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Scope of this Research

• Traditional Sieve analysis is cumbersome, imprecise, and fails to capture particle 
granulometry (Shape and texture)

• Scanning Electron Microscope (SEM)
• Laser diffraction
• Micro CT scanner
• Dynamic Image Analysis

Motivation

Goals

• Evaluation of 2D DIA, 3D DIA and µCT for characterizing sand particle 
granulometry 

• Application of NUMERICAL size, shape descriptors for sand classification instead 
of particle images

• Apply machine learning methods for automatic identification of particles
• Advance State of the Art in particle classification
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Introduction to 2D DIA Operations

• Multiple images of 
different particles

• Pulsed laser
• Binary Images
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Pulsed 
laser light
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Schematic diagram of 2D DIA



For More Information on 2D DIA

Operating Parameter
• Air pressure
• Moisture content
• Specimen size

Application of DIA to two 
complex sands
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ABSTRACT

This study investigates the efficacy of dynamic image analysis (DIA) for determining particle size

and shape distribution. The method employs a high-frame-rate camera to image individual

particles of sand that have been transported and separated using a stream of pressurized

air. DIA can generate both particle size and shape information and provides a quantitative stat-

istical description of the grain size and shape distribution within the specimen. The feasibility,

repeatability, and accuracy of DIA for routine analysis of particle size and shape distribution was

investigated using 16 granular soils spanning a number of common sizes and shapes. Several

particle shape descriptors were evaluated, including aspect ratio, convexity, and sphericity.

The effect of a variety of test parameters including moisture content, sample weight, primary

air pressure, and test duration were explored to determine the optimal specimen weight and

equipment settings for DIA. Finally, the efficacy of DIA in resolving mixtures of fine and coarse

sands was also explored. The method proved to be feasible, repeatable, and accurate for provid-

ing particle size distributions spanning four orders of magnitude, in terms of particle size. DIA

offers a number of advantages; the method is quick, requires small specimen sizes, and provides

quantitative information on approximately 3–4 % of the particles in the specimen.

Keywords

equivalent projected area of a circle, Feret diameter, number distribution, volume distribution,

round, silica, angular, quartz, sand, gap graded

Nomenclature

A= particle area
AR= aspect ratio, dFmin/dFmax

Cc= coefficient of gradation, D2
30/D60*D10

Cu= uniformity coefficient, D60/D30
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Granulometry of Two Marine Calcareous Sands
Linzhu Li, S.M.ASCE1; Ryan D. Beemer, Ph.D., A.M.ASCE2; and Magued Iskander, Ph.D., P.E., F.ASCE3

Abstract: The morphology of two types of complex calcareous sand was investigated in this study. The materials were selected owing to
their different geologic and biologic origins. Ledge Point is a bioclastic coastal sand, while Browse #1 is a hemipelagic sand. These two sands
fall outside the range of common data sets used to correlate mechanical properties to particle shape parameters. Morphologic analysis of these
calcareous sediments can aid with understanding the engineering behavior of calcareous soils. Moreover, sediments source tracing infor-
mation could also be inferred from particle shape analysis. Two-dimensional Dynamic Image Analysis (DIA) was employed to capture five
million and eight million particle images of each sand, respectively. A number of size parameters including diameter of equivalent projected
circle (EQPC), Feret minimum, and Feret maximum diameter were efficiently obtained for each captured image using DIA, and used to
investigate particle size distribution of these sediments. In addition, samples of over 800,000 particles were used to assess statistical dis-
tributions of various particle shape parameters including Aspect Ratio, Convexity, Sphericity, and Roundness-DIA (by volume). A Johnson
family of distributions was found to provide a better fit to particle shape parameter distributions than the normal distribution for both sands. It
is also shown that the Sphericity and Aspect Ratio are size independent, while Convexity and Roundness-DIA are correlated with particle
size. Convexity is likely correlated with Sphericity for both calcareous sediments owing to their biogenic origin. Correlations of Roundness-
DIA, Sphericity, Convexity, and Aspect Ratio and particle size are also observed but need more analysis. DOI: 10.1061/(ASCE)
GT.1943-5606.0002431. © 2020 American Society of Civil Engineers.

Author keywords: Calcareous sediments; Dynamic Image Analysis (DIA); Johnson curve fitting; Carbonate; Particle shape; Roundness;
Maximum and minimum void ratio.

Introduction

Calcareous sediments consist mainly of clastic biogenic calcium
carbonate from shells and tests (shells of single celled organisms)
of marine macro- and microorganisms. As a result, calcareous
sands possess complex physical shapes (Beemer et al. 2018). These
sediments have been known to be problematic for designing foun-
dations because they exhibit large volume changes and friction an-
gle softening (Murff 1987). In particular, these characteristics have
been related to pile running, the tendency of volumetric changes
during pile installation to reduce skin friction (Al-Douri and Poulos
1995).

In siliceous sands, strength, compressibility, critical state param-
eters, hydraulic conductivity, packing density, and void ratio can vary
with particle shape (Cho et al. 2006; Rousé et al. 2008; Bareither
et al. 2008; Kuo and Freeman 2000; Shin and Santamarina 2013;
Zheng and Hryciw 2016a). Previous research proposed linking mi-
cromechanical properties with their macromechanical behavior. This
has been done by correlating particle shape parameters with void

ratio and critical state parameters of sands. Given these advance-
ments, quantitative study of particle shape analyses may be useful
for assessing the behavior of calcareous sands.

Three-dimensional (3D) particle shape measurements derived
from two orthogonal X-ray images (Hanaor et al. 2016), microcom-
puted tomography (Alshibli et al. 2015; Fonseca et al. 2012), Syn-
chrotron microcomputed tomography (Afshar et al. 2018), stereo
photography (Zheng and Hryciw 2017), or structured light (Sun
et al. 2019b) provide the most accurate representation of particle
shape. However, 3D measurement of particle shape can be cumber-
some, computationally intensive, slow, and expensive for routine
geotechnical practice. Although sophisticated techniques have
been used to scan and analyze over 19,000 particles at once
(Kong and Fonseca 2018), 3D shape analysis is typically limited to
sample sizes on the order of 100 grains (Rorato et al. 2019; Maroof
et al. 2020). An alternative to these methods is two-dimensional
Dynamic Image Analysis (DIA), which can be used to quickly
and efficiently analyze the shape parameters of hundreds of thou-
sands to millions of sand grains in a few minutes.

Two-dimensional DIA has been adopted in geotechnical engi-
neering research to provide statistical descriptions of particle size
and shape of millions of individual sand grains at a time (Li and
Iskander 2020). DIA provides accurate statistics of particle shape
by capturing the 2D projected area of a large sample of particles, at
a random orientation (White 2003). The method is fast, convenient,
and computationally inexpensive, and the image data set is helpful
for conducting computer vision research involving size and shape
parameters (Sun et al. 2019c; Machairas et al. 2020).

This paper focuses on the particle size and shape analysis of two
types of calcareous sands from offshore Western Australia: Browse
#1 and Ledge Point. The two sands are representative of different
geologies; the first was obtained from a deep-sea site, while the
second is representative of a calcareous coastal site (Fig. 1). Five
and eight million particle images were used to measure several
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Introduction to 3D DIA Operations

• Multiple images of 
same particle

• Gray scale images
• LED light

5 

3D DIA - © Microtrac MRB 2020 
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Comparison of 2D & 3D DIA

2D and 3D DIA apparatus 

2

2D DIA apparatus

2D DIA 3D DIA

Number of 
captured 

images for 
each particle

one image for 
each particle 

from a 
random plane

takes 8-12 
images for 

each particle 

Image 
resolution 4µm/px 15µm/px

Light source Pulsed laser
Stroboscopic 

LED

Frame rate 175 frames/s 100 frames/s

Particle size 
range 4µm – 10mm

22µm – 
35mm

Algorithm PAQXOS FLEX

Minimum 
required 

particle size for 
shape analysis

40µm 150µm
3D DIA apparatus
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Materials

Ø Siliceous sand
ØOttawa sand: naturally occurring, mechanically sorted, Rounded

ØQuartz sand: mechanical crushing of quartzite rock, Angular 

ØPeace River sand: a natural feldspathic sand sediment, 
Subangular and subrounded

Ø Calcareous sand
ØMarine Sand: hemipelagic sand from a deep-water environment, 

Irregular

ØBeach Sand, coastal bioclastic sand from a shallow-water 

environment, Irregular

ØBoth marine sand sediments contain of Intra-voids

19 types of sand

3

       
Ottawa #12-20  Ottawa #20-30  Ottawa #70-100 

 

       
 Quartz #4   Quartz #3   Quartz #2 
 

       
Peace River   Marine Sand   Beach Sand 
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Materials (Images captured by 2D and 3D DIA)3

Engineering Geology 290 (2021) 106052
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West Australia in 137 m of water. It is a complex material with 
distinctive particle shapes (Fig. 2c). Hemipelagic sediments consist 
of relatively intact remnants of marine exoskeletons, including 
foraminifera tests and gastropod shells (Beemer et al. 2018, 2019, 
2020). The accumulation of hemipelagic sediments reflects the low 
energy deep water environment, which impacts the engineering 
behavior of soils. The value of D50 is 530 μm (by volume). The void 
ratio of marine sand is larger than the other two siliceous sand as the 
minimum and maximum void ratios are 1.76 and 2.33, respectively. 
The material is classified as poorly graded sand (SP) according to 
ASTM’’s USCS, although conventional classification fails to capture 
its complexity (Li et al. 2021). 

4. Soil particle size and shape descriptors 

Methods for quantifying particle morphology can be classified based 
on the type of images that they employ, as follows: (1) Methods that 
employ three-dimensional (3D) images acquired using a variety of 
technologies such as μCT, and (2) methods which employ two- 
dimensional (2D) particle projections. The 3D DIA method tracks the 
movement of individual particles and captures a series of images from 
their randomly oriented projections; consequently, the 2D descriptors 
shown in Table 1 are consistently adopted throughout this study. 

4.1. Size descriptors 

Soil particle size descriptors can be presented in terms of EQPC 

diameter or Feret diameters. EQPC diameter is widely used for aver-
aging the shapes of regular particle, while Feret diameters are intended 
to provide particle dimensions of irregularly shaped particles, as follows: 

EQPC diameter (de) is the diameter of a circle with an equal projection 
area to the 2D particle projection. EQPC is calculated as: de = 2

̅̅̅̅̅̅̅̅̅
A/π

√
. In 

3D DIA, the particle area A represents the average area of a series of 
particle images. 

Feret-max and Feret-min diameters (dFmax and dFmin) are generally 
employed for describing maximum and minimum dimensions of a par-
ticle per ASTM F1877(ASTM International, 2016). The Feret diameter 
refers to the distance between two parallel tangents to the particle at an 
arbitrary angle. Thus, for any irregular particle, an unlimited number of 
Feret diameters can be computed as the particle is rotated between two 
parallel lines. For irregular particles, the Feret-max (dFmax) and Feret- 
min (dFmin) are the longest and shortest dimensions. Consequently, 
dFmax > de > dFmin. 

