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Abstract

Despite an increasing reliance on fully-automated algorithmic decision making in our day-to-
day lives, human beings still make highly consequential decisions. As frequently seen in business,
healthcare, and public policy, recommendations produced by algorithms are provided to human
decision-makers in order to guide their decisions. While there exists a fast-growing literature
evaluating the bias and fairness of such algorithmic recommendations, an overlooked question is
whether they help humans make better decisions. We develop a statistical methodology for ex-
perimentally evaluating the causal impacts of algorithmic recommendations on human decisions.
We also show how to examine whether algorithmic recommendations improve the fairness of hu-
man decisions and derive the optimal decisions under various settings. We apply the proposed
methodology to the first-ever randomized controlled trial that evaluates the pretrial Public Safety
Assessment (PSA) in the criminal justice system. A goal of the PSA is to help judges decide
which arrested individuals should be released. We find that the PSA provision has little overall
impact on the judge’s decisions and subsequent arrestee behavior. However, our analysis provides
some potentially suggestive evidence that the PSA may help avoid unnecessarily harsh decisions
for female arrestees regardless of their risk levels while it encourages the judge to make stricter
decisions for male arrestees who are deemed to be risky. In terms of fairness, the PSA appears
to increase the gender bias against males while having little effect on the existing racial biases of
the judge’s decisions against non-white males. Finally, we find that the PSA’s recommendations
might be too severe unless the cost of a new crime is sufficiently higher than the cost of a decision
that may result in an unnecessary incarceration.
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1 Introduction

A growing body of literature has suggested the potential superiority of algorithmic decision making

over purely human choices across a variety of tasks (e.g., Hansen and Hasan, 2015; He et al., 2015).

Although some of this evidence is decades old (e.g., Dawes, Faust and Meehl, 1989), it has recently

gained significant public attention by the spectacular defeats of humanity’s best in cerebral games

(e.g., Silver et al., 2018). Yet, even in contexts where research has warned of human frailties, we

humans still make many important decisions to give ourselves agency and to be held accountable for

highly consequential choices.

The desire for a human decision maker as well as the precision and efficiency of algorithms

has led to the adoption of hybrid systems involving both. By far the most popular system uses

algorithmic recommendations to inform human decision making. Such algorithm-assisted human

decision making has been deployed in many aspects of our daily lives, including medicine, hiring,

credit lending, investment decisions, and online shopping to name a few. And of particular interest,

algorithmic recommendations are increasingly of use in the realm of evidence-based public policy

making. A prominent example, studied in this paper, is the use of risk assessment instruments in

the criminal justice system that are designed to improve incarceration rulings and other decisions

made by judges.

While there exists a fast-growing literature in computer science that studies the bias and fairness

of algorithms (see Chouldechova and Roth, 2020, for a review and many references therein), an

overlooked question is whether such algorithms help human make better decisions (see e.g., Green

and Chen, 2019, for an exception). In this paper, we develop a methodological framework for

experimentally evaluating the impacts of algorithmic recommendations on human decision making.

We conduct the first-ever real-world field experiment by providing, for randomly selected cases, a

pretrial Public Safety Assessment score (PSA) to a judge who makes an initial release decision for

randomly selected cases. We evaluate whether the PSA helps judges achieve their goal of preventing

arrestees from committing a new crime or failing to appear in court while avoiding an unnecessarily

harsh decision.

Using the concept of principal stratification from the causal inference literature (e.g., Frangakis

and Rubin, 2002; Ding and Lu, 2017), we propose the evaluation quantities of interest, identification

assumptions, and estimation strategies. We also develop a Bayesian sensitivity analysis to assess

the robustness of empirical findings to the potential violation of a key identification assumption (see

also Hirano et al., 2000; Schwartz, Li and Mealli, 2011; Mattei et al., 2013; Jiang, Ding and Geng,
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2016). In addition, we also examine whether algorithmic recommendations improve the fairness of

human decisions, using the concept of principal fairness that, unlike other fairness criteria, accounts

for how the decision in question affects individuals (Imai and Jiang, 2020). Finally, we consider

how the data from experimental evaluation can be used to inform an optimal decision rule and

assess the optimality of algorithmic recommendations and human decisions. Although the proposed

methodology is described and applied in the context of evaluating the PSA, it is directly applicable

or at least extendable to many other settings of algorithm-assisted human decision making.

The PSA, which serves as the main application of the current paper, has played a prominent

role in the literature on algorithmic fairness at least since the controversy over the potential racial

bias of COMPAS risk assessment score used in the United States (US) criminal justice system (see

e.g., Angwin et al., 2016; Dieterich, Mendoza and Brennan, 2016; Flores, Bechtel and Lowenkamp,

2016; Dressel and Farid, 2018). However, with few exceptions, much of this debate focused upon

the accuracy and fairness properties of the PSA itself rather than how the PSA affects the decisions

by judges (see e.g., Berk et al., 2018; Kleinberg et al., 2018; Rudin, Wang and Coker, 2020, and

references therein). Even the studies that directly estimate the impacts of the PSA on judges’

decisions are based on either observational data or hypothetical vignettes in surveys (e.g., Miller and

Maloney, 2013; Berk, 2017; Stevenson, 2018; Albright, 2019; Green and Chen, 2019; Garrett and

Monahan, 2020; Skeem, Scurich and Monahan, 2020).

We contribute to this literature by demonstrating how to experimentally evaluate the PSA. To

the best of our knowledge, this is the first randomized controlled trial (RCT) that evaluates the

impacts of modern risk assessment scores on judges’ decisions in the criminal justice system (see also

the 1981–82 Philadelphia Bail Experiment that evaluated the effects of a bail guideline on judges’

decisions rather than those of risk assessment scores (Goldkamp and Gottfredson, 1984, 1985)). The

proposed methodology allows us to evaluate the effects of the PSA on judges’ decisions separately

for the subgroups of arrestees with different levels of risks.

