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Abstract—We demonstrate the fabrication of high-performance
Ge–SixGe1−x core–shell nanowire (NW) field-effect transistors
with highly doped source (S) and drain (D) and systematically
investigate their scaling properties. Highly doped S and D regions
are realized by low-energy boron implantation, which enables
efficient carrier injection with a contact resistance much lower
than the NW resistance. We extract key device parameters, such
as intrinsic channel resistance, carrier mobility, effective channel
length, and external contact resistance, as well as benchmark the
device switching speed and ON/OFF current ratio.

Index Terms—Core–shell, field-effect transistor (FET),
nanowire (NW), silicon–germanium.

I. INTRODUCTION

R ECENT years have witnessed remarkable progress in
emerging research materials, such as semiconductor

nanowires (NWs) or carbon nanotubes, as alternatives to con-
ventional CMOS technology [1]–[5]. A key question with
regard to such devices, relevant to both benchmarking potential
application and gaining insight into fundamental electronic
properties, is device performance scaling with channel length.
For carbon nanotubes, it has experimentally been established
that the nanotube resistance linearly scales with length for
channel lengths larger than a few micrometers, where diffusive
transport applies, and is independent of length for channel
lengths smaller than 1 μm, in the ballistic transport regime [4].
Here, we present the first scaling study of high-performance
germanium (Ge)—silicon–germanium (SixGe1−x) core–shell
NW FETs with highly doped source (S) and drain (D). The
highly doped (> 1020 cm−3) S and D, which are realized using
boron (B) ion implantation, enable efficient carrier injection
with a contact resistance much lower than the NW resistance.
The NW FET resistance linearly scales with the channel length
down to 300 nm, indicating that the transport in these NWs is
diffusive at room temperature.

Semiconductor NWs enable the realization of novel device
geometries, such as gate-all-around FETs, which allow for
more energy-efficient electronics at a given switching speed,
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thanks to better electrostatic control of the channel [6]–[9].
Germanium and Ge–Si core–shell NWs have attracted interest
as a platform for aggressively scaled FETs, due to Ge’s higher
carrier mobility than Si and its compatibility with CMOS tech-
nology [10]–[12]. A main, albeit mundane, obstacle that has of-
ten impeded both an accurate electrical characterization and the
realization of high-performance devices using nanomaterials is
carrier injection. Generally, NW FETs employ metal contacts
at the S and D terminals [13], [14], which limit the device
performance because of the Schottky barrier existing at the
metal–semiconductor interface. Moreover, ambipolar behavior
is usually observed in such devices. The contact material that
provides low contact resistance and unipolar carrier injection
should be highly conductive, with a Fermi level aligned with the
NW conduction or valence band, depending on the carrier type
to be injected. A highly doped section of the same NW satisfies
these conditions. NW doping with axial modulation can be
achieved via the vapor–solid–liquid (VLS) growth mechanism
[15], thermal diffusion from a dopant-containing molecule [16],
and ion implantation [17]–[20]. Ion implantation allows for
accurate axial doping control along the NW and is widely used
in existing CMOS technology. Here, we employ low-energy ion
implantation to realize NW FETs with highly doped S and D.

II. FABRICATION OF Ge–SixGe1−x

CORE–SHELL NW FETs

Our samples consist of Ge–SixGe1−x epitaxial core–shell
NWs. The core–shell NWs were grown in an ultrahigh-vacuum
(UHV) chemical vapor deposition (CVD) chamber, via the VLS
mechanism and using Au as a catalyst. First, the Ge core was
grown at a total pressure of 5 torr and a wafer temperature
of 285 ◦C using 60 sccm GeH4 (10% diluted in He). Next,
an epitaxial SixGe1−x shell was grown in UHV conditions in
the same chamber, by coflowing 7 sccm SiH4 and 60 sccm
of GeH4 at a wafer temperature of 400 ◦C. Using transmis-
sion electron microscopy coupled with energy-dispersive X-ray
spectroscopy we deduce the SixGe1−x shell thickness of
∼4 nm and a Si content in the shell of x = 0.3 [Fig. 1(b)].
The role of the SixGe1−x shell is twofold. First, it acts as a
passivation layer for the Ge surface, which is known to have
a high density of interface traps in contact with a dielectric,
and enables the realization of inversion layers in germanium.
Second, due to a positive band offset between SixGe1−x and
the Ge valence band, it serves as a barrier and confines the
holes in the Ge core. The UHV CVD in situ shell growth
allows for the SixGe1−x shell thickness and content to be
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Fig. 1. Top-gated Ge–SixGe1−x NW FET. (a) Schematic representation of
a top-gated Ge–SixGe1−x NW FET and fabrication flow. (b) Transmission
electron micrograph of a Ge–SixGe1−x core–shell NW, evincing a single-
crystal shell epitaxially grown on the Ge core. (c) Scanning electron micrograph
showing a top-gated NW FET device. The red regions represent the highly
boron-doped NW sections.