In 3D DIA, Feret-length diameter (dFlength) represents the maximum 
dFmax in a sequence of 2D images of an individual particle, and Feret- 
width (dFwidth) and Feret-thickness (dFthickness) diameters are maximum 
and minimum dFmin in a sequence of 2D images of an individual particle, 
respectively. Thus dFlength, dFwidth, and dFthickness diameters can be 
assumed to be the longest, intermediate, and shortest axes for the 
reconstructed 3D particles, if a sufficient number of particle images is 
captured by the 3D apparatus. 

Fig. 3. Typical images captured by 3D DIA for four particles of sand.  

L. Li and M. Iskander                                                                                                                                                                                                                          

2D DIA 3D DIA

Main difference: 
•2D DIA captures 1 binary 
particle image at 4µm/px
•3D DIA captures 8-12 grayscale 
images of a particle at 15µm/px

        

        

        

        

        

         

   

   

    

Ottawa 
#20-30

Peace 
River 

Marine 
Sand
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Particle size and shape descriptors in 2D and 3D DIA

Feret diameter refers to distance between two parallel tangents to the particle 
at an arbitrary angle:
2D DIA

ØdFmax : longest dimension, dFmin : shortest dimension
3D DIA

ØFeret-length diameter: maximum dFmax in sequence images

ØFeret-width diameter: maximum dFmin in sequence images

ØFeret-thickness diameter: minimum dFmin in sequence images

EQPC diameter (de) is the diameter of a circle with an equal projection area to 
the particle projection. 

In 3D DIA, de = average value in sequence images

Aspect Ratio:  2D DIA: AR = !!"#$
!!"%&

; 3D DIA: ARTL = !!'(#)*$+,,!!-+$.'(
; 

3D DIA: Elongation Index = !!'(#)*$+,,
!!/#0'(

; Flatness Index = !!/#0'(
!!-+$.'(

; 

3D DIA: Cx, Sp, R = average value in sequence images

4
Engineering Geology 290 (2021) 106052
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4.2. Shape descriptors 

Two-dimensional particle shape descriptors help quantify the form of 
an irregularly shaped particle and compare it to a perfect circle. Four 
particle shape descriptors are employed in this study to investigate both 
2D and 3D DIA (Table 1). The numerical value of all 4 shape descriptors 
ranges from 0.0 to 1.0, where a symmetrical particle, such as a circle or 
sphere, approaches 1.0, while a highly irregular particle has descriptors 
approaching, but never reaching 0. It is noteworthy that different studies 
have employed inconsistent definitions of Roundness and Sphericity 
(Rodriguez et al. 2013). The shape descriptors employed herein are 
defined as follows: 

Aspect Ratio (AR) is defined as the ratio of the minimum to the 
maximum Feret diameters, AR = dFmin/dFmax in 2D DIA. In 3D DIA, the 
definition of Aspect Ratio employs the 3 Feret diameters such that the 

Thickness to Length ratio (ARTL) = dFthickness/dFlength, Elongation 
Index (EI) = dFthickness/dFwidth and Flatness Index (FI) = dFwidth/dFlength 
(Zingg 1935). Note that ARTL, EI, and FI obtained by the 3D apparatus 
are statistical approximations of Zingg’s definitions, since Zingg defined 
these parameters to be orthogonal to each other, but DIA captures a 
larger number of random images for a vastly larger specimen than ones 
traditionally examined according to Zingg’s methodology. 

Convexity (Cx) is a measure of the overall concavity of a particle per 
ISO 9276-6 (International Organization for Standardization (ISO), 
2008). It is the ratio between the projected particle area (A) and the area 
of the convex hull (Ac), Cx = A/AC, as shown in Table 1 (Mora and 
Kwan, 2000). A rounded particle should not contain a large area of 
concave corners; therefore, its value of Cx approaches 1. The Cx in 3D 
DIA is calculated as the ratio of the average particle area to the average 
convex hull area in n images of the same particle, as: 

Table 1 
Definition of particle size and shape descriptors employed in this studya. 

L. Li and M. Iskander                                                                                                                                                                                                                          
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Comparison of 2D and 3D DIA4

Particle size distribution

ØThe PSD: dFlength  > dFmax > dFmin > dFthickness

ØThe PSD of EQPC in 2D DIA and 3D DIA is 

consistent.

ØThe PSD of dFthickness and dFmin matched with 

sieve analysis 

ØHigher image quality is not necessarily 

required for size analysis. 

Particle diameter (µm) Particle diameter (µm)

Ottawa #20-30 Peace River Marine Sand

Particles are assumed to be spheres, and the diameters of these spheres 
are calculated using selected size descriptors
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Comparison of 2D and 3D DIA4

Particle shape distribution
 

 

 

 
 
 

Fig. 5. Particle shape density distributions expressed using various shape parameters for 
(a) Ottawa #20-30, (b) Peace River and (c) Marine Sand. 

(Only Particles with EQPC diameter larger than 150µm are included.  Volume distribution 
employed) 

  

ØThe standard deviations of S, Cx, and R in 3D DIA are smaller than 2D DIA, 3D 

data exhibits a more concentrated trend.

ØImage resolution affect the shape descriptors characterization: Sphericity: 3D 

DIA is 26%-39% larger than 2D DIA.  

 Convexity: least sensitive descriptor and not much difference

 Roundness: difference from -5 to 14% between 3D and 2D DIA

 Aspect Ratio: The standard deviations are similar. 

        ARTL < AR ≈ EI < FI 
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Comparison of 2D and 3D DIA4

Minimum number of particles for mean shape descriptor  
 

 

 

 
 
 

Fig. 7 Comparison of average absolute relative error in Sphericity (S) and Convexity (Cx) 
for both 3D and 2D DIA, with sample size. 

Engineering Geology 290 (2021) 106052
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in the 2D vs 3D distribution of shape parameters as well as the goodness 
of Johnson parameters is illustrated in Fig. 6 for Sphericity. Johnson 
fitting parameters are provided in Table 6 for all studied shape param-
eters using particle volume distribution. These values can be used for 
modelling statistical particle shape distributions numerically. 

5.3.4. Minimum number of particles for cumulative particle shape analysis 
The minimum number of particles required for measuring mean 

particle shape descriptors are summarized in Table 7. The number is 
calculated such that absolute relative error is less than 0.5% in the mean 
average computed shape parameter. As expected, S and Cx for 3D DIA 
require a smaller number of particles to achieve the required accuracy 
(0.5% error), compared to 2D DIA; however, this number is shape 
dependent. In general, more particles are required to achieve the 
requisite error threshold for irregular shapes. For example, the mini-
mum numbers for S in 3D DIA are 30, 40 and 200, for Ottawa #20–30, 
Peace River, and Marine Sand, respectively; while the requisite particle 
numbers for 2D DIA are 400, 500 and 1000. These particle numbers 
correspond to an equal number of images in 2D DIA and ~ 10× the 
number of particles for 3D DIA images. It is interesting to note that a 
mere eight and ten particles are required to represent Cx of the entire 
sample for Peace River and Ottawa #20–30 sand, with the requisite 
accuracy while a slightly larger quantity of 50 is required, for Marine 
Sand. 

The relationship of sample size and average absolute relative error of 
S and Cx is shown in Fig. 7, for 3D and 2D DIA. Error bars represent the 
standard error of the absolute relative error when the test is repeated 
100 times at a given sample size. The data presented in Fig. 7 was 
synthetically obtained by randomly sampling particle shape data from 

the experimentally obtained data set, which contains up to 800,000 
particles. The values for 2D DIA are substantially higher than for 3D DIA 
for all sample sizes. The dimensional shape descriptors of AR, ARTL, EI 
and FI required a similar number of minimum particles for 2D and 3D 
DIA (Table 7). These required particle quantities are approximately ten 
times larger than S and Cx in 3D DIA because of their wider shape dis-
tribution ranges. 

In summary, 2D DIA requires that a larger number of particles be 
tested than 3D DIA to achieve the same accuracy in S and Cx (Table 7). 
Only 3D DIA provides data for R, EI, and FI, thus comparison is not 
possible. With respect to aspect ratio results were comparable, with 2D 
DIA actually requiring marginally fewer particles owing in part to the 
difference in the definitions of AR (2D) and T/L (3D). Finally, 2000 
particles were sufficient to achieve a maximum error of 0.5% in all shape 
indices. 

5.4. Particle shape classification 

Wadell (1932, 1933, 1935) defined the Sphericity, SWadell, of a par-
ticle as the ratio of the diameter of an equivalent sphere having the same 
volume as the particle to its longest diameter. At approximately the 
same time, Zingg (1935) developed the diagram that classified particle 
forms into four classes based on the relationship of their Elongation 
Index (EI) to their Flatness Index (FI) as Disc-shaped, Spherical, Bladed, or 
Rod-like. Accordingly, Spherical and Bladed particles are defined as 
having both values of FI and EI larger or smaller than 2/3, respectively. 
Disc-shaped particles have an EI < 2/3 and FI > 2/3, while Rod-like 
particles are opposite, having EI > 2/3 and FI < 2/3. Krumbein 
(1941) reconciled and made popular shape concepts proposed by both 
Zingg and Wadell to better describe the particle Sphericity using easily 
obtained long, intermediate and short Feret diameters, dFlength, dFthickness, 
dFwidth. Krumbein’s definition has evolved as a popular reference index 
in geotechnical and geological practice, known as the Zingg-Krumblein 
Chart. 

The particle morphology interpreted according to the Zingg- 

Fig. 6. 2D and 3D Sphericity distributions fitted using Johnson’s parameters 
for Marine Sand. 

Table 6 
Johnson’s fitting parameters of volume particle shape distributions for 2D and 3D DIA.  

Type Johnson’s parameters 2D DIA 3D DIA 

S Cx R AR S Cx R ARTL EI FI 

Ottawa #20–30 γ −1.76 1.69 2.84 −1.48 −2.40 0.50 2.66 −0.22 −0.67 −1.21 
δ 1.29 1.2 3.39 1.79 1.41 0.76 5.92 2.44 1.24 1.5 
ξ 0.18 0.98 0.98 0.22 0.86 1 0.82 0.2 0.5 0.42 
λ 0.77 0.01 0.2 0.83 0.13 0 0.19 0.85 0.51 0.57 

Peace River γ 0.1 3.46 −0.81 −1.23 2.05 2.40 −0.5 1.84 −1.58 −2.2 
δ 2.03 2.03 2.67 2.17 1.79 1.60 6.86 4.61 1.69 2.14 
ξ 0.36 0.99 0.41 0 0.97 1 0.55 0.73 0.09 −0.14 
λ 0.69 0.01 0.27 1.13 0.03 0 0.32 0.42 0.98 1.17 

Marine Sand γ −3.48 2.52 0.57 −0.77 2.05 2.40 −0.50 1.84 −1.58 −2.2 
δ 3.1 1.65 0.70 1.15 1.79 1.61 6.86 4.61 1.69 2.14 
ξ −0.9 0.97 0.23 0.06 0.97 1 0.44 0.73 0.09 −0.14 
λ 2.01 0.04 0.75 0.91 0.03 0 0.32 0.42 0.98 1.17  

Table 7 
Minimum number of particles required in 2D and 3D DIA for the average ab-
solute relative error in particle shape parameter to be less than 0.5%.  