We find that the provision of the PSA has little overall impact on the judge’s decisions across

three outcomes we examine: failure to appear (FTA), new criminal activity (NCA), and new violent

criminal activity (NVCA). However, our analysis provides some suggestive evidence that the PSA

may make the judge’s decisions more lenient for female arrestees regardless of their risk levels,

while it encourages the judge to make stricter decisions for male arrestees who are deemed to be

risky. In terms of fairness, the PSA appears to increase the gender bias against males while having

no substantial impact on the existing racial bias of the judge’s decisions against non-white males.
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Finally, we use the experimental data to learn about the optimal decision that minimizes the negative

outcomes (FTA, NCA, and NVCA) while avoiding unnecessarily harsh decisions. Our analysis

suggests that the PSA’s recommendations may be too severe unless the cost of negative outcomes is

much higher than the cost of a decision that may result in an unnecessary incarceration.

2 Experimental Evaluation of Pretrial Public Safety Assessment

In this section, we briefly describe our field experiment after providing some background about the

use of PSA in the US criminal justice system. Additional details about our experiment are given

elsewhere (Greiner et al., 2020).

2.1 Background

The US criminal justice apparatus consists of thousands of diverse systems. Some are similar in

the decision points they feature as an individual suspected of a crime travels from investigation to

sentencing. Common decision points include whether to stop and frisk an individual in a public

place, whether to arrest or issue a citation to an individual suspect of committing a crime, whether

to release the arrestee while they await the disposition of any charges against them (the subject of

this paper), the charge(s) to be filed against the individual, whether to find the defendant guilty of

those charges, and what sentence to impose on a defendant found guilty.

At present, human judges make all of these decisions. In theory, algorithms could inform any of

them, and could even make some of these decisions without human involvement. To date, algorithmic

outputs have appeared most frequently in two settings: (i) at the “first appearance” hearing, during

which a judge decides whether to release an arrestee pending disposition of any criminal charges, and

(ii) at sentencing, in which the judge imposes a punishment on a defendant found guilty. The first

of these two motivates the present paper, but the proposed methodology is applicable or extendable

to other settings.

We describe a typical first appearance hearing. The key decision the judge must make at a first

appearance hearing is whether to release the arrestee pending disposition of any criminal charges

and, if the arrestee is to be released, what conditions to impose. Almost all jurisdictions allow the

judge to release the arrestee with only a promise to reappear at subsequent court dates. In addition,

most arrestee has not yet been adjudicated guilty of any charge at the time of a pretrial hearing,

there exists a consensus that pretrial incarceration is to be avoided unless the cost is sufficiently

high.

Judges deciding whether to release an arrestee ordinarily consider two risk factors among a variety
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of other concerns; the risk that the arrestee will fail to appear (FTA) at subsequent court dates, and

the risk that the arrestee will engage in new criminal activity (NCA) before the case is resolved (e.g.,

18 U.S.C. § 3142(e)(1)). Jurisdiction laws vary regarding how these two risks are to be weighed.

Some jurisdictions direct judges to consider both simultaneously along with other factors (e.g., Ariz.

Const. art. II, § 22, Iowa Code § 811.2(1)(a)), while others focus on only FTA risk (e.g., N.Y. Crim.

Proc. Law § 510.30(2)(a)). Despite these variations, NCA or FTA are constant and prominent in

the debate over the first appearance decisions.

The concerns about the consequential nature of the first appearance decision have led to the

development of PSA, which is ordinarily offered as an input to first appearance judges. PSA can

take various forms, but most focuses on classifying arrestees according to FTA and NCA risks. PSA

is generally derived by fitting a statistical model to a training dataset based on the past observations

from first appearance hearings and the subsequent incidences (or lack thereof) of FTA and NCA.

The hope is that providing PSA will improve the assessment of FTA and NCA risks and thereby lead

to better decisions. The goal of this paper is to develop a methodological framework for evaluating

the impact of PSA on judges’ decisions using an RCT, to which we now turn.

2.2 The Experiment

We conducted a field RCT in Dane county, Wisconsin, to evaluate the impacts of a PSA on judges’

decisions. The PSA used in our RCT consists of three scores — two six-point scores separately

summarizing FTA and NCA risks as well as a binary score for the risk of NVCA. These scores are

based on the weighted indices of nine factors drawn from criminal history information, primarily prior

convictions and FTA, and a single demographic factor, age. Notably, gender and race are not used

to compute the PSA. The weights are calculated using past data. The details about the construction

of the PSA and other relevant information are available at https://advancingpretrial.org/psa/

factors/

The field operation was straightforward. In this county, a court employee assigned each matter

a case number sequentially as matters entered the system. No one but this clerk was aware of the

pending matter numbers, so manipulation of the number by charging assistant district attorneys was

not possible. Employees of the Clerk’s office scanned online record systems to calculate the PSA

for all cases. If the last digit of case number was even, these employees made the PSA available

to the judge at the first appearance hearing. Otherwise, no PSA was made available. Thus, the

provision of PSA to judges was essentially randomized. Indeed, the comparison of observed covariate

distributions suggests that this scheme produced groups comparable on background variables.
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The judge presiding over the first appearance hearing by law was to consider the risk of FTA

and NCA, along with other factors including ties to the community as prescribed by statute. The

judge could order the arrestee released with or without bail of varying amount. The judge could also

condition release on compliance with certain conditions such as certain levels of monitoring, but for

the sake of simplicity, we focus on bail decisions and ignore other conditions in this paper.

When making decisions, the judge also had information other than the PSA and its inputs. In

all cases, the judge had a copy of an affidavit sworn to by a police officer recounting the circum-

stances of the incident that led to the arrest. The defense attorney sometimes informed the judge

of the following regarding the arrestee’s connections to the community: length of time lived there,

employment there, and family living there. When available, this information ordinarily stems from

an arrestee interview conducted earlier by a paralegal. The assistant district attorney sometimes

provided additional information regarding the circumstances of the arrest or criminal history. Given

the lack of access to this additional information, we will develop a sensitivity analysis to address a

potential unobserved confounding bias.

2.3 The Data

The field operation design called for approximately a 30-month treatment assignment period (from

the middle of 2017 until the end of 2019) followed by the collection of data on FTA, NCA, NVCA,

and other outcomes for a period of two years after randomization. At the time of this writing, the

outcome data had been collected for a period of 24 months for the arrestees who were involved in

arrest events during the first 12 months. We plan to continue our field RCT and report the results of

our comprehensive analysis of a full data set in the future. Furthermore, although some arrestees had

multiple cases during the study period, this paper focuses on the first arrest cases in order to avoid

potential spillover effects across cases. This leads to a total of 1890 cases for our analysis, of which

40.1% (38.8%) involve white (non-white) male arrestees and 13.0% (8.1%) are white (non-white)

female arrestees.

