub-stoichiometric

nature of the film. The data indicate the presence of Hf 4f7/2

and Hf 4f5/2 peaks at 16.32 eV and 18.03 eV, respectively—

which is consistent with the previous reports in the litera-

ture.26,27 Metallic Hf was also found in the engineered HfOx

layer, evident from the peak at 15.02 eV. The chemical com-

position of the HfOx was quantified using the Casa XPS soft-

ware, in which x was found to be about 1.75.

Fig. 1(c) shows the Ce 3d XPS spectra of the CeOx

switching layer with and without the engineered HfOx cap-

ping layer. In these experiments, the CeOx and HfOx layers

were 20 nm and 0.8 nm, respectively. The thickness of the

HfOx was kept thin to allow the X-ray beam to penetrate into

the underlying CeOx layer and thus to improve the signal-to-

noise ratio of the Ce 3d spectrum. The bilayer structure

exhibits discernable u0 and v0 peaks, respectively, at 904 eV

and 885 eV (Refs. 28–30) that are absent in the spectrum of

the CeOx layer with no HfOx capping layer. The u0 and v0

peaks signal the reduction of the Ce4þ to Ce3þ states,29,30

which can be translated to the formation of excess oxygen

vacancies at regions near the HfOx/CeOx interface. This find-

ing is consistent with the first-principle simulations of the

HfOx/CeOx bilayer in Ref. 31. The marked increase of the

oxygen vacancy concentration in the bilayer structure

permits the formation of the conductive filament using a

smaller electric field, thereby enabling the low-voltage oper-

ation of the bilayer structure. Fig. 1(d) shows the representa-

tive dc current-voltage characteristics of two CeOx-based

devices with and without the engineered HfOx capping layer,

demonstrating significant reduction of the Set voltage to

below 0.8 V.

In a memristive device, the transition from low to high

resistance states occurs as the polarity of the electric field

across the device is reversed. As the reverse electric field

increases, the oxygen anions in the conductive filament begin

to disperse through drift and diffusion processes.10 Considering

the similar thickness of the switching layer in Fig. 1(d), the

improved Reset voltage of the bilayer device may be explained

by the locally enhanced diffusion of oxygen vacancies. We

infer that the enhanced thermal resistivity of HfOx at nanoscale

dimensions amplifies Joule heating in the CeOx switching

layer, thereby accelerating the dispersion of oxygen anions at a

lower electric field. To elucidate this concept, we performed

numerical heat transfer analysis using the COMSOL simulator

for two devices in Fig. 1(e) at the bias of �0.6 V. The simula-

tion results indicate significant enhancement of Joule heating in

the bilayer structure. We used the measured electrical parame-

ters of the layers in simulation, while the thermal parameters

were obtained from the literature.28,32–36

Low device variability is critical for implementing large

neural networks with high density of memristive synaptic

connections. Therefore, we statistically examined the effect

of the HfOx thickness on the important device parameters:

Set, Reset, and forming voltages. In these experiments, the

HfOx thickness was varied, while keeping the total thickness

FIG. 1. Improving memristor device characteristics using an engineered sub-stoichiometric HfOx capping layer. (a) Schematic structure of two memristors with

and without the engineered HfOx, conceptually illustrating the increase of the oxygen vacancy density in the CeOx switching layer. This attribute of the bilayer

memristor results in the forming-free operation and the reduction of the Set voltage. XPS spectra of the (b) engineered HfOx and (c) CeOx films with and without

the HfOx capping layer. The XPS studies indicate the increase of the oxygen vacancy concentration in the CeOx film capped with the oxygen-deficient HfOx layer.

(d) Representative current-voltage characteristics of two memristors, indicating the sub-1 V operation of the bilayer memristive device. (e) Heat transfer simula-

tions illustrate the enhanced Joule heating in the bilayer structure, causing the marked reduction of the Reset voltage (scale bars are 2 nm). The observed increase

in Joule heating arises from the high thermal resistivity of HfOx at nanoscale. The thickness of HfOx is 2 nm and the total thickness is 20 nm.
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of the bilayer stack fixed at 20 nm. We defined the thickness

ratio as the HfOx thickness to the total thickness of the

bilayer. The data in Fig. 2 indicate that the insertion of an

HfOx capping layer with the optimal thickness ratio of about

0.1 significantly improves the uniformity of the key device

parameters. Interestingly, this optimal thickness ratio also

coincides with the minimum operating voltages of the

bilayer structure. We surmise that the HfOx film begins to

act as an independent switching layer beyond this optimal

thickness ratio, resulting in a significant increase in both the

device operating voltages and the device variability.

