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ABSTRACT
Computer-aided design (CAD) tools mainly optimize for power,
performance, and area (PPA). However, given a large number of seri-
ous hardware-security threats that are emerging, future CAD flows
must also incorporate techniques for designing secure integrated
circuits (ICs). In fact, the stakes are quite high for IC vendors and
design companies, as security risks that are not addressed during
design time will inevitably be exploited in the field, where vulner-
abilities are almost impossible to fix. However, there is currently
little to no experience related to designing secure ICs available
within the CAD community. For the very first time, this contest
seeks to actively engage with the community to close this gap.

The theme of this contest is security closure of physical layouts,
that is, hardening the physical layouts at design time against threats
that are executed post-design time. More specifically, this contest
is focused on selected and seminal threats that, once taken in, are
relatively simple to approach and mitigate through means of physi-
cal design: Trojan insertion and probing as well as fault injection.
Acting as security engineers, contest participants will iteratively
and proactively evaluate and fix the vulnerabilities of provided
benchmark layouts. Benchmarks and submissions are based on the
generic DEF format and related files. Thus, participants are free to
use any physical-design tools of their choice, helping us to open
up the contest to the community at large.

CCS CONCEPTS
• Security and privacy → Security in hardware; • Hardware
→ Physical design (EDA).
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1 INTRODUCTION
This paper presents the very first contest on security closure of
physical layouts,1 i.e., on the challenge of hardening the physical
layouts of ICs at design time against various hardware-security
threats that are executed post-design time.

This topic is important for multiple reasons. First, many such
threats, like Trojan insertion or side-channel attacks, are directly
targeting for vulnerabilities of the physical layouts. Second, threats
that are not mitigated during design-time are almost impossible to
fix later on; ICs are unlike patchable software. Third, even if efforts
are taken toward secure IC design at higher abstraction layers like
logic synthesis, such efforts may be undermined later on by, e.g.,
PPA optimization, thus becoming futile without dedicated support
for security closure at layout level.

This paper is organized as follows. We outline the theme, general
approach, and some logistics in this Sec. 1. In Sec. 2, we discuss
the scope and background for the contest and outline tasks as
well as possible directions for solving them. In Sec. 3 we describe
the implementation and evaluation of the contest in detail. The
contest website [9] provides further information; importantly, all
benchmarks and results will remain online there after the contest
concludes, to stimulate further interest from the community.

1.1 Theme and Context
Securing electronics is an important but tough endeavour that
requires efforts all the way from software applications down to
the hardware. For the design, manufacturing, and deployment of
ICs, there are numerous companies and partners involved within
complex and world-wide supply chains—ICs run through many
hands, where some of those may be acting with malicious intent.
Furthermore, once ICs are deployed in the field, an even larger
attack surface arises. See also, e.g., [8, 10, 11, 14, 16] for further
reading.

1There are other hardware-security contests organized by various communities, like
the HACK@EVENT series [17] or CSAW (“see-SAW”, the most comprehensive student-
run cyber security event in the world, featuring 8 cyber competitions, workshops, and
industry events, with final events hosted by 5 global academic centers) [2]. However,
none considered so far securing the hardware’s “bare metal.”

https://doi.org/10.1145/3505170.3511046
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This contest is part of the International Symposium on Physical
Design (ISPD) 2022. Participants of this newly introduced theme
will focus on securing the physical layout of ICs. Acting as security
engineers, participants will iteratively and proactively evaluate and
fix the vulnerabilities of IC layouts at design-time against different,
selected threats. The threats—Trojan insertion and probing, fault
injection—represent relatively simple scenarios, with a clear rela-
tion to physical design for defending against them. Further, the
scope is well limited/constrained for this contest, thereby easing
the ramp-up for security-novice participants.

1.2 Objective and General Approach
The objective of this contest is the following. Implement physical-
design measures to proactively harden layouts against:

(1) post-design insertion (i.e., during mask generation or manu-
facturing) of Trojans that are implemented at the gate level;

(2) in-field electro-optical and contact-based probing as well as
fault injection attacks, all targeting at the IC’s frontside (i.e.,
the metal layers).