Based on the empirical distribution of bail amount and expert’s opinion, we categorize the judge’s

decisions into three ordinal categories: signature bond, small cash bond (less than $1,000), and large

cash bond (greater than or equal to $1,000). The signature bond requires an arrestee to sign a

promise to return to the court for trial, but does not require any payment to be released. Table 1

summarizes the joint distribution of treatment assignment (PSA provision), the judge’s decisions

(three ordinal categories), and three binary outcomes. We observe that in about three quarters

of cases the judge imposed signature bonds, while in the remaining cases the judge imposed bail.
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no PSA (Control Group) PSA (Treatment Group)

Signature Cash bond Signature Cash bond
bond ≤$1000 >$1000 bond ≤$1000 >$1000 Total (%)

Non-white Female 64 11 6 67 6 0 154
(3.4) (0.6) (0.3) (3.5) (0.3) (0.0) (8.1)

White Female 91 17 7 104 17 10 246
(4.8) (0.9) (0.4) (5.5) (0.9) (0.5) (13.0)

Non-white Male 261 56 49 258 53 57 734
(13.8) (3.0) (2.6) (13.6) (2.8) (3.0) (38.8)

White Male 289 48 44 276 54 46 757
(15.3) (2.5) (2.3) (14.6) (2.9) (2.4) (40.0)

FTA committed 218 42 16 221 45 16 558
(11.5) (2.2) (0.8) (11.7) (2.4) (0.8) (29.4)

not committed 487 90 90 484 85 97 1333
(25.8) (4.8) (4.8) (25.6) (4.5) (5.1) (70.6)

NCA committed 211 39 14 202 40 17 523
(11.2) (2.1) (0.7) (10.7) (2.1) (0.9) (27.7)

not committed 494 93 92 503 90 96 1368
(26.1) (4.9) (4.9) (26.6) (4.8) (5.1) (72.4)

NVCA committed 36 10 3 44 10 6 109
(1.9) (0.5) (0.2) (2.3) (0.5) (0.3) (5.7)

not committed 669 122 103 661 120 107 1782
(35.4) (6.5) (5.4) (35.0) (6.3) (5.7) (94.3)

Total 705 132 106 705 130 113 1891
(37.3) (7.0) (5.6) (37.3) (6.9) (6.0) (100)

Table 1: The Joint Distribution of Treatment Assignment, Judge’s Decisions, and Outcomes. The
table shows the number of cases in each category with the corresponding percentage in parentheses.
Only about 20% of all arrestees are female. Few cases result in NVCA (violent new criminal activity),
while FTA (failure to appear in court) and NCA (new criminal activity) account for slightly above
25% each. A majority of decisions are signature bonds rather than cash bonds.

For the outcome variables, slightly less than 30% of arrestees commit FTA and NCA whereas the

proportion of those who commit NVCA is only about 5%.

Figure 1 presents the distribution of the judge’s decisions given each of the PSA scores among

the cases in the treatment (top panel) and control (bottom panel) groups, to which the PSA scores

are provided. The overall difference in the conditional distribution between the two groups is small

though there are some differences in some subgroups (see Appendix S1). The PSA scores for FTA

and NCA are ordinal, ranging from 1 (safest) to 6 (riskiest), whereas the PSA score for NVCA

is binary, 0 (safe) and 1 (risky). There is also the overall PSA recommendation which is a three-

category ordinal variable aggregating these three PSA scores. The PSA recommendation is 0 (a
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Figure 1: The Distribution of the Judge’s Decisions given the Pretrial Public Safety Assessment
(PSA) among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups. There
are three PSA scores, two of which are ordinal — FTA and NCA — while the other is dichotomous
— NVCA. The judge’s decision is coded as a three-category ordinal variable based on the type
and amount of bail: a signature bond, a small cash bond (less than $1,000), and a large cash bond
(greater than or equal to $1,000). The overall PSA recommendation is also coded as a three category
ordinal variable: 0 (a signature bond), 1 (a small cash bond), and 2 (a large cash bond). The width
of each bar is proportional to the number of cases for each value of the corresponding PSA score.
There exists a positive correlation between PSA scores and the severity of the judge’s decisions in
both treatment and control groups.

signature bond) if the FTA and NCA scores are less than or equal to 4, and NVCA flag equals to

0, while the recommendation is 2 (a large cash bond) if the NVCA flag equals 1 or either the FTA

or NCA scores is equal to 6. The remaining case is coded as the PSA recommendation of 1 (a small

cash bond).

In general, we observe a positive association between the PSA scores and judge’s decisions,

implying that a higher PSA score is associated with a harsher decision. We also find that for FTA

and NCA, the most likely scores are in the medium range, while the vast majority of NVCA cases

were classified as no elevated risk. Finally, for NCA and FTA, the judge’s decisions varied little when

the PSA score took a value in the lower range. For the overall PSA recommendation, the judge is

far more likely to give a signature bond for the cases that are actually recommended for a signature
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Figure 2: Estimated Average Causal Effects of PSA Provision on the Judge’s Decisions and Outcome
Variables. The results are based on the difference-in-means estimator. The vertical bars represent
the 95% confidence intervals. In the left plot, we report the estimated effects of PSA provision on
the judge’s decision to charge a signature bond (solid circles), a small cash bail ($1,000 dollars or
less; solid triangles), and a large cash bail (greater than $1,000; solid squares). In the right plot, we
report the estimated effects of PSA provision on the three different outcome variables: FTA (open
circles), NCA (open triangles), and NVCA (open squares). The PSA provision appears to have little
overall effect on the judge’s decision and arrestee’s behavior, on average, though it may slightly
increase NVCA among female arrestees.

bond.

Figure 2 presents the estimated average causal effect of the PSA provision on the judge’s decisions

(left plot) and three outcomes of interest (right plot). We use the difference-in-means estimator and

display the 95% confidence intervals as well as the point estimates. We do not compute the separate

estimates for white females and non-white females because we have too few female arrestees (see

Table 1). The results imply that the PSA provision, on average, has little effect on the judge’s

decisions. In addition, the average effects of the PSA provision on the three outcomes are also

largely ambiguous although there is a suggestive evidence that it may slightly increase NVCA among

female arrestees. In Appendix S2.1, we also explore the average causal effects of the PSA provision

across different age groups. We find some suggestive causal effects for the group of 29 – 35 years old

arrestees.