A fresh memristive device generally requires an initial

formation of a conductive filament using a relatively large

electric potential (known as the forming voltage) before the

device can operate at normal Set and Reset voltages. Our

bilayer HfOx/CeOx device is free from such a limitation,

exhibiting forming-free behavior; i.e., the Set voltage is ade-

quate to form the conductive filament in a fresh memristive

device (see Figs. 2(a) and 2(b)). This characteristic is attrib-

uted to the efficacy of the HfOx capping layer in creating suf-

ficiently high concentration of excess oxygen vacancies in

the CeOx switching layer.

In Fig. 2(c), the Reset voltage begins to increase as the

HfOx film becomes thicker and the Reset voltage at the

thickness ratio of 0.4 becomes significantly large and thus

was not included. Fig. 3 shows the heat transfer simulations

for devices with varying HfOx/CeOx thickness ratio, in

which the total thickness of the HfOx/CeOx stack was

20 nm. The peak temperature value was found to be the

highest when the thickness ratio was about 0.1. The simula-

tion results suggest that capping with a sufficiently thin

layer of HfOx enhances the Joule heating, owing to the pro-

nounced thermal resistivity of HfOx at nanoscale. However,

as the thickness of the HfOx increases, the Joule heating

begins to diminish, which is consistent with the thickness

dependence of the HfOx thermal conductivity.36 The

enhanced Joule heating effect in the optimal structure is

therefore expected to enhance the diffusion of the oxygen

vacancies during the Reset process, thereby reducing the

Reset voltage.

The bilayer structure exhibits excellent switching reli-

ability at the thickness ratio of 0.1, which conceivably

stems from the reduced operating voltage of the device. In

Fig. 4(a), the optimal memristor bilayer structure survives

more than 2� 105 cycles of programming (endurance test).

FIG. 2. Effect of HfOx thickness ratio on the memristor device behavior. The data indicate that the optimal device characteristics, (a) forming voltage, (b) Set voltage,

and (c) Reset voltage, occurs at the thickness ratio of about 0.1. Moreover, the device-to-device variation is reduced at this optimal thickness ratio. The equivalency of the

forming and Set voltages at the optimal thickness ratio confirms the forming-free operation of the device. Each data point represents a device from 100-cycle average.

FIG. 3. Effect of HfOx film thickness on Joule heating. Numerical heat

transfer simulation results for several bilayer HfOx/CeOx structures with

varying HfOx to total thickness ratio at the bias voltage of �0.6 V. The total

thickness of the HfOx/CeOx stack was kept at 20 nm. The Joule heating

begins to diminish as the thickness of the HfOx was increased, which arises

from the thickness dependence of the HfOx thermal conductivity.36

FIG. 4. Device reliability studies. (a) The endurance test results for the CeOx and the optimal HfOx/CeOx devices. In addition to the improved endurance prop-

erties, the bilayer device exhibits larger HRS and LRS values compared to the device with no HfOx. The increase in the LRS and HRS values is favorable for

reducing the switching power consumption of the bilayer device. (b) The accelerated retention test for the CeOx and the HfOx/CeOx devices measured at

150 �C at constant stress voltage of þ0.2 V. The results indicate the projected data retention of 10 years for both devices. (c) Representative CDF plot of the

cycle-to-cycle programming characteristics for two devices with and without the engineered HfOx layer.

223501-3 Hsieh et al. Appl. Phys. Lett. 109, 223501 (2016)



The accelerated retention test in Fig. 4(b) indicates the pro-

jected data retention of 10 years for the bilayer devices (see

supplementary material). The cumulative distribution func-

tion (CDF) in Fig. 4(c) indicates the improved uniformity

of the on-state performance between programming cycles

of the same bilayer device, while the off-state characteristic

of the device appears to have been degraded, perhaps due to

the non-uniformity of the Joule heating effect. The bilayer

device exhibits average low- and high-resistance states

(LRS and HRS) of about 600 X and 2.8 MX that are larger

than those of the device with no HfOx capping layer by fac-

tors of 4 and 10, respectively. The resulting decrease of

operating current is beneficial for reducing the switching

power consumption during the Set and Reset operations.