Shape descriptor Ottawa #20–30 Peace River Marine Sand 

2D 
DIA 

3D 
DIA 

2D 
DIA 

3D 
DIA 

2D 
DIA 

3D 
DIA 

Sphericity 400 30 500 40 1000 200 
Convexity 20 10 20 8 200 50 
Wadell Roundness … 70 … 300 … 400 
Aspect Ratio (AR or 

T/L) 
400 600 600 700 1000 2000 

Elongation Index … 400 … 600 … 2000 
Flatness Index … 500 … 700 … 1000  

L. Li and M. Iskander                                                                                                                                                                                                                          

ØAbsolute relative error of mean shape value is less than 0.5%

Ø2D DIA requires ~10X number of particles than 3D DIA for S and Cx.

ØCx required the least number of particles as 8-50 to represent the entire sample. 

ØNot much difference for AR. 
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• The operating speed and cost are comparable. 

• Particle size is independent of the machines and algorithms. 

• Particle shape is sensitive to the technology employed.

• 3D DIA requires a smaller number of sand particles to achieve mean particle shape 

values.

• 3D DIA provides a more accurate representation of a particles’ longest and shortest 

dimensions.

• Higher resolution of 2D DIA more accurately reflects particle shapes for engineering 

behavioral analysis.

• Open-source algorithms are helpful in establishing confidence in the computed values 

Comparison of 2D & 3D DIA4

Engineering Geology 290 (2021) 106052
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Comparison of 2D and 3D dynamic image analysis for characterization of 
natural sands 

Linzhu Li , Magued Iskander * 

Civil and Urban Engineering Department, NYU Tandon School of Engineering, 6 Metrotech Center, Brooklyn, NY 11201, United States   

A R T I C L E  I N F O   

Keywords: 
Granulometry 
Elongation index 
Flatness index 
Johnson coefficients 
Zingg and Krumbein chart 

A B S T R A C T   

The efficacy of Dynamic Image Analysis (DIA) for evaluating particle size and shape parameters was explored 
using three natural sands, having varying particle morphologies. Two-dimensional (2D) captures binary images 
of the particles as they free fall in the imaging frame. Although 2D DIA is practical for statistical size and shape 
analysis, there is a prevailing perception that it fails to fully quantify particle granulometry. In the past few years, 
3D DIA has been introduced and has gained acceptance in the pharmaceutical industry. In 3D DIA the system 
tracks a particle as it falls through the imaging frame and captures gray-scale images from 8 to 12 perspectives of 
the same particle, and the results are analyzed using average values of these 2D images, which are believed to 
verge on true particle morphology. Although 2D and 3D devices employ similar methodology they differ in 
resolution, frame rate, lighting systems, and algorithms. In this work we compare the performance of 2D and 3D 
DIA. Particle size distributions were expressed using EQPC and a variety of Feret diameters, while particle shape 
descriptors including Aspect Ratio, Sphericity, Convexity and Roundness were compared for both systems. It is 
shown that 3D DIA requires a smaller number of sand particles to achieve mean particle shape values. Particle 
size characterization is generally independent of the machines and algorithms used in this study; however, 3D 
DIA provides maximum and minimum particle axes which are closer to the real sand particle sizes. Image-based 
particle shape characterization is more sensitive to the technology employed; it largely depends on image 
quality, particle angularity, and a hierarchy of shape descriptors; thus, at this time shape analysis for engineering 
applications must be carried out with similar machines and algorithms. In particular, the image resolutions 
captured by the available 2D and 3D DIA apparatus are 4 μm and 15 μm per pixel, respectively. At this time, the 
higher resolution and shorter exposure time of 2D DIA permits particle shape analysis down to particle sizes 
having D50 on the order of 40 μm, while 3D DIA is limited to D50 larger than 150 μm. These thresholds will 
certainly change as technology allows finer resolutions and shorter exposure times. Finally, the importance of 
image processing cannot be overlooked, and manufacturers and researchers are encouraged to open-source their 
algorithms in order to establish confidence in them.   

1. Introduction 

Particle shape has a significant influence on the mechanical behavior 
of granular soils; therefore, accurate characterization of sand particle 
morphology is important for predicting the engineering performance of 
sand (Cho et al. 2006; Cavarretta et al. 2010; Zheng and Hryciw 2016). 
Generally, the shape of sand particles can be described using two 
methods: the projection of a particle on a plane (two-dimensional, 2D), 
or three-dimensional (3D) particle shape which can be obtained using X- 
ray micro-computed tomography (μCT), among other methods. 
Although 3D methods provide a richer description of particle 

morphology, Dynamic Image Analysis (DIA) can be used more effi-
ciently to quickly analyze various particle shape parameters, including 
Aspect Ratio, Convexity, Sphericity and Roundness of millions of par-
ticles (Li et al. 2021). 

In recent years, DIA of particle size and morphology has been 
increasingly applied in geotechnical engineering (e.g. Altuhafi et al. 
2016; Bandini et al. 2017; Zhang et al. 2017; Shang et al. 2018; Wang 
et al. 2019; Wei et al. 2020; Suescun-Florez et al. 2020). DIA employs a 
high frame-rate camera to image a large number of individual particles 
of sand in a short time. DIA can generate both particle size and shape 
distributions and provide a quantitative statistical description of the 
tested sand. Particle size distribution obtained using DIA shows a good 
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Comparison of 3D DIA and µCT5

3D µCT Procedure

 

 
 
 

Fig. 1. The workflow of CT images post processing for Marine Sand. 
  

NRecon 
software

Individual 
3D particles

medfilt2 
MATLAB

Otsu's 
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MATLAB

CT stack Median filtering

Black and white stack

Fill voids

imfill 
MATLAB
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weighted 
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 a. Ottawa #20-30 b. Peace River sand c. Marine Sand 
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T 
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3D
 D
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Fig. 2. Images of (a) Ottawa #20-30; (b) Peace River and (c) Marine Sand obtained using 2D/3D 

DIA and µCT methods. 
 

  

3D particle shape characterization

Resolution 15µm/voxel
Particle number 110-350 sand particles

Size analysis 300 particles/h
Shape analysis 8 particles/h

Image processing Voids were filled as solid particle

The workflow of CT images post processing for 
Marine Sand. 



15 

Comparison of 3D DIA and µCT5

3D Particle size and shape descriptors

 
Size 

Descriptors DIA Formula/Explanation µCT Formula/Explanation 

EQPC  
(de) 

Diameter of circle with 
equivalent particle area (2D) 

or average equivalent 
diameter from multiple (n‡) 

views (3D) 

!!"
#   

 

!!∑ "!
"#$
%#    

Diameter of sphere 
with equivalent 
particle volume 

"6Vπ
%

 

 

Feret-max† 
(dFmax) 

Maximum dimension of a 
particle, aka. Maximum 

Feret diameter (2D) 

 

… 

Feret-min  
(dFmin) 

Minimum dimension of a 
particle, aka. Minimum Feret 

diameter (2D) 
… 

Feret-length  
(dFlength) 

Maximum dFmax from n 
images of the same particle 

in 3D DIA 

 

Longest axis  
(dFlength) 

 

Feret-width  
(dFwidth) 

Maximum dFmin from n 
images of the same particle 

in 3D DIA 

Intermediate axis 
(dFwidth) 

Feret-
thickness  
(dFthickness) 

Minimum dFmin from n images 
of the same particle in 3D 

DIA 

Shortest axis 
(dFthickness) 

 
 
 

Fig. 3. Size descriptors employed for 2D/3D particle image analysis. 
 
 

  

 
Shape 

Descriptor DIA Formula Graphical 
Explanation µCT Formula Graphical 

Explanation 
T/L Aspect 

Ratio 
(ARTL) 

Ratio of Feret-thickness to Feret-length 
(3D) 

!!"#$%&'())
!!*('+"#

 

 

Ratio of shortest to longest 
axes 

!!"#$%&'())
!!*('+"#

 

 

Elongation 
Index 
(EI) 

Ratio of Feret-thickness to Feret-width 
(3D) 

!!"#$%&'())
!!,$-"#

 Ratio of shortest to 
intermediate axes 

!!"#$%&'())
!!,$-"#

 

Flatness 
Index 
(FI) 

Ratio of Feret-width to Feret-length (3D) 
!!,$-"#
!!*('+"#

 Ratio of intermediate to 
longest axes 

!!,$-"#
!!*('+"#

 

Sphericity 
(S) 

Ratio of the perimeter of a circle with 
equivalent area to the real particle 

perimeter (2D) 
or average equivalent Sphericity from 

multiple views (3D) 

.-!
/   
 

2#'.∑ 1"
#$%

(∑ /)"
#$%

&   
 

Ratio of the surface area of a 
volume equivalent sphere to 
the real particle surface area 

$!(4
%&  

 

Convexity 
(Cx) 

Ratio between the particle area and the 
area of its convex hull (2D) or average 

equivalent convexity from multiple views 
(3D) 

1
1'

  
 

∑ 1"
#$%

∑ 1%"
#$%

  
 

The ratio between the particle 
volume and the volume of its 

convex hull 

'
'5

 

 

Roundness 
(R) 

Ratio of the average radius of corner 
circles of the particle to the radius of the 

maximum inscribed circle (2D) or average 
equivalent 2D Roundness from multiple 

views (3D) 

R2D-DIA = 
∑ !"

#
#
"$%
""&'

  
R3D-DIA =  

∑ "#$%$&'(
)*+

#  
 

Ratio of the average radius of 
corner spheres of a particle to 

the radius of the maximum 
inscribed sphere 

R = 
∑ (#

)
)
#$%
6#"*

 

 
 
 

Fig. 4. Shape descriptors employed for 2D/3D particle image analysis. 
 

Sand 
Type µCT Shape 

Descriptors 3D DIA Shape 
Descriptors 2D DIA Shape 

Descriptors 

Ottawa  
#20-30 

No.1 

 

ARTL = 0.51 
EI = 0.86 

 
1/10 

 
2/10 

 
3/10 

 
4/10 

 
5/10 

ARTL = 0.74  
EI = 0.89 

No.1 

 
AR = 0.73  
S = 0.89 

• Three axes (dFlength, dFwidth, dFthickness): perpendicular in µCT but not perpendicular in 3D DIA
• Shape descriptor dimensionality: Sphericity and Convexity characterized in 3D DIA and µCT are 

differed in dimensionality 
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Comparison of 3D DIA and µCT5

Particle size distribution

 

 

 
 

Fig. 6. Particle size distributions for (a) Ottawa #20-30; (b) Peace River and (c) Marine Sand 
using various size descriptors.  

  

ØFor rounded particles, EQPC is consistent in 2D, 3D DIA and µCT.

ØThe differences between 3D DIA and μCT size measurements are 

approximately 12% on average.

Ø3D DIA overestimates the Feret-thickness diameters relative to μCT by 

4-19%, 8-12 images cannot capture minimum particle dimension.