engineered with minimum impurity incorporation. In particular,
here we chose a reduced Si content, i.e., x = 0.3, to minimize
the strain in the Ge–SixGe1−x core–shell heterostructure while
still maintaining the aforementioned interface passivation and
hole confinement.

Fig. 1 shows a schematic of the top-gated NW FET with
highly doped S and D [Fig. 1(a)], along with a transmission
electron micrograph of the Ge–SixGe1−x NW [Fig. 1(b)] and
a scanning electron micrograph of the device [Fig. 1(c)]. The
fabrication process flow is briefly described in the following.
Post growth, the Ge–SixGe1−x core–shell NWs were sus-
pended in ethanol and dispersed onto a HfO2 (10 nm)/Si (100
n-type) substrate. The wafer with dispersed NWs was then
cleaned with a 2% hydrofluoric acid (HF) solution for 20 s
and deionized water for 20 s for two cycles, before the gate
oxide deposition. Next, a 9-nm-thick HfO2 layer was deposited
by atomic layer deposition at 250 ◦C. The equivalent oxide
thickness of the deposited gate oxide was ∼3.9 nm, evinced
by the capacitance–voltage measurement on planar capacitors
processed in parallel with the device. The gate electrode was
defined by e-beam lithography (EBL), followed by 120 nm
of tantalum nitride (TaN) deposition and liftoff. To remove
resist residues, the device was cleaned with O2 plasma for 10 s
(50 W). The HfO2 layer deposited on the S/D areas of the
device was etched by diluted HF (∼3%). Once the NW FET
gate areas are defined, the samples are ion implanted with
boron, which results in highly doped NW areas outside the TaN
metal gate. The relatively thick TaN metal gate prevents the
NW FET channel from B penetration. B-ion implantation was
done at an ion energy of 3 keV, with a dose of 1015 cm−2, and
rotating 360◦ with 32◦ tilt during ion implantation. The devices
then underwent a rapid thermal annealing process at 600 ◦C
5 min in an N2 ambient to activate the implanted dopants.
We expect that the implant-induced crystal damage in NWs be
removed after activation annealing due to Ge’s faster defect
removal and regrowth velocity compared with Si [21]. Sub-
sequently, the S/D contacts were defined by EBL, metal (Ni)
deposition, and liftoff. A 1-min annealing process at 300 ◦C
completes the NW FET fabrication. Based on a systematic
study of the electronic properties (doping concentration and

mobility) of B-implanted Ge–SixGe1−x core–shell NWs, we
expect a doping concentration of 1019–1020 cm−3 in the B-ion-
implanted sections of the NW, a NW resistivity of 2.6 × 10−3 ±
1.9 × 10−4 Ω · cm, and a Ni-NW specific contact resistivity
of 1.1 × 10−9 ± 2.2 × 10−10 Ω · cm2, corresponding to contact
resistances of 300 ± 200 Ω [19]. This step is the key to enable
efficient unipolar hole injection in the NW FETs, as well as low
external contact resistance. To probe the scaling properties of
Ge–SixGe1−x NW FETs, we fabricated devices with different
channel lengths, ranging from 300 nm to 1 μm.