See Sec. 2.1 for context and more details on these threat scenarios.
To achieve this objective, participants would want to, e.g., revise

placement and routing in such a way that insertion of Trojan com-
ponents as well as probing, fault injection on particular devices or
wires becomes difficult, all while also accounting for the impact
on design quality induced by the defense measures. There is no
single, right or wrong approach toward that end—it is up to the
participants’ creativity and skills to come up with the best defense
solutions. See also Sec. 3.2.1 for some trivial example solutions.

1.3 Logistics
This contest is open to students (undergrads, graduates, and/or
post-graduates) as well as industry practitioners from around the
world, with prizes limited to academic participants.

The benchmarks and submissions are based on DEF and related
files; see Sec. 3.2 and the contest website [9] for more details. Thus,
participants can work on any physical-design platform of their
choice, be it commercial tools, open-source tools likeOpenROAD [7],
or custom in-house tools. Before integrating some defense schemes
into their platform, participants would want to i) fully understand
the scope in general and the threats in particular (Sec. 2), ii) fully
understand the way the threats are considered and scored for this
contest (Sec. 3.3), and iii) be as creative as possible while not “re-
inventing the wheel” for core algorithms and design techniques.

There is an alpha round, where we provide a public set bench-
marks, with results and rankings published regularly and feedback
provided to the participants, to spur the contest. All participants
that submit some valid solution for each benchmark move on the
final round. There, we provide further sets of benchmarks as mix
of public as well as blind benchmarks, covering a variety of designs
and layout complexities. The final results, rankings, and awards
will be first announced at ISPD and then published on the contest
website [9] as well. Top teams are encouraged to disseminate their
results and means for security closure further with the community,
but that is not a requirement for participation.

Side-Channel
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Fault
Injection

ProbingIP TheftIP Theft

Figure 1: The IC supply-chain and life-cycle with various
threats affecting different stages stages. Adopted from [3].

2 BACKGROUND AND TASKS DESCRIPTION
2.1 Hardware Security
There are various challenges or rather threats to consider when we
talk about hardware security. An overview on these threats, linked
to the different stages of the supply-chain and life-cycle of ICs, is
shown in Fig. 1.

The main threats of interest to the physical-design community
are i) Trojans, ii) side-channel attacks, iii) fault-injection attacks,
iv) probing attacks, and v) IP piracy [8, 16]. Typically, each kind of
threat is further divided/categorized; for example, there is direct
physical fault injection, e.g., using laser light [18], voltage glitches,
etc., versus indirect fault injection, e.g., repetitive writing to physi-
cal memory locations (also known as “Rowhammer” attack [15]).
Some threats share a similar physical attack vector, like laser fault
injection and laser-assisted optical probing [13].

2.1.1 Hardware Trojans. Trojans are malicious hardware modifica-
tions [16, 20]. The notion of Trojans is diverse, covering malicious
modifications that are: i) targeting at the system level, gate level,
interconnects level, transistor level, and/or the physical level; ii)
seeking to leak information from an IC, reduce the IC’s perfor-
mance, or disrupt an IC’s working altogether; iii) are always on,
triggered internally, or triggered externally. Most Trojans comprise
a trigger and a payload; the trigger activates the payload on attack
conditions, and the payload serves to perform the actual attack.
Since IC supply-chains are largely outsourced nowadays, adver-
saries at various entities could introduce such Trojans, e.g., through
untrustworthy third-party IP, by adversarial designers, during mask
generation or manufacturing, or even during deployment of ICs.

As indicated, for this contest, we focus on post-design insertion
(i.e., during mask generation or manufacturing) of Trojans that
are implemented at the gate level. (Thus, we exclude advanced
Trojans that are, e.g., implemented at the interconnects level [14].)
An example of such relatively simple Trojan is shown in Fig. 2.

The related task for this contest is to proactively harden the
layouts against such Trojan insertion. This means to, e.g., control
placement and routing in such a way that insertion of Trojan com-
ponents becomes difficult, but also considering impact on design
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Figure 2: Exemplary IC layout of an OR1200 processor de-
sign with the A2 Trojan embedded [21]. The zoom-in high-
lights the additional logic inserted for the Trojan trigger.
The payload of the A2 Trojan, maliciously setting the privi-
lege mode of the OR1200 processor, is not shown here.
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Figure 3: Simplified working principle of frontside attack.
After milling through wires that are obstructing direct ac-
cess to some target wires, the attacker can use, e.g., contact-
based micro-probing needles on the target wires.

quality of such measures at the same time. To enable a fair con-
test, we have to restrict the scope of defense efforts to the physical
design stages. Thus, we do not allow to, e.g., introduce dedicated
sensor circuitry. See also Sec. 3 for more details on constraints as
well as for some guidance for permissible defense efforts.