One transistor and one memristor (1T-1R) is a popular

approach for implementing multi-state memory function.37

However, 1T-1R limits the memristor integration density

because of area overhead by implementing transistor as well

as the need for a complicated driver circuit in order to inde-

pendently control each transistor. To circumvent these practi-

cal issues, the multi-state characteristic must be inherent to

the two-terminal memristive device itself. Figs. 5(a) and 5(b)

illustrate the pulse measurement results for a bilayer device

(with the optimal 0.1 thickness ratio, 500� 500 nm2), indicat-

ing the gradual change in the conductance of the filament

between the fully on and off states. The observed resistive

states are inherent to the device because no current compli-

ance limit was used. Interestingly, the bilayer device also

exhibits weak voltage-time dependence for pulses shorter than

a few microseconds, which could be attributed to the domi-

nant effect of the HfOx capping layer on the device switching

behavior. The full on/off energy consumption during Set and

Reset steps was calculated to be, respectively, 8.7 and 1.6 pJ

by time integral of transient voltage and current waveforms

(see supplementary material Fig. S2). Considering the analog

characteristic of the resistive states together with the large

HRS to LRS ratio in excess of 103, the energy consumption for

switching between the intermediate resistance states will be

much smaller (about tens of fJ, assuming memory states with

an increment of 100 X; see supplementary material Fig. S3).

The spike-based hardware learning systems have poten-

tial to be efficient and compact for processing unstructured

data.38 In such systems, the learning mechanism follows the

spike-based form of Hebbian learning,25 i.e., Spike-timing

dependent plasticity (STDP), in which the change in the

strength of the synapse depends on the time difference between

the pre- and post-synaptic neural spikes. The waveforms with

exponential decays were emulated with a series of square pulses

(see supplementary material Figs. S4 and S5). For these experi-

ments, we have chosen an average spike rate of about 1 MHz,

which is 105 times faster than that of the brain. This corresponds

to a time step of�1 ls for updating the internal state of neurons

and calculating the synaptic currents, assuming the neuron spik-

ing probability of 0.01 as in the brain. Fig. 6 shows the plot of

the normalized conductance change of the optimal bilayer

device as a function of the time difference between the pre- and

post-synaptic neural spikes. The data are fitted with the expo-

nential decay functions, confirming an STDP behavior similar

to that of a biological synapse. Moreover, the data indicate a

remarkable change in the normalized conductance of the device

(>30 times) when the pre- and post-synaptic spikes overlap.

In summary, we have demonstrated a bilayer HfOx/

CeOx memristors by tailoring the structural properties of the

nanoscale HfOx capping layer. The memristive device was

implemented using the CMOS-compatible materials and pro-

cesses. Our device exhibits analog resistance states, sub-1 V

operating voltages, high conductance change at fast nanosec-

ond pulses, and energy efficient operation and STDP learn-

ing rule was implemented. The salient features of this

bilayer structure are promising for hardware implementation

of STDP-based learning systems.

See supplementary material for electrical characteriza-

tion equipment, device geometry for transient test, details of

XPS studies, accelerated retention test, switching cycles of

intermediate states and generation of waveforms for STDP

measurements.

The authors acknowledge the financial support by the

NSF NNCI program and the NASCENT NSF ERC grant.

FIG. 5. Analog memory characteristic of the bilayer memristor. The normal-

ized conductance of a bilayer memristor is plotted as a function of pulse

widths and amplitudes when the device switches from (a) fully off state to

fully on state and (b) fully on state to fully off state. The dashed lines are

guide to the eye and the hatched regions denote unmeasured points. The

data in (a) and (b) reveal the gradual change in the conductance of the device

between the fully off and on states. Full on/off switching energy consump-

tions of �2.6 and 2.1 pJ were calculated from the transient c Set and d Reset

voltage and current waveforms, respectively.

FIG. 6. Implementation of STDP learning using the HfOx/CeOx memristive

device. (a) Schematic representation of the learning experiment. Two wave-

forms with identical shapes were applied to the top and bottom electrodes.

In the learning experiments, the time intervals between the pre- and post-

synaptic spikes were varied in order to probe the synaptic depression

(Dt< 0) and potentiation (Dt> 0). The positive (negative) time difference

indicates that the pre-synaptic spike occurs before (after) the post-synaptic

one. (b) The plot clearly indicates the marked change in the synaptic

strength as a function of different pre/post spike intervals.
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