III. RESULTS AND DISCUSSION

To characterize the devices, we measure either the drain
current (Id) as a function of the drain bias (Vd) at a constant gate
bias (Vg) (output characteristics) or Id versus Vg at constant
Vd values (transfer characteristics). Fig. 2 shows Id versus Vd

and Id versus Vg data, measured for several Ge–SixGe1−x NW
FETs with different channel lengths (Lg), from Lg = 300 nm
to Lg = 1 μm. The NW diameters in these devices are similar,
i.e., d = 52 ± 4 nm. The drain current data normalized to the
NW diameter d, namely, the output current per footprint, are
shown on the right axis of the Id–Vd graphs to facilitate a
comparison of the device characteristics. Two observations are
apparent from the data in Fig. 2. First, the device characteristics
clearly show unipolar behavior, in comparison with Schottky
metal–semiconductor contact devices, which typically exhibit
ambipolar behavior. Second, the maximum attainable Id and
transconductance values proportionally increase with decreas-
ing Lg . As Lg decreases from 1 μm to 300 nm, the maximum
Id measured at Vd = Vg = −2.0 V increases to 12, 22, and
45 μA, corresponding to the normalized currents of 240, 420,
and 800 μA · μm−1. The Id−Vg transfer characteristics mea-
sured at Vd = −1.0 V show peak transconductance values gm

of 6.1, 11.5, and 19.6 μS with decreasing Lg from 1 μm to
300 nm. We note that the gate leakage current is below 10 pA
in all measurements.

A main finding of our study is summarized in Fig. 3. Here
we show the total NW FET resistance Rm, measured at small
Vd as a function of the geometric channel length Lg , and at
different gate overdrive values |Vg − Vt|, from 0.5 to 2.0 V.
Vt represents the NW FET threshold gate voltage at which
the inversion charge density in the channel is zero. The hole
density per unit length p in the NW FETs is related to the
gate bias via: p = Cox · |Vg − Vt| · e−1, where Cox is the top-
gate capacitance per unit length, and e is the electron charge.
Fig. 3(a) shows that Rm, which is the sum of the channel
resistance Rch and the external S–D contact resistance RSD,
is linear as a function of Lg for all |Vg − Vt| values. While
this is simply a restatement of Ohm’s law, the data indicate
that transport is diffusive in the Ge–SixGe1−x core–shell NWs
at room temperature and allows us to decouple the channel
and external contact resistances. The linear fits to Rm versus
Lg data at various |Vg − Vt| values have a common intercept,
which represents the external contact resistance RSD and the
channel length reduction ΔL, namely, the difference between
the geometric gate length Lg and the effective channel length
Leff [22]. The data in Fig. 3(a) correspond to RSD = 12.7 kΩ
and ΔL = 43 nm. We note that RSD represents the sum of the
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Fig. 2. Electrical characteristics of Ge–SixGe1−x core–shell NW FETs at different gate lengths Lg . (a) Lg = 300 nm, d = 55 nm. (b) Lg = 500 nm, d =
49 nm. (c) Lg = 1 μm, d = 48 nm. In each panel, the top (bottom) graphs show Id versus Vd (Id versus Vg) data, measured at constant Vg (Vd) values, as
shown. The right y-axis of the top graphs show Id normalized to the NW diameter.

Fig. 3. Channel length resistance scaling and effective mobility extraction.
(a) Measured device resistance Rm at Vd = −0.05 V versus Lg . The common
intercept determines both the S–D external resistance RSD = 12.7 kΩ and
the effective channel length reduction ΔL = 43 nm. (b) Total hole density
versus gate voltage. The total hole density is the sum of the hole densities
in the NW core and shell. (Inset) Schematic representation of the Ω-shape
gate of Ge–SixGe1−x NW FET). (c) Capacitance versus NW diameter. The
capacitance values were calculated using the relation Cox = e · (dp/dVg).
(d) Effective mobility of the Ge–SixGe1−x core–shell NW FETs for four
different channel lengths as a function of gate overdrive.

NW resistances of the highly doped section not covered by the
top gate and the metal–NW contact resistance.

To determine the effective mobility in our NW FETs the
Cox values are first self-consistently calculated using Sentaurus
TCAD simulation (Synopsis). The device structure used in
simulations is shown in Fig. 3(b) (inset). It consists of a Ge core

of varying size, a 4-nm-thick Si0.3Ge0.7 shell, and with a HfO2

dielectric/TaN metal stack corresponding to the actual device.
Applying a negative gate bias initially induces holes in the Ge
core, and at a sufficiently large gate bias, holes start to populate
the Si0.3Ge0.7 shell.