Although these results show whether the PSA provision leads to a harsher or more lenient decision

(and whether it increases or decreases negative outcomes), they are not informative about whether

it helps judges make better decisions. In the current context, a primary goal of the judge is to make

a less lenient decision on risky cases. Therefore, if the PSA is helpful, its provision should encourage

the judge to impose small or no bail on safe cases and impose a greater amount of bail on risky cases.

This demands the study of an important causal heterogeneity by distinguishing between cases with

different risks. In addition, we may also be interested in knowing how the PSA provision affects the
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gender and racial fairness of judges’ decision. Our goal is to develop statistical methods that directly

address these and other questions.

3 The Proposed Methodology

In this section, we describe the proposed methodology for experimentally evaluating the impacts

of algorithmic recommendations on human decision-making. Although we refer to our specific ap-

plication throughout, the proposed methodology can be applied or extended to other settings, in

which humans make decisions using algorithmic recommendations as an input. We will begin by

considering a binary decision and then extend our methodology to an ordinal decision in Section 3.4.

3.1 The Setup

Let Zi be a binary treatment variable indicating whether the PSA is presented to the judge of case

i = 1, 2, . . . , n. We use Di to denote the binary detention decision made by the judge to either detain

(Di = 1) or release (Di = 0) the arrestee prior to the trial. In addition, let Yi represent the binary

outcome. All of the outcomes in our application — NCA, NVCA, and FTA — are binary variables.

For example, Yi = 1 (Yi = 0) implies that the arrestee of case i commits (does not commit) an NCA.

Finally, we use Xi to denote a vector of observed pre-treatment covariates for case i. They include

age, gender, race, and prior criminal history.

We adopt the potential outcomes framework of causal inference and assume the stable unit

treatment value assumption (SUTVA) (Rubin, 1990). In particular, we assume no interference

among cases, implying that the treatment assignment for one case does not influence the judge’s

decision and outcome variable in another case. Note that this assumption is reasonable in our

application since we focus only on first arrests and do not analyze cases with subsequent arrests.

Let Di(z) be the potential value of the pretrial detention decision if case i is assigned to the

treatment condition z ∈ {0, 1}. Furthermore, Yi(z, d) represents the potential outcome under the

scenario, in which case i is assigned to the treatment condition z and the judge makes the decision

d ∈ {0, 1}. Then, the observed decision is given by Di = D(Zi) whereas the observed outcome is

denoted by Yi = Yi(Zi, Di(Zi)).

Throughout this paper, we maintain the following three assumptions, all of which we believe are

reasonable in our application. First, because the treatment assignment is essentially randomized,

the following independence assumption is automatically satisfied.

Assumption 1 (Randomization of the Treatment Assignment)

{Di(z), Yi(z, d),Xi} ⊥⊥ Zi for z ∈ {0, 1} and all d.
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Second, we assume that the provision of the PSA influences the outcome only through the judge’s

decision. Because an arrestee would not care and, perhaps, would not even know whether the judge

is presented with the PSA at their first appearance, it is reasonable to assume that their behavior,

be it NCA, NVCA, or FTA, is not affected directly by the treatment assignment.

Assumption 2 (Exclusion Restriction)

Yi(z, d) = Yi(z
′, d) for z, z′ ∈ {0, 1} and all i, d.

Under Assumption 2, we can simplify our notation by writing Yi(z, d) as Yi(d). A potential viola-

tion of this assumption is that the PSA may directly influence the judge’s decision about release

conditions, which can in turn affect the outcome. The extension of the proposed methodology to

multi-dimensional decisions is left for future research.

Finally, we assume that the judge’s decision monotonically affects the outcome. Thus, for NCA

(NVCA), the assumption implies that each arrestee is no less likely to commit a new (violent) crime

if released. If FTA is the outcome of interest, this assumption implies that an arrestee is no more

likely to appear in court if released. The assumption is reasonable since being held in custody of a

court makes it difficult, if not impossible, to engage in NCA, NVCA, and FTA.

Assumption 3 (Monotonicity)

Yi(1) ≤ Yi(0) for all i.

3.2 Causal Quantities of Interest

We define causal quantities of interest using principal strata that are determined by the joint values

of potential outcomes, i.e., (Yi(1), Yi(0)) = (y1, y0) where y1, y0 ∈ {0, 1} (Frangakis and Rubin,

2002). Since Assumption 3 eliminates one principal stratum, (Yi(1), Yi(0)) = (1, 0), there are three

remaining principal strata. The stratum (Yi(1), Yi(0)) = (0, 1) consists of those who would engage

in NCA (NVCA or FTA) only if they are released. We call members of this stratum as “preventable

cases” because keeping those arrestees in custody would prevent the negative outcome (NCA, NVCA,

or FTA). The stratum (Yi(1), Yi(0)) = (1, 1) is called “risky cases,” and corresponds to those who

always engage in NCA (NVCA or FTA) regardless of the judge’s decision. In contrast, the stratum

(Yi(1), Yi(0)) = (0, 0) represents “safe cases,” in which the arrestees would never engage in NCA

(NVCA or FTA) regardless of the detention decision.

We are interested in examining how the PSA provision influences judges’ detention decisions

across different types of cases. We are interested in the following three average principal causal
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effects (APCE),

APCEp = E{Di(1)−Di(0) | Yi(1) = 0, Yi(0) = 1}, (1)

APCEr = E{Di(1)−Di(0) | Yi(1) = 1, Yi(0) = 1}, (2)

APCEs = E{Di(1)−Di(0) | Yi(1) = 0, Yi(0) = 0}. (3)

If the PSA is helpful, its provisions should make judges more likely to detain the arrestees of the

preventable cases. That is, the principal causal effect on the detention decision for the preventable

cases (APCEp) should be positive. In addition, the PSA should encourage judges to release the

arrestees of the safe cases, implying that the principal causal effect for the safe cases (APCEs) should

be negative. The desirable direction of the principal causal effect for risky cases (APCEr) depends

on various factors including the societal costs of holding the arrestees of this category in custody.