Ø3D DIA overestimates the Feret-length diameters.
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Comparison of 3D DIA and µCT5

Particle size distribution

ØThese percentage 

difference may be used 

as empirical correction 

factors in engineering 

practice for similar 

sands. 

Table 1: Percentage difference in typical particle size descriptors measured by µCT and 3D DIA 
methods (Base is 3D DIA).  

 

Sand 
type 

Typical 
particle 

size 
EQPC Feret- 

length 
Feret- 

thickness 
Feret- 
width 

Ottawa 
#20-30 

D10 0 -12% -10% -8% 
D30 0 -11% -10% -9% 
D50 -1% -12% -8% -9% 
D60 -2% -11% -8% -9% 
D90 -3% -9% -10% -10% 

Peace 
River 

D10 1% -9% -10% -5% 
D30 -5% -16% -14% -11% 
D50 -8% -17% -16% -12% 
D60 -10% -19% -18% -13% 
D90 -17% -26% -19% -17% 

Marine 
Sand 

D10 13% 8% -4% 11% 
D30 19% 16% -9% 20% 
D50 20% 21% -8% 30% 
D60 10% 20% -7% 38% 
D90 -29% -19% -5% 8% 

 
 
  

Auto-generated PDF by ReView Géotechnique
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Table 2: Percentage difference in typical particle size descriptors measured by µCT, 3D DIA, 

and Sieve Analysis methods (Base is Sieve Analysis).  
 

Sand 
type 

Typical 
particle 

size 
EQPC Feret- 

length 
Feret- 

thickness 
Feret- 
width EQPC Feret- 

length 
Feret- 

thickness 
Feret- 
width 

µCT 3D DIA 

Ottawa 
#20-30 

D10 21% 26% -17% 7% 21% 43% -9% 16% 
D30 13% 22% -19% 1% 14% 37% -10% 11% 
D50 7% 16% -20% -3% 8% 32% -13% 6% 
D60 6% 18% -19% -3% 8% 33% -12% 7% 
D90 8% 29% -17% -1% 11% 42% -8% 10% 

Peace 
River 

D10 57% 91% 4% 41% 56% 110% 16% 49% 
D30 29% 58% -13% 16% 36% 87% 2% 30% 
D50 17% 47% -20% 8% 27% 77% -4% 22% 
D60 14% 43% -21% 6% 27% 77% -4% 22% 
D90 3% 37% -22% -1% 23% 85% -3% 20% 

Marine 
Sand 

D10 76% 162% -5% 75% 55% 143% -1% 58% 
D30 75% 195% -10% 81% 46% 155% -1% 50% 
D50 28% 158% -35% 47% 7% 113% -30% 13% 
D60 15% 171% -39% 55% 4% 126% -34% 12% 
D90 25% 207% -4% 129% 77% 281% 1% 111% 

 
  

Auto-generated PDF by ReView Géotechnique

TABLE.docx MainDocument RVT Review Copy Only 32

Particle size difference 
between µCT and 3D DIA 

Particle size difference between 
µCT, 3D DIA and sieve analysis 
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Comparison of 3D DIA and µCT5

PSD calculated using various volume assumptions

 

 

 

 
 

Fig. 7. Comparison of particle size distributions calculated using real particle volume and by 
assuming particles to be spherical or cuboid, for three types of sands.  

  

ØThe accuracy of all image-based PSD depends on the volume of 

the particle obtained from a 2D image:

Ø2D DIA: volume = "
#
 𝜋	(!$

%
)# 

Ø3D DIA: volume = 𝑑&'$()*+× 𝑑&,-!*+×𝑑&*+-./($00
ØµCT: volume = “real” particle volumes

ØOnly µCT data is used to investigate the volume difference.

ØFor regular shaped particles, 3D DIA measurement of PSD can 

represent true volume distribution.

ØVolume estimation in 2D DIA resulted in a difference around 3%.

ØVolume of irregular particles cannot be reconstructed by three 

axes obtained from 3D DIA.
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Comparison of 3D DIA and µCT5

Particle shape distribution

 

 

  
Fig. 8. Particle shape density distributions (based on volume) for (a, b) Ottawa #20-30; (c,d) 

Peace River and (e,f) Marine Sand.   
 
  

3D DIA and µCT: 

ØFor Sphericity and Convexity:

ØOttawa #20-30: 3D DIA ≈ µCT

ØPeace River: differing by 0.1 

ØFor Roundness: µCT < 3D DIA. 

ØCorner circles in 2D projections are always equal or larger 

than the corner spheres lodged in 3D volume. 

ØR: µCT is a more objective parameter.

ØR: 3D DIA is subjected to the projected direction. 

ØFor ARTL, EI and FI: 3D DIA ≈ µCT

ØFor complex calcareous sand: 3D DIA ≠ µCT 
Particle shape distribution using 6 shape descriptors
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Comparison of 3D DIA and µCT5

Differences between 3D DIA and µCT

Ø3D particles projected into 2D images: projection 

deformation

ØThe diameters of corner circles are in direct proportion to 

the angle between two intersecting lines at the corner.

ØThe maximum 2D particle area captured by DIA could be 

larger than the true cross-sectional area.

ØS and R are largest in hexagonal form. 

ØS and R are smallest in 3D shape analysis (µCT).

A hypothetical simple cubic particle 
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Comparison of 3D DIA and µCT5

Correlation between 2/3D DIA and µCT

 

 

 

 
 
 

Fig. 11. Correlations of particle shape descriptors S, Cx and R between 3D and 2D analysis for 
(a) Ottawa #20-30; (b) Peace River and (c) Marine Sand. Note that 2D shape values was 
obtained using one random plane projection and ten random plane projections of each 3D 

particle. 
 

Ø2D S, Cx and R: calculated using one and ten random 

projections of the μCT rendering of each particle. 

Ø3D S, Cx and R are calculated from the 3D reconstruction.

ØCorrelations of S and Cx increased when employing 10 

images (R = 0.84±0.13 versus 0.66±0.14).

Ø3D DIA better represents particle.

ØRoundness: No significant correlation. 
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• The accuracy decreases with particle irregularity in 3D DIA . 

• Particle volumes calculated in 3D DIA provide higher accuracy 

compared to 2D DIA. 

• The S and Cx measured in 3D DIA were 2–11% larger compared 

to μCT. Primary factors (1). dimensionality projection (2). limited 

number of images. 

• The algorithm of Roundness in 3D DIA calculated using 

arithmetic mean values from multiple images result in larger 

values. 

Which method to choose?5
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For more information5
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Evaluation of roundness parameters in use for sand6

Commonly used sphericity and roundness descriptors

 

 
Fig. 1. Graphical depiction of particle size descriptors. 

 
 

  

 
Descriptors Formula/Symbol Definition Reference 
EQPC de Diameter of a Circle of Equal Projection Area ASTM F1877-16 

Feret-max dFmax Maximum Feret diameter Kuo and Freeman 
2000 Feret-min dFmin Minimum Feret diameter 

MIC diameter dins = 2"!"# Maximum inscribed circle diameter Santamarina and 
Cho 2004 MCC diameter dcir = 2"$!% Minimum circumscribed circle diameter 

PED diameter dp Diameter of a Circle of Equal Perimeter ISO 9276-6 2008 

Wadell Roundness (Rwadell) 
#&'()** =

∑ "!
&

+
!,-
"!"#

 
The ratio of the average radius of corner circles of 
the particle to the radius of the maximum inscribed 
circle 

Wadell 1932 

Convexity (Cx) 
(aka. Solidity) 

Cx = A/Ac The ratio between the real particle area (A) and the 
area of the convex hull (Ac) 

Mora and Kwan 
2000 

Perimeter Sphericity (Sp) Sp = Pe/P = de/dp The ratio of the perimeter of the area equivalent 
circle, Pe, to the real perimeter, P 

ISO 9276-6 2008 

Circularity (Cr) 
(1/ Roundness Kato) 

Cr = A/Ap = de
2/dp

2 
RKato = Ap/A = dp

2/de
2 

The ratio of the area of the particle (A) to the area of 
the circle having the same perimeter as the particle 
(Ap = p'./) 

Cox 1927 
Kato 2001 

Aspect Ratio (AR) 
(aka. Wadell’s Sphericity) 

AR = dFmin/dFmax The ratio of the width of the particle (dFmin) to the 
length of particle (dFmax) 

ISO 9276-6 2008 

Circle ratio sphericity (Sc) Sc = dins/dcir = rins/rcir The ratio of the diameter of the largest inscribed 
circle of the particle (dins) to the smallest 
circumscribed circle of the particle (dcir) 

Santamarina and 
Cho 2004 

Diameter sphericity (Sd) Sd = de/dcir The ratio of the diameter of a circle having the same 
area as the original particle (de) to the diameter of 
the minimum circumscribing circle (dcir) 

Wadell 1935 

Area sphericity (Sa) Sa = A/Acir = de
2/dcir

2 The ratio of the area of the particle (A) to the area of 
the smallest circumscribing circle (Acir = 0(!"#

$

1 ) 

Riley 1941 

ASTM Roundness /ISO Roundness 
/Image J Roundness (RASTM)  

RASTM = A/AFmax = 
de

2/d2
Fmax 

The ratio of the area of the particle (A) to the area of 
the circle with a diameter equals to maximum Feret 
value (AFmax = 

0(%&'($

1 ) 

ASTM F1877-
16/ISO 9276-6 

 

ØRoundness and sphericity are the most commonly used 

shape descriptors.

ØBarrett (1980) claimed that Rwadell describes particle shape 

at an intermediate scale, which reflects the abrasion and 

formation of a particle. 

ØDefinitions of roundness may operate at different particle 

scales, such as RASTM and Circularity.

ØSphericity terms are also in common use, which are not 

necessarily correlated with Rwadell or RASTM. 

ØCorrelation analysis of roundness pairs may facilitate 

analysis of the particle formation process. 
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Comparison of shape descriptors for determining roundness6

ØVariations of particle shape from very angular to well rounded 

are different depending on the selected roundness parameter.

ØRwadell reflects changes of roundness at the corner.

ØRASTM describes particle overall shape and reflects variations in 

the proportions of the particle from elongated to rounded.

ØCr focuses on the smoothness of the particle’s perimeter. 

ØRwadell, Circularity and RASTM are conceptually distinct, 

measuring different aspects of sand morphology. 

 
Sand 
Type Roundness 

Very 
Angular Angular Sub 

Angular 
Sub 

Rounded Rounded Well 
Rounded 

0.12-0.17 0.17-0.25 0.25-0.35 0.35-0.49 0.49-0.7 0.7-1 

Ottawa 
#12-20 

 
1000µm 

Wadell … … 
    

Circularity 
      

ASTM … … 
 

   

Ottawa 
#20-30 

 
1000µm 

Wadell … … 
    

Circularity       
ASTM … … …    

Quartz #4 
 

1000µm 

Wadell … 
    

… 

Circularity 
      

ASTM … 
     

Quartz #3 
 

1000µm 

Wadell … 
   

 
 

Circularity 
  

 
   

ASTM … 
     

Peace 
River 

 
1000µm 

Wadell … 
     

Circularity … 
     

ASTM … … 

 
   

Marine 
Sand 

 
1000µm 

Wadell   
  

  

Circularity 
      

ASTM 
  

    

 
Figure 5. Comparison of three definitions of Roundness according to Power’s Chart for six types of 

sands.  (Depicted particle represents D50 within indicated range) 
 
  Rwadell, Circularity and RASTM according to Power’s 

chart
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Evaluation of roundness parameters in use for sand6

Pearson correlation of shape descriptors

 
Table 6: Correlation matrix of the shape descriptors for Ottawa #12-20.  
 

