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1 Scope of this Research

Motivation

+ Traditional Sieve analysis is cumbersome, imprecise, and fails to capture particle
granulometry (Shape and texture)

* Scanning Electron Microscope (SEM)

+ Laser diffraction

* Micro CT scanner

 Dynamic Image Analysis

Goals

« Evaluation of 2D DIA, 3D DIA and pCT for characterizing sand particle
granulometry

* Application of NUMERICAL size, shape descriptors for sand classification instead
of particle images

« Apply machine learning methods for automatic identification of particles

* Advance State of the Art in particle classification




Introduction to 2D DIA Operations
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For More Information on 2D DIA

Operating Parameter
« Air pressure

* Moisture content

e Specimen size

Application of DIA to two
complex sands
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ABSTRACT

and shape distibution. The method employs a high-frame-rate camera to image individual
particles of sand that have been transported and separated using a stream of pressurized
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air. DA

istcal description of the grain size and shape distribution within the specimen. The feasibity,
tabiity, and of DA for

nvestigated using 16 granular sois spanning a number of common sizes and shapes, Several

partice shape descriptors were evaluated, including aspect ratio, convexity, and shericty.

“The effect of a variety of test parameters including moisture content, sample weight, primary
air pressure, and test duration were explored to determine the optimal specimen weight and
ecipment settings for DIA. Finll, the effcacy of DIA in resolving mixtures of fine and coarse

ol provi
ing partice size distributions spanning four orders of magnitude, in terms of partice size. DIA

offers anur spec and provides
quantitative information on approximately 3-4 % of the particles n the specimen.
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Granulometry of Two Marine Calcareous Sands

Linzhu Li, S.M.ASCE'; Ryan D. Beemer, Ph.D., AM.ASCE? and Magued Iskander, Ph.D., P.E., F.ASCE®

Abstract: The morphology of two types of complex calcarcous sand was investigated in this study. The materials were selected owing to

their different geologic Ledge Point

while Browse #1

common data
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ecring behavior of calcareous soils. Moreover, sediments source tr

ysis. Two-dimensional Dynamic Image Analysis (DIA) was employed to capture five
A number of size parameters including diamet
et minimum, and Feret maximum diameter were efficiently obiained for each captured image using DIA, and used to
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Introduction

Calcarcous sediments consist mainly of clastic biogenic calcium

nisms. As a rest
sands possess complex physical shapes (Beener et al. 2018).
sediments have been known to be problematic for designing fou
dations because they exhibit large volume changes and friction an-
In partcular, these characteristics have
been relted 10 pile the tendency of volumetric changes
g il nstaition o redac skin icion (AL-Dour and Pouios
1995).
In siliceous sands, srength, compressibilty. citcal state paran
acking density, and void ratio can vary
i parice shape (Ch t 1 2006, Rous e 1. 2008, Bareer
et al. 2008; Kuo and Freeman 2000; Shin and Santamarina 2013;
Zhen and Hrycivs 2016a). Previous research proposed linking mi
cromechanical properties with their macromechanical behavior, This
a5 been done by correlating paricle shape parameters with void
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atio and eritical state parameters of sands. Given these advance-

ments, quanitative study of partile shape analyses may be useful

for assessing the behavior of calcarcous sands.

rec-dimensional (3D) partice shape measurements derived
nal

from woor S (Hanaor et al. 2016), microcom-
putd tomography (AIhibli e 1. 2015. Fonsech et al. 2012), Syn-
chrotron microcomputed tomography (Afshar ct al. 2018). Sterco
photography (Zheng and Hryciw 2017), or structured light (Sun
Cal. 20190) provide the most
shape. However, 3D measure
some, computationally intensive, slow. a
geotechnical practice. Although sophisticated techniques have
peen o s nd s ot 19000 kst once
(Kong and Fonscca 2018), 3D shape analysis s typically imited to
mple iz on e nder o 100 i (Roro & 1 2019: Moot
al. 2020). An allerative to these methods is two-dimensional

ic Image Analysis (DIA), which can be used to quickly
and<icintly analyse th shape parameirsof ndreds of o
nds to millions of sand grains in a few minutes.
‘Two-dimensional DIA has been
e resarch (0 provide satisicaldesripions of paricle size

of millions of individual sand grains at a time (Li and
oager 3030, DIA provides accurate staistics of particle shape
by capturin ample of particles. at
2 andom omcntation (White 200%. The method s s conicn.
and computationally inexpensive, and the image data et is helpful
for conducting computer vision research involving size and shape.
parameters (Sun et al. 2019¢; Machairas et al. 2020,

“This paper focuses on the particle size and shape analysis of two

types of calcarcous sands from offshore Western Australia: Browse.
1 and Ledge Point. The two sands are representarive of different
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Introduction to 3D DIA Operations
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2 Comparison of 2D & 3D DIA

2D and 3D DIA apparatus

e .

I v B Number of '
L e one image for takes 8-12
) captured each particle .
.. . images for
— e - images for from a el sarie]
1 . particle
(s\)(lsstgr[n ‘ each particle random plane
Dispersing = : |
system mage
| (GRADIS) ‘ o 12 9

4um/px 15um/px

resolution

Stroboscopic
LED

Light source  Pulsed laser

il Dynamic

PARTANE=

Frame rate 175 frames/s 100 frames/s

analysis
sensor

Particle size 22um —
(QICPIC) —
range A = L 35mm
Algorithm PAQXOS FLEX
Minimum
2D DIA apparatus 3D DIA apparatus required

particle size for 40pm 150um

shape analysis




19 types of sand

» Siliceous sand
» Ottawa sand: naturally occurring, mechanically sorted, Rounded
» Quartz sand: mechanical crushing of quartzite rock, Angular
» Peace River sand: a natural feldspathic sand sediment,
Subangular and subrounded
» Calcareous sand
»Marine Sand: hemipelagic sand from a deep-water environment,
Irregular
»Beach Sand, coastal bioclastic sand from a shallow-water

environment, Irregular

> Both marine sand sediments contain of Intra-voids

Peace River Marine Sand Beach Sand




3 Materials (Images captured by 2D and 3D DIA)
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Main difference:

*2D DIA captures 1 binary
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4 Particle size and shape descriptors in 2D and 3D DIA

Feret diameter refers to distance between two parallel tangents to the particle

at an arbitrary angle:
2D DIA

» drmax - longest dimension, dg,, : shortest dimension

3D DIA

» Feret-length diameter: maximum dg,.x in sequence images
» Feret-width diameter: maximum dg,;, in sequence images

» Feret-thickness diameter: minimum dg,,;, in sequence images

EQPC diameter (d,) is the diameter of a circle with an equal projection area to

the particle projection.