2.1.2 Probing, Fault Injection. Probing attacks extract data from
devices or wires by probing through the metal frontside or the
substrate backside [5, 13, 16]. Such attacks are enabled by different
means, mainly contact-based micro-probing, electro-magnetic field
probing, or electro-optical device probing. These means leverage
various physical vectors, i.e., electro-magnetic field emissions, elec-
trical charges, photon injection and emission, etc. Probing attacks
have their roots in failure analysis techniques, hence also apply for
advanced nodes, though requiring more efforts there. Some attacks
like micro-probing require line of sight and direct access to the
device/wire of interest; thus, such attacks are often complemented
by techniques like focused ion beam milling.

The working principle for an exemplary probing attack is shown
in Fig. 3. Note the conical shape of the milling intrusion. Also note
the potential challenge for an attacker, while reaching to the target
wire, to avoid cutting other critical wires, e.g., related to attack
detection in particular or to stable IC operation in general.

Fault-injection attacks induce faults to aid deducing sensitive
information [15, 16, 18]. Therefore, fault injection can support side-
channels attacks or other analytical attacks. Fault-injection attacks
cover direct fault injection, e.g., using laser light or electromagnetic
waves, as well as indirect fault injection, e.g., by repetitive writing
to particular memory locations or by deliberate misuse of dynamic
voltage and frequency scaling (DVFS) features.

Figure 4: Laser fault injection on devices, adopted from [15].
Left: standard cells (250nm; height 12.5µm) hit by a 5µm laser
spot. Right: standard cells (28nm; height 1.2µm) hit by the
same laser. Note that any higher metal layers, blocking the
laser fault injection, are not shown here.

The working principle for an exemplary fault-injection attack is
shown in Fig. 4. Here, laser light is injected into the active layers
of two ICs implemented using different technology nodes, hence
the scope of the fault injection differs: for older nodes, individual
transistors can be targeted at, whereas for newer nodes, multiple
adjacent cells will be targeted at once, which may complicate or-
chestrated attack schemes. It is important to note that this aspect is
not specifically handled in this contest; we do not consider varying
technology nodes and/or laser tools.

As indicated, for this contest, we focus on probing and fault injec-
tion attacks targeting at the frontside. We understand that attacks
targeting at the backside are more capable and practical at the same
time [5, 13]. However, defending the backside requires dedicated
circuitry or technology support (e.g., using current sensors or 3D
integration [12]), whereas defending the frontside can be realized
via physical-design efforts. Note that electro-optical, contact-based
probing and fault injection targeting at the frontside share the same
attack principle, namely to “sneak through” the metal layers down
to active devices or wires of interest.

The related task for this contest is to proactively harden the
layouts against in-field probing and fault injection attacks that are
targeting the frontside. This means, e.g., to revise placement and
routing such that access to sensitive devices or wires becomes diffi-
cult, namely by nature of (other) metal segments obstructing the
line of sight required for such attacks. At the same time, the impact
on design quality of such defense measures must be considered.
Again, to enable a fair contest, we have to restrict the scope to
physical-design stages. Thus, we do not allow to, e.g., introduce
dedicated sensor circuitry. See also Sec. 3 for more details on con-
straints as well as for some guidance for permissible defense efforts.

2.2 Security Closure
This contest is focused on security closure of physical layouts,
that is, on hardening the physical layouts at design time against
various threats that are executed post-design time. As discussed,
this topic is important for multiple reasons. First, many threats,



Figure 5: Secure-by-design CAD flow with integrated means
for security closure, security specification, security verifica-
tion, and security providers. Adopted from [10].

like Trojan insertion or side-channel attacks, are directly targeting
vulnerabilities of the physical layouts. Second, threats that are not
mitigated during design-time are almost impossible to fix later on;
ICs are unlike patchable software. Third, even if efforts are taken
toward secure IC design at higher abstraction layers, like high-level
synthesis or logic synthesis, such efforts may be undermined by, e.g.,
PPA optimization, thus becoming futile without dedicated support
for security closure at layout level.