Shape descriptor Rwadell  Cx  Sp Cr AR  Sc  Sd  Sa RASTM 
ASTM Roundness, RASTM 0.29 0.33 0.24 0.24 0.96 0.96 1 1 1 

Area sphericity, Sa 0.32 0.35 0.26 0.25 0.95 0.97 1 1  

Diameter sphericity, Sd 0.32 0.36 0.26 0.25 0.94 0.97 1   

Circle ratio sphericity, Sc 0.28 0.34 0.26 0.26 0.95 1    

Aspect Ratio, AR 0.14 0.14 0.11 0.11 1     

Circularity, Cr 0.46 0.72 1 1      

Perimeter Sphericity, Sp 0.47 0.75 1       

Convexity, Cx 0.53 1        

Wadell Roundness, Rwadell 1         

 
Table 7: Correlation matrix of the shape descriptors for Ottawa #20-30. 
 

Shape descriptor Rwadell  Cx  Sp Cr AR  Sc  Sd  Sa RASTM 
ASTM Roundness, RASTM 0.28 0.34 0.31 0.31 0.96 0.92 0.99 0.99 1 

Area sphericity, Sa 0.31 0.35 0.32 0.12 0.95 0.93 1 1  

Diameter sphericity, Sd 0.31 0.36 0.33 0.33 0.94 0.93 1   

Circle ratio sphericity, Sc 0.26 0.34 0.35 0.33 0.95 1    

Aspect Ratio, AR 0.15 0.16 0.18 0.18 1     

Circularity, Cr 0.32 0.81 1 1      

Perimeter Sphericity, Sp 0.32 0.82 1       

Convexity, Cx 0.35 1        

Wadell Roundness, Rwadell 1         

 
Table 8: Correlation matrix of the shape descriptors for Quartz #4. 
 

Shape descriptor Rwadell  Cx  Sp Cr AR  Sc  Sd  Sa RASTM 
ASTM Roundness, RASTM -0.29 0.4 0.41 0.41 0.95 0.96 0.99 0.99 1 

Area sphericity, Sa -0.27 0.42 0.42 0.42 0.93 0.97 1 1  

Diameter sphericity, Sd -0.28 0.43 0.43 0.42 0.93 0.97 1   

Circle ratio sphericity, Sc -0.31 0.43 0.42 0.42 0.94 1    

Aspect Ratio, AR -0.39 0.24 0.35 0.35 1     

Circularity, Cr -0.1 0.51 1 1      

Perimeter Sphericity, Sp -0.1 0.52 1       

Convexity, Cx 0.16 1        

Wadell Roundness, Rwadell 1         
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Circle ratio sphericity, Sc 0.26 0.34 0.35 0.33 0.95 1    

Aspect Ratio, AR 0.15 0.16 0.18 0.18 1     

Circularity, Cr 0.32 0.81 1 1      

Perimeter Sphericity, Sp 0.32 0.82 1       

Convexity, Cx 0.35 1        

Wadell Roundness, Rwadell 1         

 
Table 8: Correlation matrix of the shape descriptors for Quartz #4. 
 

Shape descriptor Rwadell  Cx  Sp Cr AR  Sc  Sd  Sa RASTM 
ASTM Roundness, RASTM -0.29 0.4 0.41 0.41 0.95 0.96 0.99 0.99 1 

Area sphericity, Sa -0.27 0.42 0.42 0.42 0.93 0.97 1 1  

Diameter sphericity, Sd -0.28 0.43 0.43 0.42 0.93 0.97 1   

Circle ratio sphericity, Sc -0.31 0.43 0.42 0.42 0.94 1    

Aspect Ratio, AR -0.39 0.24 0.35 0.35 1     

Circularity, Cr -0.1 0.51 1 1      

Perimeter Sphericity, Sp -0.1 0.52 1       

Convexity, Cx 0.16 1        

Wadell Roundness, Rwadell 1         

  

 
Table 9: Correlation matrix of the shape descriptors for Quartz #3. 
 

Shape descriptor Rwadell  Cx  Sp Cr AR  Sc  Sd  Sa RASTM 
ASTM Roundness, RASTM -0.09 0.34 0.48 0.49 0.95 0.96 0.99 0.99 1 

Area sphericity, Sa -0.09 0.35 0.48 0.52 0.94 0.97 1 1  

Diameter sphericity, Sd -0.09 0.35 0.5 0.5 0.94 0.97 1   

Circle ratio sphericity, Sc -0.12 0.37 0.5 0.5 0.95 1    

Aspect Ratio, AR -0.16 0.2 0.4 0.41 1     

Circularity, Cr 0.05 0.62 1 1      

Perimeter Sphericity, Sp 0.05 0.62 1       

Convexity, Cx 0.13 1        

Wadell Roundness, Rwadell 1         

 
Table 10: Correlation matrix of the shape descriptors for Peace River.  
 

Shape descriptor Rwadell  Cx  Sp Cr AR  Sc  Sd  Sa RASTM 
ASTM Roundness, RASTM 0.04 0.28 0.26 0.26 0.94 0.96 0.99 0.99 1 

Area sphericity, Sa 0.07 0.3 0.27 0.27 0.94 0.96 1 1  

Diameter sphericity, Sd 0.06 0.3 0.28 0.27 0.94 0.96 1   

Circle ratio sphericity, Sc 0.06 0.35 0.27 0.27 0.94 1    

Aspect Ratio, AR -0.09 0.13 0.18 0.18 1     

Circularity, Cr 0.2 0.51 1 1      

Perimeter Sphericity, Sp 0.2 0.52 1       

Convexity, Cx 0.47 1        

Wadell Roundness, Rwadell 1         

 
Table 11: Correlation matrix of the shape descriptors for Marine Sand.  
 

Shape descriptor Rwadell  Cx  Sp Cr AR  Sc  Sd  Sa RASTM 
ASTM Roundness, RASTM 0.53 0.59 0.61 0.61 0.96 0.97 0.99 1 1 

Area sphericity, Sa 0.54 0.6 0.62 0.63 0.94 0.97 0.99 1  

Diameter sphericity, Sd 0.51 0.61 0.62 0.61 0.95 0.97 1   

Circle ratio sphericity, Sc 0.48 0.62 0.63 0.62 0.93 1    

Aspect Ratio, AR 0.4 0.39 0.45 0.45 1     

Circularity, Cr 0.43 0.79 1 1      

Perimeter Sphericity, Sp 0.41 0.83 1       

Convexity, Cx 0.35 1        

Wadell Roundness, Rwadell 1         
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Ottawa #12-20

Ottawa #20-30

Quartz #4

Quartz #3

Peace River

Marine Sand

ØCorrelation analysis was able to classify siliceous sand into 

naturally sorted or crushed:

ØCrushed quartz: a negative correlation: Rwadell and AR; 

weak correlation: Rwadell and Cx, Sp
ØNaturally sorted sand: positive or no correlation: Rwadell 

and AR; moderate to strong correlation: Rwadell and Cx, 

Sp 

ØAR is the main impacted shape descriptor capturing the 

evolution of crushing for quartz sand. 

ØMarine Sand exhibits relatively high correlation coefficients, 

complex formation process is different from other sands.
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Evaluation of roundness parameters in use for sand6

ØShape descriptors are categorized into 

four groups according to their correlation 

and independence:

ØLarger-scale descriptors: AR, Sa, Sd, 

Sc, and RASTM 

ØPerimeter descriptors: Sp and Cr

ØRoundness descriptor: Rwadell

ØConvexity descriptor: Cx 

Evaluation of Roundness Parameters in Use for Sand
Linzhu Li, S.M.ASCE1; and Magued Iskander, Ph.D., P.E., F.ASCE2

Abstract: Particle granulometry plays an important role in the engineering behavior of many sands. However, the evaluation of particle
shape and size has historically been a tedious and labor-intensive process. The recent availability of dynamic image analysis (DIA) makes it
possible to evaluate many particle shape and size parameters, quickly and conveniently. These shape parameters include sphericity, round-
ness, aspect ratio, circularity, and convexity; while size descriptors include the diameter of a circle of equal projection area (EQPC), a variety
of Feret diameters, as well as inscribed and circumscribed circle diameters. The terms roundness and sphericity are commonly used to
describe how close a particle resembles a sphere, with many definitions in common use. However, it is not immediately evident how these
roundness descriptors correlate. The correlation of nine shape and six size descriptors was investigated for six sands that reflect the breadth of
particle shapes and sizes that may be encountered. The analysis was based on 1,000 images of each sand obtained using two-dimensional DIA
apparatus. The study demonstrates that there is no correlation between size and shape parameters, and that shape descriptors can be reduced to
four independent shape parameters representing the granulometry of sand at different scales. The use of size and shape descriptors for
classification of sand was explored using six machine learning algorithms including support vector machines (SVMs), random forest, de-
cision tree, bagging tree, k-nearest neighbors (KNN), and bagging KNN. Classification accuracies of 77% and 66% were achieved using size
and shape features, respectively. The mean accuracy improved to 87% when combining both size and shape descriptors using bagging KNN
and random forest classifiers. The analysis also revealed an important hierarchy of size and shape features employed, with EQPC and
Wadell’s roundness alone classifying sands with 70% accuracy. DOI: 10.1061/(ASCE)GT.1943-5606.0002585. © 2021 American Society
of Civil Engineers.

Author keywords: Roundness; Sphericity; Pearson correlation; Cross-validation; Aspect ratio; Circularity; Convexity; Support vector
machines (SVMs); Random forest; Decision tree; Bagging tree; k-nearest neighbors (KNN); Bagging KNN.

Introduction

Previous studies have shown that particle size and shape signifi-
cantly influence the mechanical behavior of granular soils, includ-
ing packing density, shear strength, void ratio, friction angle, and
hydraulic conductivity (e.g., Cho et al. 2006; Rousé et al. 2008;
Bareither et al. 2008; Cabalar and Akbulut 2016; Zheng and
Hryciw 2016). Size and shape are two fundamental properties of
sedimentary particles, yielding a variety of information about dep-
ositional history, abrasion, transport processes, and sediment
source areas (Sherman et al. 2013). Wadell (1932, 1933) introduced
the measurement of two-dimensional (2D) projection of particle
shape as a practical representation of three-dimensional (3D) par-
ticle morphology. The method is believed to not cause significant
bias and is still in use today. In recent years, dynamic image analy-
sis (DIA) has been increasingly applied for characterizing particle
size and shape of sand (e.g., Altuhafi et al. 2013; Wang et al. 2019;
Suescun-Florez et al. 2020; Li et al. 2021). DIA employs a high-
frame-rate camera to image a large number of individual particles
of sand in a short time and provides various 2D size and shape

descriptors, efficiently and quickly, including aspect ratio (AR),
convexity, sphericity, and roundness of millions of particles (Li and
Iskander 2020). However, there is no general agreement on which
of these size and shape descriptors should be used either to classify
sand particles or trace its sedimentary source.