3.3 Nonparametric Identification

We consider the nonparametric identification of the principal causal effects defined above. The

following theorem shows that under the aforementioned assumptions, these effects can be identified

up to the marginal distributions of Yi(d) for d = 0, 1.

Theorem 1 (Identification) Under Assumptions 1, 2, and 3,

APCEp =
Pr(Yi = 1 | Zi = 0)− Pr(Yi = 1 | Zi = 1)

Pr{Yi(0) = 1} − Pr{Yi(1) = 1}
,

APCEr =
Pr(Di = 1, Yi = 1 | Zi = 1)− Pr(Di = 1, Yi = 1 | Zi = 0)

Pr{Yi(1) = 1}
,

APCEs =
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

1− Pr{Yi(0) = 1}
.

Proof is given in Appendix S3.2. Because Pr{Yi(d)} is not identifiable without additional assump-

tions, we cannot estimate the causal effects based on Theorem 1. However, the denominators of

the expressions on the right-hand side of Theorem 1 are positive under Assumption 3. As a result,

the signs of the causal effects are identified from Theorem 1, which allows us to draw qualitative

conclusions.

In addition, the theorem implies, for example, that the sign of APCEp is the opposite of the sign

of the average causal effect on the outcome. This is intuitive because if the provision of the PSA

increases the probability of NCA (NVCA or FTA), then the judge must have released more arrestees

for preventable cases.

Furthermore, we can obtain the nonparametric bounds on these causal quantities by bounding
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Pr{Yi(d) = y} that appears in the denominators. By the law of total probability,

Pr{Yi(d) = 1} = Pr{Yi = 1 | Di = d}Pr(Di = d) + Pr{Yi(d) = 1 | Di = 1− d}Pr(Di = 1− d)

for d = 0, 1. Then, the bounds on Pr{Y (d) = 1} are obtained by replacing Pr{Yi(d) = 1 | Di = 1−d}

with 0 or 1. However, these bounds may be too wide to be informative.

For point identification, we consider the following unconfoundedness assumption, which states

that conditional on a set of observed pre-treatment covariates Xi and the PSA provision, the judge’s

decision is independent of the potential outcomes.

Assumption 4 (Unconfoundedness)

Yi(d) ⊥⊥ Di | Xi, Zi = z for z ∈ {0, 1} and all d.

Assumption 4 holds if Xi contains all the information judges have access to when making the

detention decision under each treatment condition. However, as noted in Section 2.2, a judge may

receive and use additional information regarding whether the arrestee has a job or a family in the

jurisdiction, or perhaps regarding the length of time the arrestee has lived in the jurisdiction. If

these factors have an impact on both judge’s decisions and arrestee’s behaviors, then the assumption

is unlikely to be satisfied. Later, we address this issue by developing a sensitivity analysis for the

potential violation of Assumption 4 (see Section 3.5).

To derive the identification result, consider the following principal scores (Ding and Lu, 2017),

which represent in our application the population proportion (conditional on Xi) of preventable,

risky, and safe cases, respectively,

eP (x) = Pr{Yi(1) = 0, Yi(0) = 1 | Xi = x},

eR(x) = Pr{Yi(1) = 1, Yi(0) = 1 | Xi = x},

eS(x) = Pr{Yi(1) = 0, Yi(0) = 0 | Xi = x}.

Under Assumptions 2, 3, and 4, we can identify the principal scores as,

eP (x) = Pr{Yi = 1 | Di = 0,Xi = x} − Pr{Yi = 1 | Di = 1,Xi = x},

eR(x) = Pr{Yi = 1 | Di = 1,Xi = x},

eS(x) = Pr{Yi = 0 | Di = 0,Xi = x}.

Then, the next theorem shows that we can identify the APCE as the difference in the weighted

average of judge’s decisions between the treatment and control groups.
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Theorem 2 (Identification under Unconfoundedness) Under Assumptions 1, 2, 3 and 4,
APCEp, APCEr and APCEs are identified as,

APCEp = E{wP (Xi)Di | Zi = 1} − E{wP (Xi)Di | Zi = 0},
APCEr = E{wR(Xi)Di | Zi = 1} − E{wR(Xi)Di | Zi = 0},
APCEs = E{wS(Xi)Di | Zi = 1} − E{wS(Xi)Di | Zi = 0},

where

wP (x) =
eP (x)

E{eP (Xi)}
, wR(x) =

eR(x)

E{eR(Xi)}
, wS(x) =

eS(x)

E{eS(Xi)}
.

Proof is given in Appendix S3.2. We note that Ding and Lu (2017) also identify principal causal

effects using principal scores. However, they consider principal strata based on the endogenous

variable, whereas we are interested in the causal effects on the endogenous variable within each

principal strata defined by the values of the potential outcome.

In some situations, we might consider the following strong monotonicity assumption instead of

Assumption 3.

Assumption 5 (Strong Monotonicity)

Yi(1) = 0 for all i.

The assumption implies that the detention decision prevents FTA, NCA, or NVCA. The assumption

is plausible for FTA, but may not hold for NCA/NVCA in some cases. In our data, for example, we

find some NCA and NVCA among the incarcerated arrestees.

Under Assumption 5, the risky cases do not exist and hence the APCEr is not defined, and the

APCEp simplifies to E{Di(1)−Di(0) | Yi(0) = 0}. This leads to the following identification result.

Theorem 3 (Identification under Strong Monotonicity) Under Assumptions 1, 2, and 5,

APCEp =
Pr(Di = 0, Yi = 1 | Zi = 0)− Pr(Di = 0, Yi = 1 | Zi = 1)

Pr{Yi(0) = 1}
,

APCEs =
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

Pr{Yi(0) = 0}
.

Proof is given in Appendix S3.4. As in Theorem 1, the APCEp and APCEs depend on the distribution

of Yi(0), which is not identifiable. However, as before, the sign of each effect is identifiable.

For point identification, we invoke the unconfoundedness assumption. Note that under the strong

monotonicity assumption, Assumption 4 is equivalent to a weaker conditional independence relation

concerning only one of the two potential outcomes,

Yi(0) ⊥⊥ Di | Xi, Zi = z

for z = 0, 1. We now present the identification result.
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Theorem 4 (Identification under Unconfoundedness and Strong Monotonicity) Under
Assumptions 1, 2, 4 and 5,

APCEp = E{wP (Xi)Di | Zi = 1} − E{wP (Xi)Di | Zi = 0},
APCEs = E{wS(Xi)Di | Zi = 1} − E{wS(Xi)Di | Zi = 0},

where

wP (x) =
1− eS(x)

E{1− eS(Xi)}
, wS(x) =

eS(x)

E{eS(Xi)}
.