Fig. 3(b) shows an example of the hole densities in the core
and shell calculated for a Ge–Si0.3Ge0.7 core–shell with a 50-
nm diameter and a 4-nm-thick shell. We assumed an offset of
0.2 eV between Si0.3Ge0.7 and Ge valence bands [23], [24].
Fig. 3(c) provides the results of the Ω-shape NW FET gate
capacitance calculation. The total hole density per unit length
in a Ge–SixGe1−x NW for a given gate voltage is the sum of
the carrier densities in the NW core and shell [Fig. 3(b)]. The
p-values are related to Cox and Vt by e · p = Cox · |Vg − Vt|,
where e is the electron charge. Thus, the total capacitance per
unit length is extracted from the equation Cox = e · (dp/dVg).
Fig. 3(c) shows the Cox values calculated for NWs with dif-
ferent diameters. Using the intrinsic channel resistance Rch =
Rm − RSD determined from Fig. 3(a), along with Cox, we
then extract the intrinsic carrier mobility in the Ge–SixGe1−x

core–shell NWs. The mobility value is calculated using μeff =
Leff · [RchCox(Vt − Vg − 0.5Vd)]−1, with Vd = −0.05 V. The
data in Fig. 3(d) show μeff as a function of |Vg − Vt|. The
results in Fig. 3(d) reveal that the peak hole mobility ranges
from 100 to 180 cm2 · (V · s)−1, which are values that are up
to threefold higher than those of the Si p-MOSFETs with HfO2

gate dielectric [25].
Two main figures of merit for logic devices are the ON-

and OFF-state currents. The ON-state current ION determines
the FET switching speed, whereas IOFF determines the pas-
sive power consumed by a logic gate (e.g., an inverter).
A high-speed low-power device should possess high ION

and ION/IOFF. To gauge these performance metrics for our
Ge–SixGe1−x core–shell NW FETs, we define the ON-state
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Fig. 4. Intrinsic gate delay and subthreshold slope. (a) Intrinsic gate delay
versus ION/IOFF ratio for different Lg values. (b) Subthreshold slope versus
effective gate length.

current ION as the measured Id at a gate bias VON = Vt +
(2/3)Vdd, as well as the OFF-state current IOFF as the mea-
sured Id at Vg = VOFF = Vt − (1/3)Vdd; the drain bias in both
cases is Vd = Vdd = −1.0 V. To estimate the switching speed
in our devices, we employ the intrinsic gate delay τ , which
is defined as τ = CV/I , where C is the gate capacitance,
V = Vdd = −1.0 V, and I = ION [26]. Fig. 4(a) shows the
relation between τ and the ION/IOFF ratio. Here, we define
a window of VON − VOFF = Vdd = −1 V along the Vg axis
to determine ION and IOFF. This graph illustrates the tradeoff
between ION/IOFF and τ , and it shows that τ decreases as Lg

is scaled down. The ION/IOFF ratio reaches a maximum of up
to 104, which is a tenfold higher value than previous results
in Ge–Si core–shell NW FETs [12]. The subthreshold slope
S, which is defined as S = −[d(log Id)/dVg]−1, for different
channel lengths is shown in Fig. 4(b). These data show S
values ranging from 150 to 190 mV · dec−1. The measured S
values are higher than the thermal limit of 60 mV · dec−1, a
finding that may be explained by a finite trap density at the
dielectric–semiconductor interface. The S value increases as Lg

is reduced, likely because of the short-channel effect. Finally,
we note that the device performance can further be improved by
optimizing the device fabrication process, namely, by reducing
the nongated S and D regions, as well as by improving the
dielectric quality.

IV. CONCLUSION

We have demonstrated high-performance Ge–SixGe1−x

core–shell NW FETs with highly doped S/D and systematically
investigated their scaling properties. Our data allow us to extract
key device parameters, such as intrinsic channel resistance,
carrier mobility, effective channel length, and external contact
resistance, as well as to benchmark the device switching speed
and ON/OFF current ratio.
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