Secure-by-design and security closure are two related, emerging
paradigms for CAD tools [10, 11, 14]. The secure-by-design para-
digm means to support i) top-down propagation and translation of
security requirements and specifications, as well as ii) bottom-up
verification and validation of defenses against attacker’s capabili-
ties and limitations (the latter obtained from security technology
providers). Security closure is the specific paradigm for the physical-
design stages, loosely/conceptionally similar to other sign-off stages
like timing closure but focused on security. Means for security clo-
sure will be based on ECO placement, routing, etc., as needed. A
secure-by-design CAD flow is outlined in Fig. 5.

3 IMPLEMENTATION AND EVALUATION
3.1 Platform
3.1.1 Tool Flow for Participants. As indicated, efforts for this con-
test are to be focused on physical design. The participants’ envi-
sioned measures for security closure against the different threats
considered in this contest should ideally be streamlined; any IC
layout has to be hardened against different threats at once. At the
same time, the impact on design quality must be considered as well.
Given that there are various, quite different metrics to be consid-
ered for design quality and security closure at once (Sec. 3.3), some
machine learning-based guidance can be promising here.

Recall that participants are free to use any physical-design tools
of their choice, be they commercial, open-source, or own in-house
tools. As such, we aim to open up this contest to a broader audience.
At the same time, we understand that, for participants without
any such tool flow available, the ramp-up for this contest would
be considerable. In such cases, we suggest to focus on established
flows like OpenROAD [7].

3.1.2 Backend for Organizers. Our implementation and evaluation
backend is based on commercial tools, in particular Cadence In-
novus. The metrics, scoring, and file management tasks for contest
preparation as well as contest evaluation are all implemented via
scripting, using tcl and bash in particular.

Our backend is not made public for this contest, for the follow-
ing reasons. First, we do not want participants to require access
to and experience with our tool setting, especially with Cadence
Innovus, let alone our custom scripting. Second, the backend itself
is part of an ongoing research project where code releases are not
approved yet. In any case, we provide the participants with exten-
sive details and Q&A interaction on metrics, scoring, benchmarks,
and implementation constraints. Thus, the lack of access to the
actual backend should not constitute any disadvantage; it might
even rather ease the burden, by allowing participants to directly
focus on their ideas and implementation.

3.1.3 Frontend for Participants. Given the above outlined setting,
we require some frontend for exchange of submission and result
files. With reliability and world-wide availability in mind, we opt
for Google Drive as web frontend.

All registered teams are provided access to their dedicated, pri-
vate Google Drive folder. Teams may upload submission files any-
time, upon which new files are automatically downloaded to our
backend servers for evaluation. Results will be returned into the
teams’ respective folders. Results will include the overall score but
also report files as generated by our backend, to provide partici-
pants with more detailed insights. Participants will also be send
email notifications once new evaluation results are available, as
processing may take some time once the backend servers are put
under load from multiple parallel submissions.

3.2 Benchmarks
Recall that this contest is the very first which is focused on security
closure of physical layouts in particular (and even on layout-level
security challenges in general). Thus, we had to devise our own set
of benchmarks (i.e., physical layouts) as follows.

(1) We select relevant designs as HDL code. We obtain:
(a) crypto cores (i.e., Camellia, CAST, MISTY, SEED, TDEA)

from [19];
(b) the openMSP430 microcontroller from [4];
(c) the MIT-LL CEP SoC, i.e., a security-centric SoC design

with crypto, DSP, GPS, and key management modules,
among others, from [6]; and

(d) further crypto cores (i.e., PRESENT, SPARX ) from in-house
projects.

(2) All designs are synthesized and implemented. Mainly to ease
the ramp-up for participants, we use the well-known and
publicly available Nangate 45nm Open Cell Library [1]. We
use Synopsys DC for synthesis and Cadence Innovus for lay-
out implementation. We use different timing constraints,
target utilizations, and library configurations (process cor-
ners, metal stacks) across the different designs, to make for
a varied range of benchmark layouts.

(3) We identify security assets from the post-layout netlists,
based on the documentation and HDL code of the designs.