Proof is straightforward and hence omitted. The identification formulas are identical to those in

Theorem 2. However, with Assumption 5, we can simply compute the principal score as eS(x) =

Pr{Yi = 0 | Di = 0,Xi = x}.

3.4 Ordinal Decision

We generalize the above identification results to an ordinal decision. In our application, this extension

is important as the judge’s release decision often is based on different amounts of cash bail or varying

levels of supervision of an arrestee. We first generalize the monotonicity assumption (Assumption 3)

by requiring that a decision with a greater amount of bail is no less likely to make an arrestee engage

in NCA (NVCA or FTA). The assumption may be reasonable, for example, because a greater amount

of bail is expected to imply a greater probability of being held in custody. The assumption could

be violated if arrestees experience financial strain in an effort to post bail, causing them to commit

NCA (NVCA or FTA).

Formally, let Di be an ordinal decision variable where Di = 0 is the least amount of bail, and

Di = 1, . . . , k represents a bail of increasing amount, i.e., Di = k is the largest bail amount. Then,

the monotonicity assumption for an ordinal decision is given by,

Assumption 6 (Monotonicity with Ordinal Decision)

Yi(d1) ≤ Yi(d2) for d1 ≥ d2.

To generalize the principal strata introduced in the binary decision case, we define the decision

with the least amount of bail that prevents an arrestee from committing NCA (NVCA or FTA) as

follows,

Ri =


min{d : Yi(d) = 0} if Yi(k) = 0,

k + 1 if Yi(k) = 1.

We may view Ri as an ordinal measure of risk with a greater value indicating a higher degree of

risk. Note that when Di is binary, Ri takes one of the three values, {0, 1, 2}, representing safe,
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preventable, and risky cases, respectively. Thus, Ri generalizes the principal strata to the ordinal

case under the monotonicity assumption.

Now, we define the principal causal effects in the ordinal decision case. Specifically, for r =

1, . . . , k (excluding the cases with r = 0 and r = k+ 1), we define the average principal causal effect

of the PSA on judge’s decisions as a function of this risk measure,

APCEp(r) = Pr{Di(1) ≥ r | Ri = r} − Pr{Di(0) ≥ r | Ri = r}. (4)

Since the arrestees with Ri = r would not commit NCA (NVCA or FTA) under the decision with

Di ≥ r, APCEp(r) represents a reduction in the proportion of NCA (NVCA or FTA) that is at-

tributable to the PSA provision among the cases with Ri = r. Thus, the expected proportion of

NCA (NVCA or FTA) that would be reduced by the PSA is given by,

k∑
r=1

APCEp(r) · Pr(Ri = r).

This quantity equals the overall ITT effect of the PSA provision on the judge’s decision.

Furthermore, the arrestees with Ri = 0 would never commit a new crime regardless of the judges’

decisions. Therefore, we may be interested in estimating the increase in the proportion of the most

lenient decision for these safest cases. This generalizes the APCEs to the ordinal decision case to the

following quantity,

APCEs = Pr{Di(1) = 0 | Ri = 0} − Pr{Di(0) = 0 | Ri = 0}.

For the cases with Ri = k+1 that would always result in a new criminal activity, a desirable decision

may depend on a number of factors. Note that if we assume the strict monotonicity, i.e., Yi(k) = 0

for all i, then such cases do not exist.

Note that like the APCEs, the APCEp(r) can be expressed as a function of the average principal

causal effect (APCE) for each decision d = 1, 2, . . . , k, i.e.,

APCE(d, r) = Pr{Di(1) = d | Ri = r} − Pr{Di(0) = d | Ri = r}. (5)

In our empirical analysis, we estimate this causal quantity, which has the same identification condi-

tions.

The identification of these principal causal effects requires the knowledge of the distribution of

Ri. Fortunately, under the monotonicity and unconfoundedness assumptions (Assumptions 4 and 6),

this distribution is identifiable conditional on Xi,

er(x) = Pr(Ri = r | Xi = x)
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= Pr(Ri ≥ r | Xi = x)− Pr(Ri ≥ r + 1 | Xi = x)

= Pr{Yi(r − 1) = 1 | Xi = x} − Pr{Yi(r) = 1 | Xi = x}

= Pr{Yi = 1 | Di = r − 1,Xi = x} − Pr{Yi = 1 | Di = r,Xi = x}, for r = 1, . . . , k, (6)

e0(x) = Pr{Yi(0) = 0 | Xi = x} = Pr{Yi = 0 | Di = 0,Xi = x}.

Since er(x) cannot be negative for each r, this yields a set of testable conditions for Assump-

tions 4 and 6 .

Finally, we formally present the identification result for the ordinal decision case,

Theorem 5 (Identification with Ordinal Decision) Under Assumptions 1, 2, 4 and 6, APCEp(r)
is identified by

APCEp(r) = E{wr(Xi)1(Di ≥ r) | Zi = 1} − E{wr(Xi)1(Di ≥ r) | Zi = 0},
APCEs = E{w0(Xi)1(Di = 0) | Zi = 1} − E{w0(Xi)1(Di = 0) | Zi = 0},

where wr(x) = er(x)/E{er(Xi)} and 1() is the indicator function.

Proof is given in Appendix S3.5.

3.5 Sensitivity Analysis

The unconfoundedness assumption, which enables the nonparametric identification of causal effects,

may be violated when researchers do not observe some information used by the judges and predictive

of arrestees’ behavior. As noted in Section 2.2, the length of time the arrestee has lived in the

community may represent an example of such unobserved confounders. Therefore, it is important

to develop a sensitivity analysis for the potential violation of the unconfoundedness assumption

(Assumption 4).