In 3D DIA, d, = average value in sequence images

Aspect Ratio: 2D DIA: AR = Emin. 3p DIA: ARy, = Zithickness,

Fmax

Flength

3D DIA: Elongation Index = Ethickness: Flatness Index = Ewidth,

Fwidth

)
Flength

3D DIA: Cx, Sp, R = average value in sequence images

Descriptor Description 2D 3D f}‘ralphlca.ally
Y o
Area equivalent 44 de= 424 R
EQPC (d.) . ! de= |—= 101 3
circle diameter [ . .
A: average Area in sequence of 3D images /
5
Ferets value Feret diameter dFeret
(dFere)
The ratio between
. minimum Feret
. dp
Aspectratio o neter to AR = Sfmin
(AR) ) Qrmax
maximum Feret
diameter
The ratio between AR71 = drhickness!dFiengi
TIL Aspect Feret-thickness Feret-thickness: minimum dpmin in
ratio (ARr)  diameter to Feret- sequence Of_?,D 1mages .
length diameter Feret-length: maximum drmax in sequence
of 3D images
The ratio between EI = dFrthickness!dFwidih
Elongation Feret-thickness Feret-thickness: minimum drmin in
Index (EI) diameter to Feret- sequence 0f3D Images; .
width diameter Feret-width: maximum drmin in sequence
of 3D images;
The ratio between FI = drwidi/dFiegnin
Flatness Feret-width diameter Feret-width: maximum drmin in sequence
Index (FI) to Feret-length of 3D 1mage§ . .
diameter Feret-length: maximum drmax in sequence
of 3D images
m
The ratio between Cx= ZZ,,‘:’:C A
L = §
Convexity ﬂ;;?crﬁi:iz:z“ d the it A: average Area of a sequence of 3D c\‘
(Cx) P £ th Ac images
ﬁli olthe convex Ac: average convex hull area of a
u sequence of 3D images
S=2 nmyiL, A "
The ratio of the L, P P "
Sphericity perimeter of the area §=p [ Area: average Area of a sequence of 3D \ 3
)] equivalent circle to P2 images /7
the real perimeter Perimeter: average Perimeter of a =
sequence of 3D images
The ratio of the
average radius of SRR
! 7 _ii
:{Vade(l]l corner circles of the P Nl Rsp n
R“““ ness particle to the radius =— Wadell Roundness = average
®) ns Roundness of a sequence of 3D images

of the maximum
inscribed circle




4 Comparison of 2D and 3D DIA

Particle size distribution

100 - 100 100 4
o \ -©— EQPC 3D DIA -1 - -©— EQPC 3D DIA E
=E]=— Feret-width 3D DIA -1 -©—EQPC 3D DIA =£]— Feret-width 3D DIA -
B N L 1= Feretwidth SDDIA ] | ~©— Feret-length 3D DIA .
e ofF 1 o ®f _g;i:ﬁztil:."f::eiii’s“m- o 8ol N
b= ] B Sieve analysis H S - i i
% eof 1 £ 1 N - ] »The PSD: driength > drmax > dFmin> drthickness
g [~ ] o 60 - ---== EQPC 2D DIA i ] 60 N - ) .
g f ] ¢ - 1 @ ] »The PSD of EQPC in 2D DIA and 3D DIA is
[ 1 & $ i ]
§ I 1 = “F 1 % “F ] ,
5 [ 1 ¢ 1 ¢ ] consistent.
a 20 - ] [-% 20 ] & 20 ]
N SO 1 SRR\ ] I : ] » The PSD of dgijciness and dg,;,, matched with
1000 600 200 7000 4000 1000 700 400 0 1000 100 10 . .
Particle diameter (um) Particle diameter (um) Particle diameter (jm) sieve anaIySIS
Ottawa #20-30 Peace River Marine Sand » Higher image quality is not necessarily

required for size analysis.

Particles are assumed to be spheres, and the diameters of these spheres
are calculated using selected size descriptors

— 0




4 Comparison of 2D and 3D DIA

Particle shape distribution

60

F [——Aspect Ratio - 20

dell - 2D

[ (a) Ottawa #20-30

04 08

0.2 0.6

Particle shape parameters

Density distribution %

; gl 0
0.2 04 0.6 08 0.2 0.4 0.6 0.8

Particle shape parameters Particle shape parameters

» The standard deviations of S, Cx, and R in 3D DIA are smaller than 2D DIA, 3D

data exhibits a more concentrated trend.
» Image resolution affect the shape descriptors characterization: Sphericity: 3D
DIA is 26%-39% larger than 2D DIA.
Convexity: least sensitive descriptor and not much difference
Roundness: difference from -5 to 14% between 3D and 2D DIA
Aspect Ratio: The standard deviations are similar.

AR <AR=EI<FI




4 Comparison of 2D and 3D DIA

Average absolute relative error %

Average absolute relative error %

Average absolute relative error %

Minimum number of particles for mean shape descriptor

10 100 1000

B [—e—ottawa #20-30 Sphericity - 30 = —e—Ottawa #20-30 Convexity - 3D
X & Ottawa #20-30 Sphericity - 2D 5 @~ Ottawa #20-30 Convexity - 2D
E % g
E H
3
E % kK
\ e
E ¥ e
2
- o
g
2
3 £
:
2
g
g
g
<

10 100 1000
Sample size

—o—Peace River Sphericity - 3D
&~ Peace River Sphericity - 2D

10 100 1000

Sample size

Average absolute relative error %

—e—Peace River Convexity - 3D
@~ Peace River Convexity - 2D

bk
10 100 1000

Sample size

—e—Marine Sand Sphericity - 30| ]
&~ Marine Sand Sphericity - 2D | ]

Average absolute relative error %

—e—Marine Sand Convexity - 3D
&~ Marine Sand Convexity - 2D

Sample size

10 100 1000  10°

ai... P
10 100 1000 1

Sample size

Shape descriptor Ottawa #20-30 Peace River Marine Sand

2D 3D 2D 3D 2D 3D

DIA DIA DIA DIA DIA DIA
Sphericity 400 30 500 40 1000 200
Convexity 20 10 20 8 200 50
Wadell Roundness 70 300 400
Aspect Ratio (AR or 400 600 600 700 1000 2000

T/L)

Elongation Index 400 600 2000
Flatness Index 500 700 1000

» Absolute relative error of mean shape value is less than 0.5%

» 2D DIA requires ~10X number of particles than 3D DIA for S and Cx.

» Cx required the least number of particles as 8-50 to represent the entire sample.
»Not much difference for AR.




4 Comparison of 2D & 3D DIA

* The operating speed and cost are comparable.

« Particle size is independent of the machines and algorithms.

Contentslsts available at Scicncel o——
| Pl

Engineering Geology

- Particle shape is sensitive to the technology employed. 1 I

Comparison of 2D and 3D dynamic image analysis for characterization of

* 3D DIA requires a smaller number of sand particles to achieve mean particle shape

Linzhu Li, Magued Iskander

g e, YU T Schon o Enghing. 6 MegotchGoa, B, WY 11201, Uk s

values.