For example, we identify cells and nets which belong to key-
memory registers or key-control logic as such assets. Note
that our selection of assets is not exhaustive. In fact, our
selection varies on purpose across different benchmarks, to
provide for a range of simple to challenging benchmarks for
security closure.

In short, the benchmarks are physical layouts of different security-
centric designs that have varying ranges of complexity, size (in
terms of cells, nets), utilization, timing constraints, number of assets,
considered corners, and available metal layers.

All benchmarks are bundled as archive files, containing the DEF
file and other supportive files: the post-layout netlist directly cor-
responding to the DEF, the SDC and MMMC files used for timing
analysis, the custom list files for sensitive cells and nets, the cus-
tomized LIB/LEF files, various snapshots with sensitive cells and
nets highlighted, and a README). Furthermore, we include the
reports obtained by our evaluation. Specifically, aside from regular
PPA reports, custom-generated reports provide insights on i) the
areas of sensitive cells and wires that are exposed to probing and
fault injection, and ii) placement sites and routing resources of
regions that are exploitable for Trojan insertion. More details on
these evaluation metrics are provided in Sec. 3.3.

Over the course of the contest, we release three different sets of
benchmarks: sample benchmarks, alpha-round benchmarks, and
final-round benchmarks, as described next. All benchmarks are
released on the contest website [9] and will remain online there
after the contest concludes. With the contest results to be published
online there as well, we hope to further stimulate competitive
interest and efforts from the community after the contest concludes.

3.2.1 Sample Benchmarks. This set contains three different layout
implementations of the sameAES design (module extracted from the
MIT-LL CEP SoC). This set is meant as “warm-up” and introduction
to the contest theme. Thus, the three layouts represent baseline
versus somewhat hardened implementations. More specifically, we
provide: i) a baseline layout with 70% utilization, ii) a baseline layout
with 90% utilization, and iii) a layout with 70% utilization and some
shielding of cells and nets against probing, fault injection attacks.

The relevant insights for participants would be the following:

• A naive increase of utilization from 70% to 90% helps to
harden the layout against Trojan insertion (Fig. 6), but makes
timing closure much more difficult (not illustrated here).

• Shielding of sensitive cells and nets helps to harden the
layout against probing and fault injection, but makes timing
closure more difficult as well, along with further PPA cost.

• Competitive schemes should achieve both, hardening lay-
outs and limiting impact on design quality. Such efforts are
explicitly not made for the sample benchmarks.

3.2.2 Alpha-Round Benchmarks. This set is made public at the
beginning of the alpha round. This set contains layouts of various
crypto cores (namely CAST, Camellia, MISTY, PRESENT, and AES).
Note that the AES layouts from the sample benchmarks are also
included here, but with a different sets of cell and net assets to
be protected. As indicated, the layouts have varying ranges of
complexity, size, utilization, timing constraints, number of assets,

Figure 6: Exploitable regions for the AES layouts with 70%
utilization (left) versus 90% utilization (right). Regions with
50%+ free routing tracks are highlighted in red, whereas re-
gions with less free tracks are highlighted in yellow.

Figure 7: Cells assets (left) and nets assets (right) highlighted
for the baseline layouts of exemplary crypto cores Camel-
lia (top) versus CAST (bottom). The Camellia benchmark
represents a relatively simple case, with 265/6,710 cells and
384/7,074 nets labelled as assets, whereas the CAST bench-
mark represents a larger and more challenging case, with
4,805/12,682 cells and 4,935/13,050 nets labelled as assets.

and available metal layers. Figure 7 illustrates the different scales
of cell and net assets for two exemplary crypto cores.

3.2.3 Final-Round Benchmarks. This set is split into two; one is
made public at the beginning of the final round, the other remains
undisclosed until the very end, such that participants cannot tweak
their efforts for particular benchmark characteristics (if any).



The public part contains the openMSP430 microprocessor and
various crypto cores (namely those from the alpha round but now
with more aggressive utilization and timing constraints). The part
undisclosed-til-end contains the large-scale CEP SoC and the re-
maining crypto cores (namely SEED, TDEA, and SPARX ). The CEP
SoC is provided in two versions, namely one as loose and one
as aggressive implementation. The crypto cores are provided as
medium-to-aggressive implementations. Thus, as before, the lay-
outs vary in complexity, size, utilization, timing constraints, number
of assets, and available metal layers.