We begin by proposing a nonparametric sensitivity analysis for the ordinal decision under the

monotonicity assumption (Assumption 6). We introduce the following sensitivity parameters, ξd(x)

for d = 0, . . . , k, to characterize the deviation from the unconfoundedness assumption,

ξd(x) =
Pr{Di(1) = d | Yi(d) = 1,Xi = x}
Pr{Di(1) = d | Yi(d) = 0,Xi = x}

,

which is equal to 1 for all d and x when the unconfoundedness assumption holds. The randomization

of treatment assignment implies,

Pr{Di(1) = d | Yi(d) = 0,Xi = x} =
Pr{Yi(d) = 0, Di(1) = 1 | Xi = x}

Pr{Yi(d) = 0 | Xi = x}

=
Pr{Yi = 0, Di = d | Zi = 1,Xi = x}

Pr{Yi(d) = 0 | Xi = x}
,
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Pr{Di(1) = d | Yi(d) = 1,Xi = x} =
Pr{Yi(d) = 1, Di(1) = d | Xi = x}

Pr{Yi(d) = 1 | Xi = x}

=
Pr{Yi = 1, Di = d | Zi = 1,Xi = x}

Pr{Yi(d) = 1 | Xi = x}
.

Therefore, for a given value of ξd(x), we have,

Pr{Yi = 1, Di = d | Zi = 1,Xi = x}
Pr{Yi(d) = 1 | Xi = x}

= ξd(x) · Pr{Yi = 0, Di = d | Zi = 1,Xi = x}
Pr{Yi(d) = 0 | Xi = x}

.

Solving this equation yields,

Pr{Yi(d) = 1 | Xi = x} =
Pr(Yi = 1, Di = d | Zi = 1,Xi = x)

ξ1(x) · Pr(Yi = 0, Di = d | Zi = 1,Xi = x) + Pr(Yi = 1, Di = d | Zi = 1,Xi = x)
.

We can then calculate er(x) for r = 0, . . . , k + 1. By using these results and Theorem 5, we can

identify the APCEp(r) and APCEs with given values of the sensitivity parameters.

Since the above nonparametric sensitivity analysis requires too many sensitivity parameters, we

propose an alternative parametric sensitivity analysis. We consider the following bivariate ordinal

probit model for the observed judge’s decision D and the latent risk measure Ri,

D∗i (z) = βZz + X>i βX + zX>i βZX + εi1, (7)

R∗i = X>i αX + εi2, (8)

where εi1
εi2

 ∼ N
0

0

 ,

1 ρ

ρ 1

 ,

and

Di(z) =



0 D∗(z) ≤ θz1

1 θz1 < D∗i (z) ≤ θz2
...

...

k − 1 θz,k−1 < D∗i (z) ≤ θzk

k θzk < D∗i (z)

, Ri =



0 R∗i ≤ δ0

1 δ0 < R∗i ≤ δ1
...

...

k δk−1 < R∗i ≤ δk

k + 1 δk < R∗i

.

The error terms (εi1, εi2) are assumed to follow a bivariate normal distribution, implying a bivariate

ordinal probit model for the two ordinal variables (Di, Ri). In the literature, Frangakis, Rubin and

Zhou (2002), Barnard et al. (2003), and Forastiere, Mealli and VanderWeele (2016) also model the

distribution of principal strata using the ordinal probit model.
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Under this model, ρ represents a sensitivity parameter since ρ = 0 implies Assumption 4. If the

value of ρ is known, then the other coefficients, i.e., βX , αX and βZ , can be estimated, which in turn

leads to the estimation of the APCEp(r) and APCEs. Because Ri is a latent variable, the estimation

of this model is not straightforward. In our empirical application, we conduct a Bayesian analysis

to estimate the causal effects (see e.g., Hirano et al., 2000; Schwartz, Li and Mealli, 2011; Mattei

et al., 2013; Jiang, Ding and Geng, 2016, for other applications of Bayesian sensitivity analysis).

Appendix S4 presents the details of the Bayesian estimation. We also perform a frequentist analysis,

based on Theorem 2, that does not require an outcome model, assessing the robustness of the results

to the outcome model.

3.6 Fairness

Next, we discuss how the above causal effects relate to the fairness of the judge’s decision. In

particular, Imai and Jiang (2020) introduce the concept of “principal fairness.” The basic idea is

that within each principal strata a fair decision should not depend on protected attributes (race,

gender, etc.). Imai and Jiang (2020) provide a detailed discussion about how principal fairness is

related to the existing definitions of fairness, which are based on the predictive accuracy (see also

Corbett-Davies et al., 2017; Chouldechova and Roth, 2020, and references therein). Although Coston

et al. (2020) consider the potential outcome, they only focus on one potential outcome Yi(0) rather

than the joint potential outcomes (Yi(0), Yi(1)).

Formally, let Ai ∈ A be a protected attribute such as race and gender. We first consider a binary

decision. We say that decisions are fair on average with respect to Ai if it does not depend on the

attribute within each principal stratum, i.e.,

Pr{Di = 1 | Ai, Yi(1) = y1, Yi(0) = y0} = Pr{Di = 1 | Yi(1) = y1, Yi(0) = y0} (9)

for all y1, y0 ∈ {0, 1}. We can generalize this definition to the ordinal case as,

Pr(Di ≥ d | Ai, Ri = r) = Pr(Di ≥ d | Ri = r)

for 1 ≤ d ≤ k and 0 ≤ r ≤ k + 1.

The degree of fairness for principal stratum Ri = r can be measured using the maximal deviation

among the distributions for different groups,

∆r(z) = max
a,a′,d

∣∣Pr{Di(z) ≥ d | Ai = a,Ri = r} − Pr{Di(z) ≥ d | Ai = a′, Ri = r}
∣∣ (10)

for z = 0, 1. By estimating ∆r(z), we can use the experimental data to examine whether or not
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the provision of the PSA improves the fairness of judge’s decisions. Specifically, the PSA provision

improves the fairness of judge’s decisions for the principal stratum r if ∆r(1) ≤ ∆r(0).

3.7 Optimal Decision

The discussion so far has focused on estimating the impacts of algorithmic recommendations on

human decisions. We now show that the experimental data can also be used to derive optimal decision

rules given a certain objective. By comparing human decisions and algorithmic recommendations

with optimal decision rules, we can evaluate their efficacy. In our application, one goal is to prevent as

many NCAs (NVCAs or FTAs) as possible while avoiding unnecessarily harsh initial release decisions.