« 3D DIA provides a more accurate representation of a particles’ longest and shortest

dimensions.

* Higher resolution of 2D DIA more accurately reflects particle shapes for engineering

behavioral analysis.

» Open-source algorithms are helpful in establishing confidence in the computed values




9 Comparison of 3D DIA and uCT

3D uCT Procedure

g |
a. Ottawa #20-30 b. Peace River sand c. Marine Sand ‘ i: cT stack% Median filtering
. ’ 1 : G “i’/‘;‘dv‘ }
©

57 1330 CT b
L C ey 1920 raw CT slices OI?]J Sd |
Y, Y images methol Black and;vhite stack

1. ﬁﬁ 3 MATLAB
R
DN (N
R
'! /"’ L © 1 & *L‘ [Remove roughnes: il vord
1A P
L) ) . ;
' Q : ‘\i' Locally
L ! | weighted
- J regression
Render 3D particles\ SMoothing
> & &£

2DDIA

3DDIA

\ Al \ ‘\ & -
‘ ‘ ' . . , :'f Extract Individual particles ' & "

“‘"'.’ 3 i’ ¢ Individual
Resolution 15um/voxel
Particle number 110-350 sand particles
Size analysis 300 particles/h The workflow of CT images post processing for
Shape analysis 8 particles/h Marine Sand.
Image processing Voids were filled as solid particle




9 Comparison of 3D DIA and uCT

3D Particle size and shape descriptors

Size . i Shape Graphical Graphical
Descriptors DIA Formula/Explanation ucT Formula/Explanation Descriptor DIA Formula Explanation uer Formula Explanation
TIL Aspect " . .
Equivalent - a d d
Diameter of circle with m Equivalont Squivalen Ratio Ratio of Feret-thickness to Feret-length ;zhlckne:s Ratio of sh(;;l:t to longest ;thxckness
EQPC equivalent particle area (2D) u Al Diameter of sphere [ (ARm) Flength Flength e
(de) or average equivalent [ with equivalent — Elongation o thick . dh deon Ratio of sh d
e diameter from multple (1) S particle volume = Index atio of Feret-thickness to Feret-widt ;[hlrkncss ir{itg?n?esxa?;l:i‘e? Fdrnxmness e
views (3D) - (El) Fwidth Fwidth ¥
i imensi Flatness dewiacn Ratio of intermediate to Arwiden T
Maximum dimension of a Index Ratio of Feret-width to Feret-length (3D) ~ ——4™ —Fwidth,
Feret-maxt ; ; N d, longest axes d
(dmer) particle, aka. Maximum dent N (Fl) Flength Flength
max ; 7
Feret diameter (2D) “ g i \\‘ Ratio of the perimeter of a circle with ”T?e Equivatent Equivalent
Feretmi Minimum dimension of a | ). . Sphericity equivalent area to the real particle area Ar Ratio of the _surface areaofa d,? volume V
" L ! 3 perimeter 3 volume equivalent sphere to
eretmin - particle, aka. Minimum Feret \ 2 () meter (20) n Real particl k ! ialent sphere
(demin) ’d ter (2D \ ” or average equivalent Sphericity from 2 | 21:1/24 perimeter P+ 7 the real particle surface area Sa Real particle
iameter (2D) multiple views (3D) Ea P ~ face area 2
Maximum dmax from n .
Feret-length . ) Longest axis i ; A » Votumoof
images of the same particle d Ratio between the particle area and the = " e convx
(Clrtengtn) ges o 3D DIA P (dlringtr) - Convexity area of its convex hull (2D) or average e The ratio between the particle v ° =
in 2 : 7 o volume and the volume of its — N
| (Cx) equivalent convexity from multiple views A convex hul Ve
Feret-width imaMgz);Ig]fljt?edsF;;:]Zo;;r?icle Intermediate axis 1 Fewiatn Iiyae W
(dlFwiatn) : (Clrwiatn) & " N B
40 01 3 et T
- . Tins i N Ti
FETEt' Minimum demin from N images Shortest axis 10 o Roundness maximum inscribed circle (2D) or average Rspoi= c?;le:afﬁ:::)efslﬁ; ?n‘;iir:ﬂ?nlo _Ihy
thickness of the same particle in 3D (d ) 0o equivalent 2D Roundness from multiple i1 Rep-pia inscribed sphere Tins
(dlFthickness) DIA Fiickness) views (3D) n P

* Three axes (driength, drFwidih, drickness): perpendicular in uCT but not perpendicular in 3D DIA

» Shape descriptor dimensionality: Sphericity and Convexity characterized in 3D DIA and uCT are

differed in dimensionality




9 Comparison of 3D DIA and uCT

100

N
NS —e—EQPC uCT
N\~ -=— EQPC 2D DIA

X g [ N -— EQPC 3D DIA R

o L \C --v--Feret-max 2D DIA g

£ - s—Feret-length 30 DIA |

. . . - - ] [ \ -4~ Feret-thickness pCT |

a Ic e Slze |S rl u |On @ 60 |- . - = Feret-min 2D DIA N

s N \ U e Feret-thickness 3D DIA ]

o \ o= Feret-width uCT

Qo \ — —Feret-width 3D DIA

> 40 \ —e—Sieve analysis

I — \

c \ ]

@ 4

o N \ i

s 20 |- N ]

-9 [ \ y \ ]

[ (a) Ottawa #20-30 A )\ -
0 LN \.\\‘ ---------

1000

» For rounded particles, EQPC is consistent in 2D, 3D DIA and uCT.

» The differences between 3D DIA and uCT size measurements are

—e—EQPC yCT
-=— EQPC 2D DIA
~—EQPC 3D DIA _

--v--Feret-max 2D DIA
- »=—Feret-length 3D DIA
- ess uCT

ret-thi i
-~ Feret-min 2D DIA

------ Feret-thickness 3D DIA
e Feret-width pCT

— — Feret-width 3D DIA
—e—Sieve analysis

approximately 12% on average.

Percentage passing %

» 3D DIA overestimates the Feret-thickness diameters relative to uyCT by

——

4-19%, 8-12 images cannot capture minimum particle dimension. 2000 S

100

» 3D DIA overestimates the Feret-length diameters. F

80 |-

—e—EQPC uCT
- EQPC 2D DIA
-e— EQPC 3D DIA

-v--Feret-max 2D DIA
o, - &—Feret-length 3D DIA

X NN -4~ Feret-thickness pCT
O - Feret-min 2D DIA

N ~o-- Feret-thickness 3D DIA
"\ |~@-Feret-width uCT
A\ |——Feret-width 3D DIA

%\, | ~®=Sieve analysis

- N
60 [ NN

w0 [ NN

Percentage passing %
/
/
<
o

20 [ \ AN
[ (c) Marine Sand

PR L | IR T =
1000 100

Particle diameter (um)

— 6




9 Comparison of 3D DIA and uCT

Particle size distribution

Particle size difference Particle size difference between
between uyCT and 3D DIA MCT, 3D DIA and sieve analysis
Typical i

Sand le")ticle Eqpc | Feret- | Feret- | Feret- Sand T:)a’ftlizfel gqpc | Feret- | Feret- | Feret-| oo | Feret- | Feret- | Feret- »These percentage
type | oo length | thickness | width tyee | P00 length | thickness | width length | thickness | width

Do | 0 | 2% | 0% | % LCT DDA difference may be used
ot Dap 0 | 1% | -10% | -9% Do | 21% | 26% | -17% | 7% | 21% | 43% | 9% | 16%

awa 0, 0, 0 0, 0, 0 ] .