Roundness and sphericity are the most commonly used shape
descriptors to characterize particle morphology and a number of
equations have been proposed to capture the particle’s essence
(Table 1). Barrett (1980) claimed that Wadell roundness (Rwadell)
describes particle shape at an intermediate scale, which reflects the
abrasion and formation of a particle. However other definitions of
roundness may operate at different particle scales. For example,
ASTM F1877’s (ASTM 2016) definition of roundness (RASTM),
which is also shared with ISO 9276-6 (ISO 2008) and the influ-
ential Image J version 1.53h software, captures a larger scale than
that of Rwadell. The definition RASTM has been adopted in many
studies including Wei et al. (2020) and Maroof et al. (2020). A
third definition of roundness was introduced by Cox (1927), but
it is more commonly known as circularity. Cox’s definition has
been adopted by several studies including Nakata et al. (2001)
and Altuhafi et al. (2016). In addition, a variety of sphericity terms
are also in common use (Table 1), which are not necessarily cor-
related with Rwadell or RASTM. This might cause terminological
confusion, in that these parameters classify different aspects of
particle morphology. It is therefore of interest to examine the cor-
relation between the various roundness parameters in use for
characterizing sand particle shape. At the same time, correlation
analysis of roundness pairs may facilitate analysis of the particle
formation process.

Six types of sand including naturally occurring silica sand,
crushed quartz, feldspathic sand, and a calcareous sediment were
investigated. These sand particles differ in size and shape, varying
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Use of machine learning methods for sand classification7

Features - Engineering size and shape descriptors
 
 

Descriptors Formula Definition Reference 

EQPC de Diameter of a Circle of Equal 
Projection Area 

ASTM F1877-16 

Feret-max dFmax Maximum Feret diameter  Kuo and 
Freeman 2000 Feret-min dFmin Minimum Feret diameter  

MIC diameter dins = 2"!"# Maximum inscribed circle diameter 
Santamarina and 

Cho 2004 MCC diameter dcir = 2"$!% 
Minimum circumscribed circle 
diameter 

PED diameter dp Diameter of a Circle of Equal 
Perimeter 

ISO 9276-6 2008 

Wadell Roundness 
(Rwadell) #&'()** =

∑ "!
&

+
!,-
"!"#

 

The ratio of the average radius of 
corner circles of the particle 
to the radius of the maximum 
inscribed circle 

Wadell 1932 

Convexity (Cx) 
(aka. Solidity) 

Cx = A/Ac 
The ratio between the real particle 
area (A) and the area of the convex 
hull (Ac) (Fig.2) 

Mora and Kwan 
2000 

Perimeter 
Sphericity (Sp) 

Sp = Pe/P = de/dp 
The ratio of the perimeter of the area 
equivalent circle, Pe, to the real 
perimeter, P 

ISO 9276-6 2008 

Aspect Ratio (AR) 
(aka. Wadell’s 

Sphericity) 
AR = dFmin/dFmax 

The ratio of the width of the particle 
(dFmin) to the length of particle 
(dFmax) 

ISO 9276-6 2008 

 
 
 

Fig. 1. Summary of 1D particle size and 2D particle shape descriptors used in this study. 
 

  

ØEngineering size and shape descriptors can 

be easily obtained from image dataset 

obtained using DIA.

ØSize & Shape descriptors can be trained 
in ML models

ØML techniques may eventually assist 

engineers on-site to quickly determine 

geotechnical properties of soil formations 

that would presently be analyzed in 

laboratories.Employed 6 size and 4 shape descriptors 
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Nine types of sands

Table 1: Statistical description of particle size and shape parameters for 9 types of sands 
(Particle size and shape analysis is based on number distribution). 

 

Sand 
Particle size diameter D50 (µm) of 

indicated Size Descriptor Statistics 
Particle shape 

descriptor 
de dFmax dFmin dins dcir dp Rwadell Cx Sp AR 

Ottawa 
#12-20 1097 1271 1013 946 1276 1617 

Mean 0.73 0.96 0.70 0.79 
Median 0.75 0.96 0.70 0.80 
St. Dev. 0.12 0.02 0.10 0.10 

Ottawa 
#20-30 820 942 745 701 945 1027 

Mean 0.78 0.96 0.79 0.79 
Median 0.79 0.97 0.80 0.79 
St. Dev. 0.09 0.02 0.09 0.09 

Ottawa 
#70-
100 

285 352 259 228 354 371 
Mean 0.75 0.91 0.76 0.73 

Median 0.76 0.92 0.78 0.73 
St. Dev. 0.10 0.05 0.10 0.11 

Quartz 
#4 1742 2405 1477 1319 2420 2835 

Mean 0.38 0.93 0.62 0.62 
Median 0.38 0.93 0.62 0.62 
St. Dev. 0.08 0.03 0.09 0.14 

Quartz 
#3 1011 1386 853 756 1400 1409 

Mean 0.43 0.89 0.69 0.61 
Median 0.43 0.90 0.71 0.62 
St. Dev. 0.09 0.05 0.10 0.15 

Quartz 
#2 321 461 266 228 465 464 

Mean 0.57 0.82 0.70 0.63 
Median 0.58 0.83 0.72 0.64 
St. Dev. 0.12 0.08 0.12 0.15 

Peace 
River 2162 2711 1881 1745 2722 3111 

Mean 0.50 0.96 0.70 0.71 
Median 0.50 0.96 0.70 0.72 
St. Dev. 0.11 0.02 0.08 0.12 

Marine 
Sand 422 580 370 307 583 680 

Mean 0.62 0.87 0.62 0.65 
Median 0.61 0.89 0.64 0.68 
St. Dev. 0.17 0.07 0.13 0.17 

Beach 
Sand 255 354 219 183 355 389 

Mean 0.67 0.86 0.67 0.65 
Median 0.68 0.88 0.69 0.65 
St. Dev. 0.13 0.07 0.12 0.14 

 
 
  

 
 
 
Fig. 3: Typical original particle images captured by Dynamic Image Analysis (DIA) for 9 types 

of sands. 
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Peace River Marine Sand Beach Sand 
 

 
 
Fig. 3: Typical original particle images captured by Dynamic Image Analysis (DIA) for 9 types 

of sands. 
 
  

Particle size distribution

Investigated sand specimen: 

ØTwo-thousand particle images.

ØIdentifying each sand by size alone is difficult due to 

overlapping sizes among various sands.

ØSlightly shape differences exist in similar sand types.

ØQuantified particle size and shape features could aid with the 

classification of materials and serve to substitute subjective 

visual observations.
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Mean classification accuracy use 10-fold cross-validation7
 
Table 2: Mean classification accuracy for 9 types of sand using different classifiers with 10-Fold 
cross-validation analysis. 
 
 

classifiers Features 

Support 
Vector 

Machines 
(SVM) 

Decision 
Tree 

Naïve 
Bayes 

K-nearest 
Neighbors 

(KNN) 

Neural 
Network 

(MLP) 

Random 
Forest 

Ensemble 
voting 

Accuracy 

Size 0.69  0.59  0.59  0.65  0.73  0.65  0.69  

Shape 0.57 0.45  0.50  0.56  0.58  0.55  0.57  

Size and 
shape 0.74  0.67  0.71 0.73  0.75  0.73  0.75  

 
 
  ØFive individual ML classifiers and two ensemble methods. 

ØData preprocessing: Normalization and Standardization. 

ØHyperparameters optimization: Grid search optimizer.

ØAccuracy: 

Øsize descriptor > shape descriptors (66% vs 54%)

ØSize + shape: 75% Neural network and Ensemble voting
ØDecision tree method is not suggested.

ØEfficiency: a few seconds to 3 minutes on a personal computer.
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Features – Scale-invariant feature transform (SIFT)

 
 
 

Fig. 2. The Gaussian Pyramid and detected SIFT keypoints for a typical sand image. Note that 
each row contains particle images with increasing Gaussian blurring, while images in each 

column are down sampled to half the size of the previous row.  
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ØSIFT features permit sand classification using images having 

different resolutions and scales.

ØKeypoint Descriptors: calculated using a histogram of 

oriented gradients (HOG). 

ØMagnitude: 

ØDirection: 

Ø8 bin orientation histogram is created for each keypoint and 

each keypoint descriptor is represented as a feature vector 

of 128 bin values (16 sub blocks ×	8 orientations) 
The Gaussian Pyramid and detected SIFT keypoints for a 
typical sand image. Each row contains particle images with 
increasing Gaussian blurring, images in each column are 
down sampled to half the size of the previous row.
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SIFT features of two particles7

 

Ottawa #12-20 
Original 

  

Ottawa #12-20 
Preprocessed 

  

Marine Sand 
Original 

  

Marine Sand 
Preprocessed 

  
 
 

Fig. 6. Typical sand particle images (original and preprocessed) and their detected SIFT 
keypoints. 

  

 

 

 

(a). Ottawa #12-20 - Original  (b). Ottawa #12-20 – Preprocessed 
 

 

(c). Marine Sand – Original  (d). Marine Sand – Preprocessed 
 

 

Fig. 8. Average of orientation histograms of all SIFT keypoints for the two particles shown in 

Fig. 6. Both original and preprocessed are presented. (a) Original Ottawa #12-20 (b) 

Preprocessed Ottawa #12-20, (c) Original Marine Sand and (d) Preprocessed Marine Sand. 

 

  

ØTwo types of image dataset: original images 

and Solid black particles.

ØWhite dots inside each image could be 

related to materials properties.

ØSize and shape descriptors analyze 

particle outline.

ØMarine Sand:  HOG more diversity due to 

highly irregular particle shape.

ØOttawa #12-20: HOG concentrated at 𝜋/4, 

𝜋/2 and 2𝜋.

Average of orientation histograms of all SIFT 
keypoints for the two particles 

SIFT keypoints 
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SIFT features of nine types of sands7

ØThe HOG represents the average of all identified 

SIFT keypoints in 2000 particles.

ØEach sand possesses a distinctive SIFT direction 

and magnitude. 

ØThe retained SIFT keypoints in each image 

represent high contrast pixels that can 

consequently be trained as features to distinguish 

sands. 

 567 

 568 

 569 

 570 

Fig. 11. Average of orientation histograms of all SIFT keypoints for (a) Ottawa #12-20, (b) 571 

Ottawa #20-30, (c) Ottawa #70-100, (d) Quartz #4, (e) Quartz #3, (f) Quartz #2, (g) Peace 572 

River, (f) Marine Sand and (g) Beach Sand. (Data shown for original images) 573 
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(a). Ottawa #12-20  (b). Ottawa #20-30  (c). Ottawa #70-100 

 
(d). Quartz #4   (e). Quartz #3   (f). Quartz #2 

 
(g). Peace River  (h). Marine Sand  (i). Beach Sand 

 
 

Fig. 11. Average of orientation histograms of all SIFT keypoints for (a) Ottawa #12-20, (b) 
Ottawa #20-30, (c) Ottawa #70-100, (d) Quartz #4, (e) Quartz #3, (f) Quartz #2, (g) Peace River, 

(f) Marine Sand and (g) Beach Sand. (Data shown for original images) 
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Correlation between SIFT & shape descriptors7

  
 

(a) Original images    (b) Preprocessed images 
 
Fig. 12. Correlation between SIFT keypoints and size and shape descriptors for 9 types of sand.  
Each number in heat map represents the average coefficient of determination between indicated 

shape descriptor and 128 SIFT orientation histograms.   
 