3.3 Metrics and Scoring
The scoring considers multiple security and design metrics in a
streamlined manner, as explained here in detail. Besides, there are
various constraints to be followed, as outlined in Sec. 3.4.

3.3.1 Trojan Insertion. Related metrics are based on so-called ex-
ploitable regions, i.e., sets of continuous placement sites that are
exploitable because they are i) free, ii) occupied only by filler or
other non-functional cells, or iii) occupied by functional but un-
connected cells. Free routing tracks are also considered, as Trojans
would require such as well. In other words, exploitable regions are
where an attacker would be able to find or make some space, along
with routing resources, to place and wire up their Trojans.

For this contest, without loss of generality, exploitable regions are
defined as sets of 20 or more exploitable placement sites extending
in continuous manner in horizontal and/or vertical direction into
any polygonal shape. Such assumption is practical as an attacker
would need at least a few sites for Trojan insertion—the specific
number of 20 sites is taken from the A2 Trojan [21]—but it is also
simplified for the sake of generic evaluation (i.e., without having
to consider actual Trojan implementations). Note the following
(non-exhaustive) implications of this simplified assumption.

(1) Depending on the layout, these 20+ sites may be arranged
in largely vertical shape, i.e., across rows, which would be
more difficult to exploit for Trojan placement. However, such
regions are potentially still relevant, e.g., for Trojan routing
assuming that exploitable sites would hold more free routing
tracks on average than occupied sites.

(2) The selection of continuous sites is strictly related to any
layout as is; it does not account for the fact that an attacker
might be able to rearrange some nearby cells to further ex-
tend the number of continuous sites. However, such efforts
by an attacker are still subject to timing constraints; the
latter implication is further discussed next.

Exploitable regions are defined and evaluated only within an
exploitable distance of cells representing security assets. That is
because Trojans need to be placed and routed such that timing
requirements of the original design are still met; thus, placement
sites which are closer to cell assets tend to be more vulnerable.

More specifically, the exploitable distances are determined as
follows. For paths related to the cell asset, the positive timing slack
(if any) is determined. Next, the delay impact of adding an addi-
tional NAND gate—representing an exemplary, most simple form of
Trojan—is determined, by analyzing wiring delays and the library
for different output loads and input transition times. To simplify
and limit runtime for evaluation, we do not perform actual routing

Figure 8: Example for standard cells’ exposed area, high-
lighted in red, zoomed in. Routing across the differentmetal
layers blocks the exposed areas somewhat, but there are still
large gaps; the cells remain vulnerable to large degrees.

here; we estimate wiring loads based on Manhattan distance. Then
we derive what maximal distance the hypothetical NAND-gate Tro-
jan’s routing could afford while consuming just the positive slack
available across the paths related to the cell asset, but not more (i.e.,
still meet timing).

3.3.2 Frontside Probing, Fault Injection. Related metrics are based
on the so-called exposed area of cells and nets, i.e., any spatial
region, be it continuous or fragmented, of those cell/net assets
which is accessible via direct line of sight through the metal stack.
An example for some standard cells is provided in Fig. 8.

The notion of exposed area is appropriate for a generic evaluation
against frontside probing, fault injection attacks for the following
(non-exhaustive) list of reasons.

(1) Exposed area is conservative; it assesses any first-order vul-
nerability based on direct line of sight to the asset.

(2) Exposed area is agnostic to the attacker’s capabilities, since
regions of any size and fragmentation are accounted for.
This is a practical simplification as follows. For example for
laser fault injection on cells, it is sufficient to have small
transistor-sized regions exposed to induce some faults, as
the maliciously acting photocurrents induced by the laser
can be well controlled through the attacker’s setup. At the
same time, with more regions exposed, the attack surface
literally increases, and the options for targeted fault injec-
tions increase. Similar reasoning applies to other attacks and
net/wire assets. Thus, in general, the larger the exposed area,
the more vulnerable the assets.

3.3.3 Design Quality. Metrics are focused on standard metrics,
describing power, performance, and area, as well as routing.

3.3.4 Metrics Classification. A short description of all considered
metrics, along with their variable names listed in italic, is given in
the following classification.