#2030 | Do | 1| 126 1 8% | 9% Otwa o212 226 | A% . 1h L V% | 3h 0K . 1% as empirical correction

Deo 2% | -11% 8% -9% #20-30 50 % 6% -20% 3% | 8% | 32% -13% 6%

Dgo _3% _g% _1 0% _1 0% DGO 6% 18% -1 9% -3% 8% 33% -1 2% 7% . . .

Do | 1% | 9% | 0% | 5% Do | 8% | 29% | -17% | -1% | 11% | 42% | -8% | 10% factors in engineering

Duw | 5% | 16% | 4% | -11% Do | 57% | 91% 4% | #1% | 56% | 110% | 16% | 49%
Peace P T R Dw | 29% | 58% | -13% | 16% | 36% | 87% 2% | 30% i imi
River BW 180/; gof 12;" g;" F;{eijcf Do | 17% | 47% | 20% | 8% | 27% | 77% | 4% | 22% practice for similar

S Bt RSt SRR Rt 1 D | 4% | 4% | 21% | % | 2m% | 7% | 4% | 22%

Do | -17% | -26% | -19% | 7% Do | 3% | 37% | -22% | 1% | 23% | 85% | -3% | 20% sands.

0, 0, 0, 0,

Do | 13% | 8% A% | 1% Do | 76% | 162% | 5% | 75% | 55% | 143% | 1% | 58%
Marine | D% | 19% | 16% -9% 20% Marine | D@ | 75% | 195% | 0% | 81% | 46% | 155% | 1% | 50%
Sand | Do | 20% | 21% 8% | 30% and | Do | 28% | 158% | 35% | 47% | 7% | 113% | -30% | 13%

Do | 10% | 20% % | 38% Do | 15% | 171% | -39% | 55% | 4% | 126% | -34% | 12%

Do | -29% | -19% | 5% 8% Do | 25% | 207% | 4% | 120% | 77% | 281% | 1% | 111%
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9 Comparison of 3D DIA and uCT

100

PSD calculated using various volume assumptions £ wl """\-}n\:\ f
> The accuracy of all image-based PSD depends on the volume of : "F \\ 4 _:
the particle obtained from a 2D image: “ ol E
» 2D DIA: volume = :—n (dz—e 3 ° Tohr——gto—eto Ao ey
100
>—3D DIA: volume = dFlength>< deidtthFthickness i s [ ;Egggg%hid:
» uCT: volume = “real” particle volumes n “ :
>Only uCT data is used to investigate the volume difference. ‘? “ _ _ — ]
§ wl .. ]
» For regular shaped particles, 3D DIA measurement of PSD can ) , 0 posco ver ‘ \?ﬁ = ]
represent true volume distribution. 100 [ — _____
»Volume estimation in 2D DIA resulted in a difference around 3%. ° - ‘Y';._..\
»Volume of irregular particles cannot be reconstructed by three : j: _ 3
axes obtained from 3D DIA. : F
e sana

Particle diameter (um)




9 Comparison of 3D DIA and uCT

Particle shape distribution

—e— Aspect Ratio 2D DIA
- D DIA

hericity 3D DIA
- Co -

i\
ty 3D DIA 1A

3D DIA and uCT:

= Sindness yCT
I (a) Ottawa #20-30

» For Sphericity and Convexity:
» Ottawa #20-30: 3D DIA= uCT
» Peace River: differing by 0.1
» For Roundness: uCT < 3D DIA.

» Corner circles in 2D projections are always equal or larger

Density distribution %

Density distribution %

than the corner spheres lodged in 3D volume.

» R: uCT is a more objective parameter.
» R: 3D DIA is subjected to the projected direction.
»For ARy, Eland FI: 3D DIA= uCT

it g s " et » For complex calcareous sand: 3D DIA # uCT

Particle shape distribution using 6 shape descriptors
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9 Comparison of 3D DIA and uCT

Differences between 3D DIA and uCT

§ » 3D particles projected into 2D images: projection
’ deformation

(@) (b) () (d)
£ G cacapuednDRand - capured DA arencapured mOT > The diameters of corner circles are in direct proportion to
g particle JCT (ABFE) (ABCGHE) (ACGE)
) A c ; " the angle between two intersecting lines at the corner.
}gi E E G . .
g s ‘ » The maximum 2D particle area captured by DIA could be
«~ A c A B Al C
ot et P o larger than the true cross-sectional area.
- I ety d= 18 ot :
EE o 141 tr =19 o > S and R are largest in hexagonal form.
14
;ﬁ Su =081 So20 So=088 So=047 » S and R are smallest in 3D shape analysis (uCT).

Notes: 1. The side length of cubic particle is assumed as 1
2. The side length of projective plane c is 0.8, which is measured using GeoGebra 3D Calculator.
3. The radius of corner circle was calculated using uniform unit pixel per Zheng and Hryciew 2015.

