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The application of mechanical-compressive stress during low-temperature annealing has been
investigated for the crystallization of SiGe alloys on plastic substrates. It was observed that
crystallization of an amorphous Ge/Cu/Ge ‘‘sandwich’’ can occur at temperatures as low as 130 °C
with the application of an equivalent compressive strain of 0.05%. By using this sandwich as a seed
for crystallization of an underlying amorphous SiGe film, partial crystallization of the film was
observed to occur at a temperature of 180 °C, again under an equivalent compressive strain of
0.05%. Without the application of the compressive strain, crystallization was not observed for either
system at the temperatures investigated. The atomic percentage of Si in the SiGe alloy was 35% as
confirmed by Rutherford backscattering spectroscopy and the partial crystallization of the SiGe
layer was verified by scanning electron microscopy, x-ray diffraction, and transmission-electron
microscopy analyses. ©2004 American Vacuum Society.@DOI: 10.1116/1.1705581#
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I. INTRODUCTION

The realization of conventional silicon-based electro
circuits onto flexible plastic substrates offers unique opp
tunities for the development of new technologies, parti
larly in the field of flexible displays. Some of the advantag
to using plastic substrates are: potential for large-area co
age, lightweight durable mechanically flexible circuits, lo
cost solution-based printing techniques and rapid, hi
volume reel-to-reel processing.1 However, one of the
limitations to the widespread application of plastic substr
electronics is the requirement for low-temperature proces
steps that will not thermally degrade the plastic substrates
particular, one of the highest temperature processes is
crystallization of the semiconductor layers, a critical step
the fabrication of high-performance devices. With respec
the application of thin-film transistors~TFTs! for use as driv-
ers in flexible displays, the driving power of the TFTs
directly proportional to the field-effect mobility, in turn re
quiring a device-quality polycrystalline layer in the chann
region.2 Therefore, there has been increasing interest in
development of low-temperature crystallization methodo
gies.

One well-known method that considerably reduces
crystallization temperature of semiconductors is me
induced crystallization~MIC!.3 Some examples of MIC of S
and Ge that have been reported recently include: Al-indu
crystallization of Ge,4–6 Cu-induced crystallization of Ge,7,8

and Ni-induced lateral crystallization of Si.9 Since the crys-
tallization temperature of Ge is lower than Si, Ge is typica

a!Electronic mail: smohajer@vlsi.uwaterloo.ca
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the first material to be considered for low-temperature cr
tallization applications. Unfortunately, Al-MIC of Ge ca
significantly degrade the properties of the semiconductor4–6

and although Cu-MIC of Ge can lead to excellent dev
properties, process temperatures as high as about 400 °C
required.7,8 Therefore, additional techniques are required
further reduce the crystallization temperature.

One promising technique is the application of stress d
ing the growth and/or annealing steps. For example, it
been reported that stresses induced by the difference in
thermal expansion coefficient between Si and SiO2 might
lead to preferential nucleation of Si along SiO2 steps.10 Fur-
thermore, the microscopic mechanism accounting for M
has been investigated and believed to be related to the in
nal compressive stress induced by the lattice shrinkage
posed by the introduced metal.11 If internal stresses can lea
to reduced crystallization temperatures, it appears reason
that the application of an external mechanical stress co
have a similar effect. This hypothesis has been proven
rect for Ge, and in a previous work we were able to dem
strate a reduction in the crystallization temperature of c
ventional Cu-MIC to 130 °C in the presence of mechani
compressive stress externally applied to the flexible subst
by inward bending.12 High-quality depletion-mode poly-Ge
TFTs were fabricated on flexible polyethylene terephtal
~PET! substrates using this process with a mobility of 1
cm2/V s and an ON/OFF current ratio of 104.13

In this article, we report on the stress-assisted growth
poly-SiGe, for a Si content of 35%, at a maximum proce
ing temperature of 180 °C. This is an exciting result sin
8564Õ22„3…Õ856Õ3Õ$19.00 ©2004 American Vacuum Society
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conventional solid-phase crystallization of SiGe alloys ha
previously required temperatures above 400 °C.14–17

II. EXPERIMENT

The flexible substrates used were PET films with a thi
ness of 150mm. Deposited directly onto the substrate wa
2000 Å SiGe layer by simultaneous e-beam evaporation o
and thermal evaporation of Ge at a substrate temperatu
100 °C and a base pressure of 1026 Torr. Using these same
conditions, on top of the SiGe layer was deposited a 5
Å/10 Å/500 Å Ge/Cu/Ge sandwich by e-beam evaporation
Ge and thermal evaporation of Cu. Thermo-mechanical p
treatment is performed by exerting compressive stress du
annealing and is applied by bending the flexible subst
inward as depicted schematically in Fig. 1. The therm
mechanical post-treatments for this sample were an equ
lent compressive strain of 0.05% and an annealing temp
ture of 180 °C for 12 h. Since this work is in its initial stage
it is expected that significant optimization of the therm
mechanical parameters can be achieved in future work.