(1) Security – sec
(a) Trojan insertion – ti

(i) Placement sites of exploitable regions (ers)
• Max # of sites across all ers – sts_max
• Avg # of sites across all ers – sts_avд
• Total # of sites across all ers – sts_total



(ii) Routing resources of exploitable regions (ers)
• Max # of free tracks across all ers – f ts_max
• Avg # of free tracks across all ers – f ts_avд
• Total # of free tracks across all ers – f ts_total
• Note that, for each exploitable region, free tracks are
summed up across all metal layers.2

(b) Frontside probing and fault injection – f sp_f i
(i) Exposed area (ea) of standard cell assets

• Max % of ea across all cell assets – ea_c_max
• Avg % of ea across all cell assets – ea_c_avд

(ii) Exposed area (ea) of net assets
• Max % of ea across all net assets – ea_n_max
• Avg % of ea across all net assets – ea_n_avд
• Total ea across all net assets – ea_n_total

(2) Design quality – des
(a) Power

• Total power – p_total
(b) Performance

• Worst neg. slack, setup timing req. – setup_WNS
• Total neg. slack, setup timing req. – setup_TNS
• # of failing endpoints, setup timing req. – setup_FEP

(c) Area
• Total die area (not standard cell area) – die_area

(d) Routing
• # of DRC violations – DRC

3.3.5 Scoring. The score calculation is given below. First, however,
see the following important considerations for scoring:

(1) All metrics are grouped following the above classification.
All metrics are weighted and summed up within their related
group. Weighting is also applied across the upper levels in
the classification hierarchy.

(2) For the overall score, we consider the product of (summed
and weighted) metrics for Trojan insertion and frontside
probing, fault injection as well as (summed and weighted)
metrics for design quality. Thus, security and design quality
are to be optimized at once, or rather security should be
incorporated without negative impact on design quality.

(3) All metrics are normalized to their respective nominal base-
line, i.e., obtained from the provided benchmark layouts.
• Some metrics require case-specific definitions for normal-
ized scoring. Details are given with the score calculation.

• A layout that improves on some metric is scored a related
value between 0 (max improvement) and 1 (min improve-
ment), whereas a deteriorated layout will be scored >1.3

• Such normalized scoring is more sensitive to deteriora-
tion than it is to improvements. This is on purpose—we

2While metal1 is particularly relevant for an attacker to connect to the pins of their Tro-
jan cells, free tracks in other layers would also be relevant, namely to tap into/connect
with some sensitive nets and to complete intra-Trojan routing. Hence, for any ex-
ploitable region, we cannot say in advance which layers are most relevant (i.e., should
be weighted more) until we evaluate all the sensitive nets’ routing tracks and even
more so until we study the routability of various possible Trojans being inserted in
such region—these are impractical tasks. Thus, we have accordingly simplified the
f ts_∗ metrics to account for the sum of free tracks across all metal layers.
3This does not always hold true. Specifically, in case both baseline and submission
metrics have a value of 0, where no improvement is achieved, related scores are 0
by definition (and not 1). This is needed to avoid particular noncontinuous scaling
behaviour that could otherwise be exploited for cheating.

want to further improve the layouts, not deteriorate them.
Note that it is not important whether some benchmark lay-
outs are already aggressively optimized in terms of design
quality or not; a more (versus less) aggressive benchmark
layout will just provide less (versus more) flexibility for
optimizing both on security and design quality.

The overall score, to be minimized, is defined as:

score = sec × des = ti × f sp_f i × des (1)

with the calculation of score components detailed next. In the fol-
lowing, note that s refers to the secured/submitted layout and b
refers to the corresponding baseline layout.