A hypothetical simple cubic particle

20



9 Comparison of 3D DIA and uCT

1.0 1.0 S 1.0 —
. 2 Ottawa #20-30 ;ﬁ 2 Ottawa #20-30
Correlation between 2/3D DIA and pCT £ 03] Foremr 079
o ten images: 0. s > ten images: 0. »
5 7 : g
wn 0.6 V0.6 s 0.6
4] a H Ottawa #20-30
° T o
9 0.4 © 0.4 & 0.41 Rone imoge: -0.19
N N
= = [=] L
E —— y=0.95x + 0.06 E TT y=027x+072 N f[fn;m-ag::.oil:ss
0.2 ) 0.2 ~--- y=0.42x + 0.58 021 ;
_ : s i | 2 o wsing one image RN
»2D S, Cx and R: calculated using one and ten random L@ et (@) - Cun using ten images g impes (@)
00 02 04 06 08 1.0 %0 02 04 06 08 10 %%0 02 04 06 08 10
. . . . Normalized 3D Sphericity Normalized 3D Convexity 3D Roundness
rojections of the uCT rendering of each particle.
proj H 9 P 0
> Peace River > Peace River - Peace River
. -
»3D S, Cx and R are calculated from the 3D reconstruction. 5 0.8 Roremai 064 £ 0.8 Roreimgei 051 08
E Rien images: 0.76 2 Rien images: 0.81 "
S S ]
. . . 0 0.6 0.6 £0.6
» Correlations of S and Cx increased when employing 10 8 g E
by by 3 Rone image: 0.24
9 0.4 90.4 204 R £ 0.10
. — E g a ten images:
ImageS (R - 084i013 Versus 0661014) E =y =085x+0.27 g —— y=032x+0.68 N —— y=059x+0.34
£0.2 -=== y =1.02x + 0.15 = 0.2 y = 0.39x + 0.61 0.2 ~=-- y=0.13x + 0.52
g (b) S»p using one image g (b) Cxzp using one image (b) R2p using one image
. Szp using ten images Cxzp using ten images Rzp using ten images
> 3D D IA better represents partlde' %% 02 o4 06 08 10 %0 02 04 06 08 10 %% 02 o4 o6 08 10
Normalized 3D Sphericity Nor ized 3D C ity 3D Roundness
»Roundness: No significant correlation. 10— 10 10
2 Marine Sand 2> Marine Sand o Marine Sand
'S 0.8 Roneimage: 0.66 % 0.8] Roneimage: 0.62 =~ 08
H Reen images: 0.72 g Reen images: 0.74
£ 5 | §
@06 o6 g 0.6
c .
3 / > 3 277 Raneimage: 031
go04 804 z04 7 Reon images: -0.41
E02 ey TEﬂoz o oee N02 B s oo
0. -y =14 X & 0.2{ - y=034x+0. . ¥ ey =-0.41x + 0.60
5 mysiemeo || 502 yeosens
(c) o Sgp using ten images Cxzp using ten images (c) (c) Rqp using ten images
%0 02 04 06 08 10 %0 02 04 06 08 10 %%0 02 04 06 08 10
Normalized 3D Sphericity Normalized 3D C ity 3D Roundness




5 Which method to choose?

Granulometry of
soil particles

Pz:]rticle rrecae Micro-computed
shape tomography
Regular

* The S and Cx measured in 3D DIA were 2-11% larger compared
Pzrtlgle between 40pm-150pm-»VABRB] VN
to uCT. Primary factors (1). dimensionality projection (2). limited i

larger than 150pm

* The accuracy decreases with particle irregularity in 3D DIA .

* Particle volumes calculated in 3D DIA provide higher accuracy
compared to 2D DIA.

number of images. P

* The algorithm of Roundness in 3D DIA calculated using

arithmetic mean values from multiple images result in larger ' '
ValueS Applications Applications
Hi_gher Image Accutrate Smaller 3D realistic
rizdidlol gl based sand Three axes volume sample shape
shape classification estimation specimen values

variation
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5 For more information

GEOTECHNIQUE

&
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Efficacy of 3D Dynamic Image Analysis for Characterizing the
Morphology of Natural Sands

GEOT-2021-128 | Paper
26-05-2021
Linzhu Li, Quan Sun, Magued Iskander
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PDF auto-generated using ReView
from
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6 Evaluation of roundness parameters in use for sand

Commonly used sphericity and roundness descriptors

Doerprs Pormimbel e B »Roundness and sphericity are the most commonly used

EQPC Diameter of a Circle of Equal Projection Area

Feret-max drmax Maximum Feret diameter fé&ﬂ"d Freeman

Feret-min drmin Minimum Feret diameter - .

MIC diameter dins = 2Tins Maximum inscribed circle diameter E;?;;'Eg"“"a and S h a pe d eS Crl pto rS .

MCC diameter deir = 2T¢iy Minimum circumscribed circle diameter

PED diameter dy Diameter of a Circle of Equal Perimeter 1S0 9276-6 2008

Wadell Roundness (Rvader) N % The ratio of the average radius of corner circles of Wadell 1932 . . .
Ruaden == tl_lei)anicletotheradiusofthe maximum inscribed > Barrett (1 980) C|a|med that Rwade// descrlbes part|C|e Shape

s circle
Convexity (Cx) Cx = A/A. The ratio between the real particle area (4) and the Mora and Kwan
(aka. Solidity) area of the convex hull (4.) 2000

Perimeter Sphericity (S,) Sp=PJ/P =dJd, The ratio of the perimeter of the area equivalent 150 9276-6 2008 at a n i nte rm ed i ate SCa I e y Wh iCh refl e Cts th e a b ras i O n a n d

circle, P., to the real perimeter, P

Circularity (Cr) Cr = A/4, = d’/d) The ratio of the area of the particle (4) to the area of E“:‘ 'Z"‘SJI
(1/ Roundness Kato) Reao = Ap/A = d,7/de the circle having the same perimeter as the particle e f . f .

= ormation of a particle.
Aspect Ratio (AR) AR = dpmin/dpmax The ratio of the width of the particle () to the 1509276-6 2008

(aka. Wadell’s Sphericity) length of particle (drmar)

e ) B el e il Gy o b e G » Definitions of roundness may operate at different particle

circumscribed circle of the particle (d.i)

Diameter sphericity (Sa) Sa=do/dir The ratio of the diameter of a circle having the same ~ Wadell 1935
area as the original particle () to the diameter of d H H
the minimum circumscribing circle (deir) SCaIeS, SUCh aS RASTM an C|rCU Iarlty.
Area sphericity (S.) Su=A/Acir=de/dei’ The ratio of the area of the particle (4) to the area of ~ Riley 1941
ndeiy”

the smallest circumscribing circle (Aeir = n )

ASTM Roundness /ISO Roundness Rustve= A/Armax The ratio of the area of the particle (4) to the area of ~ ASTMFI877- > S p h e ri City te rm S a re a I SO i n CO m m O n u Se ) Wh iCh a re n Ot

/Image J Roundness (R s7) A/ pnax the circle with a diameter equals to maximum Feret ~'*"50 %27

d,
value (Armax = ”%)

necessarily correlated with R,.qe; or Rastu.

e » Correlation analysis of roundness pairs may facilitate

A
I AA—'II—" \\\
= ] analysis of the particle formation process.
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6 Comparison of shape descriptors for determining roundness

Tl il A T e
_ Wadell . ‘ @ D
#1220 circularity @@ ‘ @ ‘ [ J .
{ £ & O > Variations of particle shape from very angular to well rounded
B o @ 6 6 e 6 o : :
. T e e @ are different depending on the selected roundness parameter.
Wadell ' ‘ . ‘
il ' o o 8 0 @ » Ryaq0 reflects changes of roundness at the corner.
e N @ > Rasti describes particle overall shape and reflects variations in
Wadell ® @ 4 / L Y
il SV S / - P the proportions of the particle from elongated to rounded.
e NN > Cr focuses on the smoothness of the particle’s perimeter.
Wadell . ‘ ' ‘ T
R cuy P & 8 @ o > Ryaden, Circularity and Ras7y are conceptually distinct,
ASTM ‘ . .
2 7 L4 measuring different aspects of sand morphology.
) Wadell . » [ ] A
Msai: Circularity \ >» ‘ ' [ ] ]
o ASTM I \ - . ® L