  

ØMultiple linear regression (MLR)

ØModerate correlations exist between SIFT 

and Sphericity and Convexity.

ØSphericity and Convexity capture the 

overall smoothness and compactness of 

particle perimeters at a finer scale, perhaps 

similar to the HOG in SIFT. 

ØPreprocessed images have a higher 

correlation to shape descriptors. 

Correlation between 128-dimension SIFT keypoints and size and shape descriptors 
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Correlation between number of SIFT keypoints and shape descriptors7
 
 

 

 
 
 

Fig. 9. Correlation between number of SIFT keypoints in each sand image and particle 
roundness, using (a, b) original sand images and (c, d) sand images after preprocessing. 

 
  

ØNumber of SIFT keypoints depends on the original 

image size (all images preprocessed as uniform size 

300 × 300 pixels).

ØPreprocessed images have fewer keypoints 

ØConvexity and Sphericity were inversely proportional 

to the number of SIFT Keypoints. 

ØNumber of keypoints are not correlated to AR and 

Rwadell. 
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Bag of features used in classification7

 

 
 
 
Fig. 13. Flowchart of image classification using features extracted by SIFT algorithm and Bag-

of-features (BOF) model. 
 

 
 
 

Training dataset 
(16200 images)

Compute 
SIFT features:  

128-dimensional vector 
for each 
keypoint

Convert SIFT 
features to 50 center of 

learned clusters (Bag-of-features): 
k-means clustering to: 50 x 1 

vector

Training features
Testing features

SVM

Extract  
shape features for 

training dataset 16200 
images: 16200 x 50 

vector

Add normalized 
size and shape 
descriptors for 

each image

Extract  
shape features 

for testing dataset 1800 
images: 1800 x 50 

vector

Add normalized 
size and shape 
descriptors for 

each image

Training each classifier

Test 
accuracy

Sand classification 

Decision 
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Network
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Test 
accuracy
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Test 
accuracy

Naive 
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Training each classifier

Identify SIFT 
keypoints

Spliting image 
dataset 18000 

images

Testing dataset 
(1800 images)

ØBag of features (BOF) improves the efficiency of training models 

by reducing feature dimensionality.

ØThe SIFT features extracted for 18,000 images took 40 minutes on 

a PC having 32GB of RAM and an Intel core i7-9700 CPU.

ØTwo smaller datasets comprising 1000 original and preprocessed 

images were compared, operation time 14 mins to extract SIFT.

ØThe time used for training and testing 18000 data in SIFT is ~2-3 

that required for using size and shape descriptors. 

Flowchart of image classification using 
features extracted by SIFT algorithm and BOF 
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Mean classification accuracy using SIFT features (10-fold Cross-validation)7
 
Table 3: Classification accuracy for 9 types of sand using features extracted by SIFT algorithm.  
 

classifiers Image 
dataset Features 

Support 
Vector 

Machines 
(SVM) 

Decision 
Tree 

Naïve 
Bayes 

K-nearest 
Neighbors 

(KNN) 

Neural 
Network 

MLP 

Random 
Forest 

Ensemble 
Voting 

Analysis using 18,000 images (2000 images each sand x 9 sands) 

Accuracy Original 
images 

SIFT 0.55 0.36 0.32 0.50 0.53 0.52 0.53 

Size, 
SIFT 0.73 0.64 0.55 0.65 0.73 0.73 0.73 

Size, 
Shape, 
SIFT 

0.81 0.72 0.66 0.76 0.80 0.83 0.81 

Accuracy Processed 
images 

SIFT 0.52 0.37 0.43 0.47 0.50 0.50 0.51 
Size, 
SIFT 0.74 0.65 0.66 0.66 0.72 0.74 0.74 

Size, 
Shape, 
SIFT 

0.81 0.72 0.74 0.75 0.77 0.80 0.81 

Analysis using 9000 images (1000 images each sand x 9 sands) 

Accuracy Original 
images 

SIFT 0.55 0.35 0.32 0.48 0.53 0.52 0.53 
Size, 
SIFT 0.72 0.64 0.55 0.65 0.72 0.73 0.72 

Size, 
Shape, 
SIFT 

0.79 0.71 0.66 0.74 0.77 0.82 0.80 

Accuracy Processed 
images 

SIFT 0.51 0.38 0.43 0.46 0.49 0.48 0.49 
Size, 
SIFT 0.73 0.64 0.66 0.65 0.71 0.73 0.73 

Size, 
Shape, 
SIFT 

0.78 0.72 0.75 0.72 0.75 0.81 0.79 

 
 
  

ØClassification accuracy:
ØSIFT (32-55%) < Shape (45-58%).

ØSize and SIFT features (55-73%) < 

size and shape features (67-75%).

ØUsing size, shape and SIFT, 83% 

accuracy was obtained using 

Random Forest classifier.

ØNo significant difference between 

original and preprocessed images

ØA slightly lower accuracy (<2%) was 

achieved by using 9000 images.
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SIFT: Summary and Conclusions7

ØNeural Network provided the best performance for classifying 

73%, 58% and 75% of sand particles using size, shape, size and 

shape descriptors.

ØThe use of SIFT features alone can identify up to 55% of sand 

particles, while using size and SIFT features can provide 73% 

accuracy. These values are consistently 2-3% smaller than using 

size and shape descriptors.

ØImage preprocessing was found counterproductive. 
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ØDIA can be used for routine analysis of regular particles

ØFaster and more accurate than Sieve analysis

ØDIA needs to be supplemented by µCT for very complex particles

ØML promises to become commonly employed for routine classification of sand from ordinary images, a 

voting algorithm can be used to classify the material based on the classification of the majority of individual 

particles. 

ØShape & Size descriptors provide suitable representation of particle granulometry

ØSIFT can help with databases of images having various scales
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ABSTRACT

This study investigates the efficacy of dynamic image analysis (DIA) for determining particle size

and shape distribution. The method employs a high-frame-rate camera to image individual

particles of sand that have been transported and separated using a stream of pressurized

air. DIA can generate both particle size and shape information and provides a quantitative stat-

istical description of the grain size and shape distribution within the specimen. The feasibility,

repeatability, and accuracy of DIA for routine analysis of particle size and shape distribution was

investigated using 16 granular soils spanning a number of common sizes and shapes. Several

particle shape descriptors were evaluated, including aspect ratio, convexity, and sphericity.

The effect of a variety of test parameters including moisture content, sample weight, primary

air pressure, and test duration were explored to determine the optimal specimen weight and

equipment settings for DIA. Finally, the efficacy of DIA in resolving mixtures of fine and coarse

sands was also explored. The method proved to be feasible, repeatable, and accurate for provid-

ing particle size distributions spanning four orders of magnitude, in terms of particle size. DIA

offers a number of advantages; the method is quick, requires small specimen sizes, and provides

quantitative information on approximately 3–4 % of the particles in the specimen.
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Granulometry of Two Marine Calcareous Sands

Linzhu Li, S.M.ASCE1; Ryan D. Beemer, Ph.D., A.M.ASCE2; and Magued Iskander, Ph.D., P.E., F.ASCE3

Abstract: The morphology of two types of complex calcareous sand was investigated in this study. The materials were selected owing to
their different geologic and biologic origins. Ledge Point is a bioclastic coastal sand, while Browse #1 is a hemipelagic sand. These two sands
fall outside the range of common data sets used to correlate mechanical properties to particle shape parameters. Morphologic analysis of these
calcareous sediments can aid with understanding the engineering behavior of calcareous soils. Moreover, sediments source tracing infor-
mation could also be inferred from particle shape analysis. Two-dimensional Dynamic Image Analysis (DIA) was employed to capture five
million and eight million particle images of each sand, respectively. A number of size parameters including diameter of equivalent projected
circle (EQPC), Feret minimum, and Feret maximum diameter were efficiently obtained for each captured image using DIA, and used to
investigate particle size distribution of these sediments. In addition, samples of over 800,000 particles were used to assess statistical dis-
tributions of various particle shape parameters including Aspect Ratio, Convexity, Sphericity, and Roundness-DIA (by volume). A Johnson
family of distributions was found to provide a better fit to particle shape parameter distributions than the normal distribution for both sands. It
is also shown that the Sphericity and Aspect Ratio are size independent, while Convexity and Roundness-DIA are correlated with particle
size. Convexity is likely correlated with Sphericity for both calcareous sediments owing to their biogenic origin. Correlations of Roundness-
DIA, Sphericity, Convexity, and Aspect Ratio and particle size are also observed but need more analysis. DOI: 10.1061/(ASCE)
GT.1943-5606.0002431. © 2020 American Society of Civil Engineers.

Author keywords: Calcareous sediments; Dynamic Image Analysis (DIA); Johnson curve fitting; Carbonate; Particle shape; Roundness;
Maximum and minimum void ratio.

Introduction

Calcareous sediments consist mainly of clastic biogenic calcium
carbonate from shells and tests (shells of single celled organisms)
of marine macro- and microorganisms. As a result, calcareous
sands possess complex physical shapes (Beemer et al. 2018). These
sediments have been known to be problematic for designing foun-
dations because they exhibit large volume changes and friction an-
gle softening (Murff 1987). In particular, these characteristics have
been related to pile running, the tendency of volumetric changes
during pile installation to reduce skin friction (Al-Douri and Poulos
1995).

In siliceous sands, strength, compressibility, critical state param-
eters, hydraulic conductivity, packing density, and void ratio can vary
with particle shape (Cho et al. 2006; Rousé et al. 2008; Bareither
et al. 2008; Kuo and Freeman 2000; Shin and Santamarina 2013;
Zheng and Hryciw 2016a). Previous research proposed linking mi-
cromechanical properties with their macromechanical behavior. This
has been done by correlating particle shape parameters with void

ratio and critical state parameters of sands. Given these advance-
ments, quantitative study of particle shape analyses may be useful
for assessing the behavior of calcareous sands.

Three-dimensional (3D) particle shape measurements derived
from two orthogonal X-ray images (Hanaor et al. 2016), microcom-
puted tomography (Alshibli et al. 2015; Fonseca et al. 2012), Syn-
chrotron microcomputed tomography (Afshar et al. 2018), stereo
photography (Zheng and Hryciw 2017), or structured light (Sun
et al. 2019b) provide the most accurate representation of particle
shape. However, 3D measurement of particle shape can be cumber-
some, computationally intensive, slow, and expensive for routine
geotechnical practice. Although sophisticated techniques have
been used to scan and analyze over 19,000 particles at once
(Kong and Fonseca 2018), 3D shape analysis is typically limited to
sample sizes on the order of 100 grains (Rorato et al. 2019; Maroof
et al. 2020). An alternative to these methods is two-dimensional
Dynamic Image Analysis (DIA), which can be used to quickly
and efficiently analyze the shape parameters of hundreds of thou-
sands to millions of sand grains in a few minutes.