(1) Trojan insertion – ti
(a) 60% weighted: placement sites of exploitable regions

• 50% weighted:
score(sts_total) = sts_total(s)/sts_total(b)

• 33.3% weighted:
score(sts_max) = sts_max(s)/sts_max(b)

• 16.6% weighted:
score(sts_avд) = sts_avд(s)/sts_avд(b)

(b) 40% weighted: routing resources of exploitable regions
• 50% weighted:
score(f ts_total) = f ts_total(s)/f ts_total(b)

• 33.3% weighted:
score(f ts_max) = f ts_max(s)/f ts_max(b)

• 16.6% weighted:
score(f ts_avд) = f ts_avд(s)/f ts_avд(b)

(2) Frontside probing and fault injection – f sp_f i
(a) 50% weighted: exposed area of standard cell assets

• 60% weighted:
score(ea_c_max) = ea_c_max(s)/ea_c_max(b)

• 40% weighted:
score(ea_c_avд) = ea_c_avд(s)/ea_c_avд(b)

(b) 50% weighted: exposed area of net assets
• 50% weighted:
score(ea_n_total) = ea_n_total(s)/ea_n_total(b)

• 33.3% weighted:
score(ea_n_max) = ea_n_max(s)/ea_n_max(b)

• 16.6% weighted:
score(ea_n_avд) = ea_n_avд(s)/ea_n_avд(b)

(3) Design quality – des
(a) 10% weighted: power

• score(p_total) = p_total(s)/p_total(b)
(b) 30% weighted: performance

• 50% weighted: setup_TNS
(notation is consolidated below into setup_NS)

• 33.3% weighted: setup_WNS
(notation is consolidated here into setup_NS)
– If setup_NS(s) < 0, setup_NS(b) < 0:
score(setup_NS) = setup_NS(s)/setup_NS(b)

– Else if setup_NS(s) < 0, setup_NS(b) >= 0:
score(setup_NS) =
min(setup_NS_max_cost ,abs(setup_NS(s)))
with setup_NS_max_cost = 3 as default

– Else (i.e., setup_NS(s) >= 0):
score(setup_NS) = 0



• 16.6% weighted: setup_FEP
– If setup_FEP(b) > 0:
score(setup_FEP) = setup_FEP(s)/setup_FEP(b)

– Else (i.e., setup_FEP(b) = 0):
score(setup_FEP) =
min(setup_FEP_max_cost , setup_FEP(s))
with setup_FEP_max_cost = 3 as default

(c) 30% weighted: area
• score(die_area) = die_area(s)/die_area(b)

(d) 30% weighted: routing
• If DRC(b) > 0:
score(DRC) = DRC(s)/DRC(b)

• Else (i.e., DRC(b) = 0):
score(DRC) =min(DRC_max_cost ,DRC(s))
with DRC_max_cost = 3 as default

Note that the weighting of security metrics emphasizes total over
max over avg values, respectively; this is to guide toward minimiz-
ing the overall and worst-case vulnerabilities. For design quality,
note that performance, area, and routing are considered equally
relevant, whereas power is considered less relevant. This aims to
honor the sensitivity of performance, area, and routing for design
closure in general, while providing some “slack” toward security-
closure efforts. In this context, also note that we do not account for
any loss or gain of positive timing slack; thus, we implicitly release
such slack (if any) for security-closure efforts.

3.4 Constraints
For a fair and focused competition, participants have to adhere to
some constraints as follows. Note that compliance is automatically
checked within our evaluation backend. Violations are reported
to the participants, and repeated cases of excessive violations may
lead to disqualification.

• Participants must maintain the functional equivalence of the
design. However, participants are free to revise parts of the
design, as long as this and the next constraint are met.

• Participants must maintain the sensitive components, which
are declared along with each benchmark. More specifically,
cells and nets declared as assets cannot be restructured.

• Participants cannot add dedicated, custom circuitry (e.g.,
sensors to detect laser fault injection).

• Participants cannot design custom cells; only those cells
defined in the provided LIB/LEF files can be utilized.

• Participants cannot add additional metal layers (e.g., to triv-
ially protect against frontside probing attacks).

• Participants cannot move the PG network to different layers.
Furthermore, participants need to maintain i) the overall
structure of the PG network as well as ii) the ratio of routing
tracks occupied by the PG network to total routing tracks.
Deviations of up to +/- 5% in the ratio of track utilization by
the PG network is permissible.

• Participants must maintain the relative IO pin placement.
Note that re-scaling of the die outline is allowed; if done,
however, the IO pins must afterwards be placed in similar
relative coordinates. Deviations of up to +/- 5% along the
horizontal/vertical boundary are permissible.

• Participants cannot incorporate trivial defenses; specifically,
filler cells, other non-functional cells, and functional but
unconnected cells are considered as free placement sites for
evaluation of exploitable regions.
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