Ryaden, Circularity and R4s7y according to Power’s
chart
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6 Evaluation of roundness parameters in use for sand

Pearson correlation of shape descriptors

Ottawa #12-20

et Cx Sp Cr AR S Sa Sa
033 024 024 (096 096 | 1 1
32035 026 025 (095 097 1
94 097 1

2036 026

Ottawa #20-30

Shape descriptor Ruatecr  Cx S, Cr AR S.  Sa Sa ASTM
ASTM Roun « 028 034 031 031 [096 092 099 099

031 035 032 002 095 093 1
031 036 033 033 094 04
026 034 035 033
015 016 018 018
032 o081 |1
032 08

035 1

et CX Sy Cr AR S. Si S Rastu
04 041 041 095 096 099 099 1
042 042 042 093 097 1 1
28 043 043 042 093 097 1
043 042 042 094
024 035 035 1

Quartz #3

Shape descriptor  Ruwar Cx S, Cr AR S. Si S,  Ruson
ASTM Roundness, Rsi -0.09 034 048 049 095 096 099 099 1

009 035 048 052 094 097
009 035 05 05 094 097
012 037 05 05 095
016 02 04 041

005 062

005 062
013

Marine Sand

Ruwier Cx S, Cr AR S. Su Sa Rastu

053 059 061 061 096 097 099
054 06 062 063 094 097 099
051 061 062 061 095 097 1
048 062 063 062 093
04 039 045 045

043 079 1
041 083
1

» Correlation analysis was able to classify siliceous sand into
naturally sorted or crushed:

» Crushed quartz: a negative correlation: R,,.4.; and AR;

weak correlation: Ry.0e; and Cx, S,

» Naturally sorted sand: positive or no correlation: Ry.qe)

and AR; moderate to strong correlation: R.4.y and Cx,
Sp
» AR is the main impacted shape descriptor capturing the
evolution of crushing for quartz sand.
»Marine Sand exhibits relatively high correlation coefficients,

complex formation process is different from other sands.




valuation of roundness parameters in use for sand

»Shape descriptors are categorized into
four groups according to their correlation
and independence:

» Larger-scale descriptors: AR, S., Sy,

Se, and Rastu

» Perimeter descriptors: S, and Cr

» Roundness descriptor: R :qe

» Convexity descriptor: Cx

ohts reserved.
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2 ASCE
Evaluation of Roundness Parameters in Use for Sand

Linzhu Li, S.M.ASCE"; and Magued Iskander, Ph.D., P.E., F.ASCE?

Abstract: Particle granulometry plays an important role in the engineering behavior of many sands. However, the evaluation of particle
shape and size has historically been a tedious and labor-intensive process. The recent availability of dynamic image analysis (DIA) makes it
possible (o evaluate many particle shape and size parameters, quickly and conveniently. These shape parameters include sphericity, round-
ness, aspect ratio, cireularity, and convexity; while size descriptors include the diameter of a circle of equal projection area (EQPC), a variety
of Feret diameters, as well as inscribed and circumscribed circle diameters. The terms roundness and sphericity are commonly used to
se a particle resembles a sphere, with many definitions in common use. However, it is not immediately evident how these
scriptors correlate. The correlation of nine shape and six size descriptors was investigated for six sands that reflect the breadth of
particle shapes and sizes that may be encountered. The analysis was based on 1,000 images of each sand obtained using two-dimensional DIA
apparatus. The study demonstrates that there is no correlation between size and shape parameters, and that shape descriptors can be reduced to

four shape parameters the ¢ y of sand at different scales. The use of size and shape descriptors for
classification of sand was explored using six machine learing algorithms including support vector machines (SVMs), random forest, de-
cision tree, bagging tree, k-nearest neighbors (KNN), and bagging KNN. Classification accuracies of 77% and 66% were achieved using size

and shape features, respectively. The mean accuracy improved to 87% when combining both size and shape descriptors using bagging KNN

and random forest classifiers. The analysis also revealed an important
Wadell’s roundness alone classifying sands with 70
of Civil Engineers.

Author keywords: Roundness; Spheri
machines (SVMs); Random forest; Decision tree; Ba

ty: Pearson correlation; Cross-validation; Aspect ratio; Circula
ing tree; k-nearest neighbors (KNN); Bagging KNN.

archy of size and shape features employed, with EQPC and

% accuracy. DOI: 10.1061/(ASCE)GT.1943-5606.0002585. © 2021 American Society

Convexity; Support vector

Introduction

Previous studies have shown that particle size and shape signifi-
cantly influence the mechanical behavior of granular soils, includ-
ing packing density, shear strength, void ratio, friction angle, and
hydraulic conductivity (e.g.. Cho et al. 2006; Rousé et al. 2008;
Barcither et al. 2008; Cabalar and Akbulut 2016; Zheng and

Hryciw 2016). Size and shape are two fundamental properties of

sedi

entary particles, yielding a variety of information about dep-
ositional history, abrasion, transport processes, and sediment
source areas (Sherman et al. 2013). Wadell (1932, 1933) introduced
the measurement of two-dimensional (2D) projection of particle
shape as a practical representation of three-dimensional (3D) par-
ticle morphology. The method is believed to not cause significant
bias and s still in use today. In recent years, dynamic image analy-
sis (DIA) has been increasingly applied for characterizing particle
size and shape of sand (c.g., Altuhafi et al. 2013; Wang et al. 2019
Suescun-Florez et al. 2020; Li et al. 2021). DIA employs a high-
frame-rate camera to image a large number of individual particles
of sand in a short time and provides various 2D size and shape

School of Engineering Fellow, Dept. of Civil and Urban Engineering,
New York Univ. Tandon School of Engineering, 6 Metrotech Center,
Brooklyn, NY 11201, Email: LL3256@nyu.edu

*Professor and Chair, Dxpl of Civil and Urban Engineering, New York
Univ. Tandon School of Engineering, 6 Metrotech Center, Brooklyn,
NY 11201 (corresponding uuﬂwr] ORCID: https:/orcid.org/0000-0001
-8245-1451. Email: Iskander@nyu.edu

Note. This manuscript was submitted on September 1, 2020; approved
on April 5, 2021; published online on June iscussion perio
open until November 16, 2021 separate discussions must be submitted
for individual papers. This paper is part of the Journal of Geotechnical
and Geoenvironmental Engineering, © ASCE, ISSN 1090-0241

descriptors, efficiently and quickly, including aspect ratio (AR),
convexity, sphericity, and roundness of millions of particles (Li and
Iskander 2020). However, there is no general agreement on which
of these size and shape descriptors should be used either to classify
sand particles or trace its sedimentary source.