III. RESULTS AND DISCUSSION

Rutherford backscatter~RBS! analysis was performed t
determine the composition of the multilayer deposited
co-evaporation and the spectrum is given in Fig. 2. The
ergy of the protons used in the analysis was 1.5 MeV and
Si and Ge concentrations were determined to be 35%
65%~atomic percent!, respectively, for the as-grown materi
prior to annealing. In general, we have observed that
percentage of Ge is significantly lower than that predicted
the individual deposition rates of Si and Ge and this effec
believed to be due to the more rapid surface evaporatio
Ge from the sample in comparison to Si.

The crystalline structure of the SiGe layer has been s
ied by XRD analysis and the poly-Ge layer was removed
wet etching prior to acquiring the spectrum. Since PET
partially crystalline, it possesses a strong diffraction pe
that is superimposed on the^111& peak of poly-SiGe. How-
ever, the^220& peak is not convolved with any PET pea
and is distinguishable from the background as shown in
x-ray spectrum of Fig. 3, providing further evidence of t
polycrystalline nature of the SiGe layer. The^200& diffraction

FIG. 1. Top—A schematic picture of the experimental setup and comp
sive stress is applied by bending the flexible substrate inward. Bottom—
structure of the deposited SiGe/Ge/Cu/Ge multilayer on PET and Ka
substrates.
JVST A - Vacuum, Surfaces, and Films
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peak is kinematically forbidden for Si and Ge and the high
order diffraction peaks are difficult to distinguish from th
background.

TEM analysis has been also performed to provide
deeper insight into the nature of growth. A bright-field ima
of the SiGe layer in plan-view orientation and a selected a
diffraction pattern from this same region of sample are giv
in Figs. 4~a! and 4~b!, respectively. The diffraction patter
displays a superposition of polycrystalline and amorpho
rings, indicating that the layer contains both polycrystalli
and amorphous regions. A TEM image of a cross-sectio
sample taken under dark-field conditions is given in Fig
and three distinct regions are observed. The top layer is
1000 Å Ge/Cu/Ge sandwich and nucleating from this la
are poly-SiGe crystals growing towards the PET substr
The uniformly gray region consists of amorphous SiGe. F
ture work will focus on the optimization of the thermo
mechanical annealing conditions to yield SiGe films that
more uniformly crystallized.

s-
e
n

FIG. 2. RBS spectrum yielding Si and Ge concentrations of 35% and 6
respectively, for the as-deposited multilayer.

FIG. 3. XRD spectrum showing thê220& peak of polycrystalline SiGe. Note
that the^111& SiGe peak is masked by the strong peak of the PET subst
sconditions. Download to IP:  216.165.95.70 On: Tue, 26 Aug 2014 20:12:06
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IV. SUMMARY AND CONCLUSION

In summary, the stress-assisted Ge-induced crystalliza
of SiGe alloys has been presented and verified by SE
XRD, and TEM analyses. This crystallization technique i
two-step growth process where the first step is the str
assisted Cu-induced crystallization of a-Ge~Ref. 12! and the
second step is the growth of poly-SiGe where the crysta
zation is nucleated by the poly-Ge layer grown in the fi
step. We believe that the second step is also a stress-as
crystallization phenomenon since conventional growth
SiGe on poly-Ge requires considerably higher temperatu

FIG. 4. ~a! TEM bright-field image of the SiGe layer in planview and~b! a
selected area diffraction pattern displaying a superposition of polycrysta
and amorphous rings.
J. Vac. Sci. Technol. A, Vol. 22, No. 3, May ÕJun 2004
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than those observed in the presence of compressive st
Growth of the poly-SiGe layer is initiated at its interfac
with the top poly-Ge layer and propagates down in the b
SiGe. Further characterization of the stress-assisted gro
mechanism is currently under study and this method app
to be a promising candidate for the low-temperature fabri
tion of polycrystalline SiGe TFTs on flexible substrates.
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