Two-dimensional DIA has been adopted in geotechnical engi-
neering research to provide statistical descriptions of particle size
and shape of millions of individual sand grains at a time (Li and
Iskander 2020). DIA provides accurate statistics of particle shape
by capturing the 2D projected area of a large sample of particles, at
a random orientation (White 2003). The method is fast, convenient,
and computationally inexpensive, and the image data set is helpful
for conducting computer vision research involving size and shape
parameters (Sun et al. 2019c; Machairas et al. 2020).

This paper focuses on the particle size and shape analysis of two
types of calcareous sands from offshore Western Australia: Browse
#1 and Ledge Point. The two sands are representative of different
geologies; the first was obtained from a deep-sea site, while the
second is representative of a calcareous coastal site (Fig. 1). Five
and eight million particle images were used to measure several
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Comparison of 2D and 3D dynamic image analysis for characterization of 
natural sands 

Linzhu Li , Magued Iskander * 

Civil and Urban Engineering Department, NYU Tandon School of Engineering, 6 Metrotech Center, Brooklyn, NY 11201, United States   

A R T I C L E  I N F O   

Keywords: 
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Flatness index 
Johnson coefficients 
Zingg and Krumbein chart 

A B S T R A C T   

The efficacy of Dynamic Image Analysis (DIA) for evaluating particle size and shape parameters was explored 
using three natural sands, having varying particle morphologies. Two-dimensional (2D) captures binary images 
of the particles as they free fall in the imaging frame. Although 2D DIA is practical for statistical size and shape 
analysis, there is a prevailing perception that it fails to fully quantify particle granulometry. In the past few years, 
3D DIA has been introduced and has gained acceptance in the pharmaceutical industry. In 3D DIA the system 
tracks a particle as it falls through the imaging frame and captures gray-scale images from 8 to 12 perspectives of 
the same particle, and the results are analyzed using average values of these 2D images, which are believed to 
verge on true particle morphology. Although 2D and 3D devices employ similar methodology they differ in 
resolution, frame rate, lighting systems, and algorithms. In this work we compare the performance of 2D and 3D 
DIA. Particle size distributions were expressed using EQPC and a variety of Feret diameters, while particle shape 
descriptors including Aspect Ratio, Sphericity, Convexity and Roundness were compared for both systems. It is 
shown that 3D DIA requires a smaller number of sand particles to achieve mean particle shape values. Particle 
size characterization is generally independent of the machines and algorithms used in this study; however, 3D 
DIA provides maximum and minimum particle axes which are closer to the real sand particle sizes. Image-based 
particle shape characterization is more sensitive to the technology employed; it largely depends on image 
quality, particle angularity, and a hierarchy of shape descriptors; thus, at this time shape analysis for engineering 
applications must be carried out with similar machines and algorithms. In particular, the image resolutions 
captured by the available 2D and 3D DIA apparatus are 4 μm and 15 μm per pixel, respectively. At this time, the 
higher resolution and shorter exposure time of 2D DIA permits particle shape analysis down to particle sizes 
having D50 on the order of 40 μm, while 3D DIA is limited to D50 larger than 150 μm. These thresholds will 
certainly change as technology allows finer resolutions and shorter exposure times. Finally, the importance of 
image processing cannot be overlooked, and manufacturers and researchers are encouraged to open-source their 
algorithms in order to establish confidence in them.   

1. Introduction 

Particle shape has a significant influence on the mechanical behavior 
of granular soils; therefore, accurate characterization of sand particle 
morphology is important for predicting the engineering performance of 
sand (Cho et al. 2006; Cavarretta et al. 2010; Zheng and Hryciw 2016). 
Generally, the shape of sand particles can be described using two 
methods: the projection of a particle on a plane (two-dimensional, 2D), 
or three-dimensional (3D) particle shape which can be obtained using X- 
ray micro-computed tomography (μCT), among other methods. 
Although 3D methods provide a richer description of particle 

morphology, Dynamic Image Analysis (DIA) can be used more effi-
ciently to quickly analyze various particle shape parameters, including 
Aspect Ratio, Convexity, Sphericity and Roundness of millions of par-
ticles (Li et al. 2021). 

In recent years, DIA of particle size and morphology has been 
increasingly applied in geotechnical engineering (e.g. Altuhafi et al. 
2016; Bandini et al. 2017; Zhang et al. 2017; Shang et al. 2018; Wang 
et al. 2019; Wei et al. 2020; Suescun-Florez et al. 2020). DIA employs a 
high frame-rate camera to image a large number of individual particles 
of sand in a short time. DIA can generate both particle size and shape 
distributions and provide a quantitative statistical description of the 
tested sand. Particle size distribution obtained using DIA shows a good 
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Evaluation of Roundness Parameters in Use for Sand
Linzhu Li, S.M.ASCE1; and Magued Iskander, Ph.D., P.E., F.ASCE2

Abstract: Particle granulometry plays an important role in the engineering behavior of many sands. However, the evaluation of particle
shape and size has historically been a tedious and labor-intensive process. The recent availability of dynamic image analysis (DIA) makes it
possible to evaluate many particle shape and size parameters, quickly and conveniently. These shape parameters include sphericity, round-
ness, aspect ratio, circularity, and convexity; while size descriptors include the diameter of a circle of equal projection area (EQPC), a variety
of Feret diameters, as well as inscribed and circumscribed circle diameters. The terms roundness and sphericity are commonly used to
describe how close a particle resembles a sphere, with many definitions in common use. However, it is not immediately evident how these
roundness descriptors correlate. The correlation of nine shape and six size descriptors was investigated for six sands that reflect the breadth of
particle shapes and sizes that may be encountered. The analysis was based on 1,000 images of each sand obtained using two-dimensional DIA
apparatus. The study demonstrates that there is no correlation between size and shape parameters, and that shape descriptors can be reduced to
four independent shape parameters representing the granulometry of sand at different scales. The use of size and shape descriptors for
classification of sand was explored using six machine learning algorithms including support vector machines (SVMs), random forest, de-
cision tree, bagging tree, k-nearest neighbors (KNN), and bagging KNN. Classification accuracies of 77% and 66% were achieved using size
and shape features, respectively. The mean accuracy improved to 87% when combining both size and shape descriptors using bagging KNN
and random forest classifiers. The analysis also revealed an important hierarchy of size and shape features employed, with EQPC and
Wadell’s roundness alone classifying sands with 70% accuracy. DOI: 10.1061/(ASCE)GT.1943-5606.0002585. © 2021 American Society
of Civil Engineers.

Author keywords: Roundness; Sphericity; Pearson correlation; Cross-validation; Aspect ratio; Circularity; Convexity; Support vector
machines (SVMs); Random forest; Decision tree; Bagging tree; k-nearest neighbors (KNN); Bagging KNN.

Introduction

Previous studies have shown that particle size and shape signifi-
cantly influence the mechanical behavior of granular soils, includ-
ing packing density, shear strength, void ratio, friction angle, and
hydraulic conductivity (e.g., Cho et al. 2006; Rousé et al. 2008;
Bareither et al. 2008; Cabalar and Akbulut 2016; Zheng and
Hryciw 2016). Size and shape are two fundamental properties of
sedimentary particles, yielding a variety of information about dep-
ositional history, abrasion, transport processes, and sediment
source areas (Sherman et al. 2013). Wadell (1932, 1933) introduced
the measurement of two-dimensional (2D) projection of particle
shape as a practical representation of three-dimensional (3D) par-
ticle morphology. The method is believed to not cause significant
bias and is still in use today. In recent years, dynamic image analy-
sis (DIA) has been increasingly applied for characterizing particle
size and shape of sand (e.g., Altuhafi et al. 2013; Wang et al. 2019;
Suescun-Florez et al. 2020; Li et al. 2021). DIA employs a high-
frame-rate camera to image a large number of individual particles
of sand in a short time and provides various 2D size and shape

descriptors, efficiently and quickly, including aspect ratio (AR),
convexity, sphericity, and roundness of millions of particles (Li and
Iskander 2020). However, there is no general agreement on which
of these size and shape descriptors should be used either to classify
sand particles or trace its sedimentary source.

Roundness and sphericity are the most commonly used shape
descriptors to characterize particle morphology and a number of
equations have been proposed to capture the particle’s essence
(Table 1). Barrett (1980) claimed that Wadell roundness (Rwadell)
describes particle shape at an intermediate scale, which reflects the
abrasion and formation of a particle. However other definitions of
roundness may operate at different particle scales. For example,
ASTM F1877’s (ASTM 2016) definition of roundness (RASTM),
which is also shared with ISO 9276-6 (ISO 2008) and the influ-
ential Image J version 1.53h software, captures a larger scale than
that of Rwadell. The definition RASTM has been adopted in many
studies including Wei et al. (2020) and Maroof et al. (2020). A
third definition of roundness was introduced by Cox (1927), but
it is more commonly known as circularity. Cox’s definition has
been adopted by several studies including Nakata et al. (2001)
and Altuhafi et al. (2016). In addition, a variety of sphericity terms
are also in common use (Table 1), which are not necessarily cor-
related with Rwadell or RASTM. This might cause terminological
confusion, in that these parameters classify different aspects of
particle morphology. It is therefore of interest to examine the cor-
relation between the various roundness parameters in use for
characterizing sand particle shape. At the same time, correlation
analysis of roundness pairs may facilitate analysis of the particle
formation process.

Six types of sand including naturally occurring silica sand,
crushed quartz, feldspathic sand, and a calcareous sediment were
investigated. These sand particles differ in size and shape, varying
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Abstract: Particle classification is essential for geotechnical engineering practice since particle
shapes correlate with the mechanical and hydraulic properties of sand layers.
Traditional shape classification is tedious, subjective, and time consuming because it
depends on manual visual comparison with reference particles. This study
demonstrates the feasibility of employing machine learning algorithms for sand
classification  .  Machine Learning (ML) models are increasingly being introduced for
automatic identification and classification of various objects. Nine types of sand were
selected, and the analysis was based on 2000 binary images of each sand that were
obtained from Dynamic Image Analysis (DIA). Each particle was represented by six
engineering size and four shape descriptors. The efficacy of seven ML models for
automatically classifying individual sand particles was explored. The study
demonstrates that the size and shape descriptors are efficient and robust to identify up
to 75% of sand particles, using a Neural Network classifier. In addition, use of Scale
Invariant Feature Transform (SIFT) features was also explored to permit future
generalization of sand classification using image datasets containing images with
different scales and resolutions. Adding SIFT to size and shape can increase
classification accuracy to 83% using a Random Forest classifier. The analysis also
reveals that Histograms of Orientation Gradients of SIFT keypoints in sand appear well
correlated with Sphericity and Convexity of particles. This study suggests that a
dataset of 2000 particles per sand is sufficient for optimal classification performance,
and that image pre-processing of DIA images was not necessary.
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