Roundness and sphericity are the most commonly used shape
descriptors to characterize particle morphology and a number of
equations have been proposed to capture the particle’s essence
(Table 1). Barrett (1980) claimed that Wadell roundness (Riyqgen)
describes particle shape at an intermediate scale, which reflects the
abrasion and formation of a particle. However other definitions of
roundness may operate at different particle scales. For example,
ASTM FI877’s (ASTM 2016) definition of roundness (Rasry).
which is also shared with 1SO 9276-6 (ISO 2008) and the influ-
ential Image J version 1.53h software, captures a larger scale than
that of Ryqer. The definition Rysry has been adopted in many
studies including Wei et al. (2020) and Maroof et al. (2020). A
third definition of roundness was introduced by Cox (1927), but
it is more commonly known as circularity. Cox’s definition has
been adopted by several studies including Nakata et al. (2001)
and Altuhafi et al. (2016). In addition, a variety of sphericity terms
are also in common use (Table 1), which are not necessarily cor-
related with Ryyqr o Rysry. This might cause terminological
confusion, in that these parameters classify different aspects of

particle morphology. It is therefore of interest to examine the cor-
Telation between ihe various roundngss parameters in use for

characterizing sand particle shape. At the same time, correlation
analysis of roundness pairs may facilitate analysis of the particle
formation process.

Six types of sand including nawrally occurring silica sand,
crushed quartz, feldspathic sand, and a calcareous sediment were
investigated. These sand particles differ in size and shape, varying

© ASCE 04021081-1 J. Geotech. Geoenviron. Eng.

J. Geotech. Geoenviron. Eng., 2021, 147(9): 04021081
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[ Use of machine learning methods for sand classification

Features - Engineering size and shape descriptors

Descriptors Formula Definiti Reference

Diameter ofa Circle of Equal ASTMFIST7-16 » Engineering size and shape descriptors can

EQPC de Projection Area
Feret-max dFmax Maximum Feret diameter Kuo and
Feret-min dFmin Minimum Feret diameter Freeman 2000 H H H
MIC diameter dins = 2Tips Maximum inscribed circle diameter Santamarina and be eaS I Iy Obta I n ed from I m age d ataset
MCC diameter deir = 21y x:;’;::" circumscribed circle Cho 2004
PED diameter dy I?eii‘i‘:fet:r"fa Cirele of Equal 1SO 9276-6 2008 obtained usin g DIA.
N T The ratio of the average radius of
Wadell Roundness Y.  corner circles of the particle H H H
Ry Ruadett =" 10 e rais ofthe maimum Wadell 1932 > Size & Shape descriptors can be trained

inscribed circle
The ratio between the real particle .
Cx=A/A. area (4) and the area of the convex Mora and Kwan I n M L m od e I S
- 2000
hull (4) (Fig.2)
The ratio of the perimeter of the area

Convexity (Cx)
(aka. Solidity)

Perimeter _ _ . . ~ . .
Sphericty () /P74 eauvaent el P o thereal 1509276602008 » ML techniques may eventually assist
Aspect Ratio (4R) The ratio of the width of the particle
(aka. Wadell’s AR = dpmin/dimax - (drmin) to the length of particle 1SO 9276-6 2008 . . . .
Sphericity) (drn) engineers on-site to quickly determine

@ Ad’ geotechnical properties of soil formations

that would presently be analyzed in

e &

Employed 6 size and 4 shape descriptors

laboratories.

28



[ Use of machine learning methods for sand classification

Ni

ne types of sands

100 \
¢ @ O« o o - X [ \\I\\ \\:“ —e—Ottawa #12:20 | ]
- . - - c Lo\ | \ ¥ | 2 ottawa #70-100 | 4
e ® e o o 2 TARARY! Ottawa #20-30
Ottawa #12-20 Ottawa #20-30 Ottawa #70-100 g 80 R '| i \|‘ < v--Quartz #3 n
- R ~ v . ... A R R e
b ot .../ g e b | mhmman [
[ kDot _ . . .
Qwrzt awran Qw2 £ b e ] Investigated sand specimen:
o ¢ - . 8 wf ol ]
] Fo i 1 . .
@ oo - 2o hp : » Two-thousand particle images.
Peace River Marine Sand Beach Sand -g 2 - ‘i i ; ]
== A E R ] s . . .
N T AR » ldentifying each sand by size alone is difficult due to
Particle size d;ameter Dso (um) of Particle shape 1000 100 10
Sand ll;dlcare:" ize Descriptor Statistics " descriptor Particle diameter (um) . . .
e e e e overlapping sizes among various sands.
ouawa | 1007 1271 1013 946 1276 1617 | Median | 075 096 070 080
e a7 0% 079 075 R OTORIomeren omts, | : : ‘ot M i
P T o S RS e » Slightly shape differences exist in similar sand types.
St. Dev. 0.09 0.02 009 0.09 i H —
ottawa e | 075 081 078] 073 g :““‘Q"amm E
S = g s : °F E » Quantified particle size and shape features could aid with the
Quarz | 1742 2405 1477 1319 2420 2835 Mh:::n gi: gﬁ: EZZ g::i 5 4wk E
St.Dev. | 008 003 0.09 0.14 é‘ F E I _f_ t_ f t . I d t b t_t t b_ t_
A R I R AL E wf = classification of materials and serve to substitute subjective
St. Dev. 0.09 005 0.10 0.15 ke - 7
e Mean | 057 082 070 063 5 20F — . .
R o113 S RN SN I ; visual observations.
Peace Mean 050 096 070 0.71 =1 E ,' l.\ E
River 2162 2711 1881 1745 2722 3111 | Median 050 096 070 0.72 -4 1) = .'l‘-lllll =
St. Dev. 0.11 002 008 0.12

Mean | 062 087 062 065
Marne | 422 580 370 307 583 680 | Median | 061 089 064 068

St.Dev. | 047 007 013 0.7
Mean | 067 086 067 065
255 354 219 183 355 389 | Median | 068 0.88 069 0.65

Particle size distribution
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[ Mean classification accuracy use 10-fold cross-validation

Support K-nearest Neural
. Vector Decision Naive . Random Ensemble
classifiers Features . Neighbors Network .
Machines Tree Bayes (KNN) (MLP) Forest voting
(SVM)
Size 0.69 0.59 0.59 0.65 0.73 0.65 0.69
Accuracy Shape 0.57 0.45 0.50 0.56 0.58 0.55 0.57
Size and 0.74 0.67 0.71 0.73 0.75 0.73 0.75
shape

» Five individual ML classifiers and two ensemble methods.

»Data preprocessing: Normalization and Standardization.

»Hyperparameters optimization: Grid search optimizer.

» Accuracy:
» size descriptor > shape descriptors (66% vs 54%)
» Size + shape: 75% Neural network and Ensemble voting
» Decision tree method is not suggested.

» Efficiency: a few seconds to 3 minutes on a personal computer.




[ Use of machine learning methods for sand classification

Features — Scale-invariant feature transform (SIFT)

Scale 1 Scale 2 Scale 3 Scale 4

» Magnitude: m@y) = @G +1y)~LGx-1y)? + CLEy + D - Ly - D)

0
200 » SIFT features permit sand classification using images having
400

Octave 1 o different resolutions and scales.
800 » Keypoint Descriptors: calculated using a histogram of
1000
00
—1 LO,y+1)-L(x,y—1)

5 500 0 500 oriented gradients (HOG).
» Direction:  9(xy) = tan o

8 bin or L : :
Octave 3 m"" 8 bin orientation histogram is created for each keypoint and

each keypoint descriptor is represented as a feature vector
The Gaussian Pyramid and detected SIFT keypoints for a
typical sand image. Each row contains particle images with
increasing Gaussian blurring, images in each column are
down sampled to half the size of the previous row.

of 128 bin values (16 sub blocks x 8 orientations)
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7 SIFT features of two particles

¥ 0 0
Ottawa #1220 52 - 52 - »Two types of image dataset: original images
Original ; E 125 @ E 125 @ . .
. - S and Solid black particles.
i S 19 7 § S 10 » é . . . .
81 ©  Fa so »\White dots inside each image could be
Ottawa #12-20 ] 9 14 25 9 14 25
Preprocessed ! 0 0 . .
: Fignype §ignype related to materials properties.
" Angle directions Angle directions
s (a). Ottawa #12-20 - Original (b). Ottawa #12-20 - Preprocessed > Size and Shape descriptors ana|yze
M ; S d 200 200 R R
aorl:;ginjln g 2 175 g 2 175 partICle OUt|Ine
s 05; 4 150 @ 4 150 . . .
. 5 et SR = g » Marine Sand: HOG more diversity due to
" 8 100 Z E s 100 E'
. LT oEy oe highly irregular particle shape.
Marine Sand = 2 = 25
Preprocessed T T » Ottawa #12-20: HOG concentrated at n/4,
Ar:gzleddirezctAions Ar:gzlédi:ezct?oans
(c). Marine Sand - Original (d). Marine Sand - Preprocessed T[/2 and 277:
SIFT keypoints Average of orientation histograms of all SIFT

keypoints for the two particles
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[ SIFT features of nine types of sands

0 0 0
a 175 2, 175 2, 175
'cg,, 4 150 -8, 4 150 -8, 4 150
g 6 us§ E 6 us§ E 6 ns§
3, w2 3 w2 3 100 2
S10 » § S10 » § S10 » §
312 0 312 =0 312 =0
. " E P = P I P
»The HOG represents the average of all identified e e P
Angle directions Angle directions Angle directions
H H i (a). Ottawa #12-20 (b). Ottawa #20-30 (c). Ottawa #70-100
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[ Correlation between SIFT & shape descriptors

l%%/’ 4 h’ed Yy 4
R, s,
g hesct Roy, Cop Sorte
N o
O.oc ess X1t <lt, °h¢"es :*’ % Tey, )t

1 1 1 1 1
Ottawa #12-20 -0.36 0.37 @ 0.30
Ottawa #20-30 -0.150.13 @ 0.26
Ottawa #70-100 -0.400.090.330.370.16

Quartz #4 -0.17 o.zsﬁ
Quartz #3 -0.25 o.zs@ﬁ
Quartz #2 -Eo.aoo.ae
Peace River -0.17 EHME
Marine Sand —0.40@

Beach Sand — 0.240.380.40 0.23

Average -0.350.27 0.35

0.7

0.6

0.5

- 0.4

-0.3

r0.2

0.1

uoIIRUIWID}DP JO JUDIDISD0)

1 1 1 1 1
2002 00D
Ottawa #12-20 0'22J 0.43
Ottawa #20-30 -0.14 0.170.32

Ottawa #70-100 -@ 0.120.370.420.20

Quartz #4 -0.18 0.32ﬁ
Quartz #3 -0.230.27 7]@
Quartz #2 -R& o.310.43
Peace River -0.11 0.43
Marine Sand - 0 }

Beach Sand — 0.280.350.410.32

Average -0.390.31 Jor| B 0

0.7

0.6

0.5

- 0.4

- 0.3

- 0.2

uoIeUIWID}DP JO JUIIDID0)

» Multiple linear regression (MLR)

» Moderate correlations exist between SIFT
and Sphericity and Convexity.

» Sphericity and Convexity capture the
overall smoothness and compactness of
particle perimeters at a finer scale, perhaps
similar to the HOG in SIFT.

» Preprocessed images have a higher

correlation to shape descriptors.

(a) Original images (b) Preprocessed images

Correlation between 128-dimension SIFT keypoints and size and shape descriptors




[ Correlation between number of SIFT keypoints and shape descriptors
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[ Bag of features used in classification

Spliting image
dataset 18000
images

Convert SIFT
features to 50 center of
learned clusters (Bag-of-features):
k-means clustering to: 50 x 1
vector

Compute
SIFT features:
128-dimensional vector
for each
keypoint

Training dataset Tdentify SIFT
(16200 images) keypoints

Training
lTesting features

Extract Extract

Add normalized

size and shape

descriptors for
each image

shape features
for testing dataset 1800
images: 1800 x 50
vector

shape features for
training dataset 16200
images: 16200 x 50
vector

Testing dataset
(1800 images)

Sand classification

|
Training each classifier
Add normalized
i ( i l 1 size and shape
descriptors for

Naive Neural Random Ensemble| H
m m Forest Sacn maoe

Test Test Test Test Test Test Test
accuracy ~ accuracy ~ accuracy ~ accuracy ~ accuracy  accuracy  accuracy

Flowchart of image classification using
features extracted by SIFT algorithm and BOF

»Bag of features (BOF) improves the efficiency of training models
by reducing feature dimensionality.

»The SIFT features extracted for 18,000 images took 40 minutes on
a PC having 32GB of RAM and an Intel core i7-9700 CPU.

» Two smaller datasets comprising 1000 original and preprocessed
images were compared, operation time 14 mins to extract SIFT.

» The time used for training and testing 18000 data in SIFT is ~2-3

that required for using size and shape descriptors.




Mean classification accuracy using SIFT features (10-fold Cross-validation)
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{ SIFT: Summary and Conclusions

»Neural Network provided the best performance for classifying
73%, 58% and 75% of sand particles using size, shape, size and
shape descriptors.

» The use of SIFT features alone can identify up to 55% of sand
particles, while using size and SIFT features can provide 73%
accuracy. These values are consistently 2-3% smaller than using
size and shape descriptors.

» Image preprocessing was found counterproductive.
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» DIA can be used for routine analysis of regular particles

» Faster and more accurate than Sieve analysis

» DIA needs to be supplemented by uCT for very complex particles

» ML promises to become commonly employed for routine classification of sand from ordinary images, a
voting algorithm can be used to classify the material based on the classification of the majority of individual
particles.

» Shape & Size descriptors provide suitable representation of particle granulometry

» SIFT can help with databases of images having various scales
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