To achieve this, we must carefully weigh the cost of negative outcomes and that of unnecessarily

harsh decisions. We show how to empirically assess this tradeoff using the experimental data.

Formally, let δ be the judge’s decision based on Xi, which may include the PSA. We consider

a deterministic decision rule, i.e., δ(x) = d if x ∈ Xd where Xd is a non-overlapping partition of

the covariate space X with X =
⋃k
r=0Xr and Xr ∩ Xr′ = ∅. We consider the utility function of the

following general form,

Ui(δ) =


−c0 δ(Xi) < Ri

1 δ(Xi) = Ri

1− c1 δ(Xi) > Ri

,

where c0 and c1 represent the cost of an NCA (NVCA or FTA) and that of an unnecessarily harsh

decision, respectively. Under this setting, preventing an NCA (NVCA or FTA) with the most

lenient decision (δ(Xi) = Ri) yields the utility of one, i.e., Ui(δ) = 1, while we incur the cost c1 for

an unnecessarily harsh decision (δ(Xi) > Ri), leading to the net utility of 1− c1.

The relative magnitude of these two cost parameters, c0 and c1, may depend on the consideration

of various factors including the potential harm to the public and arrestees caused by the negative

outcomes and unnecessarily harsh decisions, respectively. When c0 = c1 = 0, for example, Ui(δ)

reduces to 1{δ(Xi) ≥ Ri}, which is non-zero only if the decision is sufficiently harsh so that it

prevents the negative outcome. The optimal decision under this utility is the most stringent decision,

i.e., δ(Xi) = k, for all cases. If c0 = 2 and c1 = 1, the resulting utility function implies that the cost

of NCA (NVCA or FTA) is twice as large as that of an unnecessarily harsh decision.

We derive the optimal decision rule δ∗ that maximizes the expected utility,

δ∗ = argmax
δ

E{Ui(δ)}.
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For r = 0, . . . , k + 1 and d = 0, . . . , k, we can write

E[1{δ(Xi) = d,Ri = r}] = E{1(Xi ∈ Xd, Ri = r)} = E {1(Xi ∈ Xd) · er(Xi)} .

Therefore, we can express E{Ui(δ)} as

k+1∑
r=0

k∑
d=0

E[1{δ(Xi) = d,Ri = r}]

=

k+1∑
r=0

∑
d≥r

E {1(Xi ∈ Xd) · er(Xi)} − c0
∑
d<r

E {1(Xi ∈ Xd) · er(Xi)} − c1
∑
d>r

E {1(Xi ∈ Xd) · er(Xi)}


=

k∑
d=0

E

1(Xi ∈ Xd)

∑
r≤d

er(Xi)− c0 ·
∑
r>d

er(Xi)− c1 ·
∑
r<d

er(Xi)


 . (11)

This yields the following optimal decision,

δ∗(x) = argmax
d∈{0,...,k}

gd(x) where gd(x) =
∑
r≤d

er(x)− c0 ·
∑
r>d

er(x)− c1 ·
∑
r<d

er(x). (12)

We can use the experimental estimate er(x) to learn about the optimal decision.

Policy makers could derive the optimal decision rule by using the above result and then use

it as the PSA recommendation. However, this may not be useful if the judge decides to follow

the algorithmic recommendation selectively for some cases or ignore it altogether. We may wish

to construct PSA scores that maximize the optimality of the judge’s decision. Unfortunately, the

derivation of such an optimal PSA score is difficult since the PSA scores were not directly randomized

in our experiment. In Appendix S5, we instead consider the optimal provision of the PSA given the

same goal considered above (i.e., prevent as many NCAs (NVCAs or FTAs) as possible with the

minimal amount of bail).

4 Empirical Analysis

In this section, we apply the proposed methodology to the data from the field RCT described in

Section 2.

4.1 Preliminaries

As explained in Section 2.3, we use the ordinal decision variable with three categories — the signature

bond (Di = 0), the bail amount of $1,000 or less (Di = 1), and the bail amount of greater than

$1,000 (Di = 2). Given this ordinal decision, we call the principal strata as safe (Ri = 0), easily

preventable (Ri = 1), preventable (Ri = 2), and risky cases (Ri = 3).
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Figure 3: Estimated Population Proportion of Each Principal Stratum. Each plot represents the
result using one of the three outcome variables (FTA, NCA, and NVCA), where the blue, black, and
red diamonds represent the estimates for safe, easily preventable, and preventable cases, respectively.
These three estimates do not necessarily sum to one because there is an additional, very small,
principal stratum of risky case. The solid vertical lines represent the 95% Bayesian credible intervals.
The results show that a vast majority of cases are safe across subgroups and across different outcomes.
The proportion of safe cases is estimated to be especially high for NVCA.

We fit the Bayesian model defined in equations (7) and (8) with a diffuse prior distribution as

specified in Appendix S4, separately for each of three binary outcome variables — FTA, NCA, and

NVCA. The model incorporates following pre-treatment covariates: gender (male or female), race

(white or non-white), the interaction between gender and race, age, and several indicator variables

regarding the current and past charges. They include the presence of current violent offense, pending

charge (either felony, misdemeanor, or both) at time of offense, felony charge, misdemeanor charge,

prior misdemeanor conviction, prior violent conviction, prior felony conviction, prior sentence to

incarceration, and prior FTA.

We use the Gibbs sampling and run five Markov chains of 100,000 iterations each with random

starting values independently drawn from the prior distribution. Based on the Gelman-Rubin statis-

tic for convergence diagnostics, we retain the second half of each chain and combine them to be

used for our analysis. Appendix S4 presents the computational details including the Gibbs sampling

algorithm we use.

We begin by computing the estimated population proportion of each principal stratum based on

equation (6). Figure 3 presents the results. We find that the overall proportion of safe cases (blue

circles) is estimated to be 68%, whereas those of easily preventable (black triangles) and preventable

(red squares) cases are 5% and 8%, respectively. A similar pattern is observed for FTA and NCA

across different racial and gender groups, while the estimated overall proportion of safe cases is even

higher for NVCA, exceeding 93%.
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Figure 4: Estimated Average Principal Causal Effects (APCE) of PSA Provision on the Judge’s
Decision. Each panel presents the overall and subgroup-specific results for a different outcome
variable. Each column within a panel shows the estimated APCE of PSA provision for safe (blue),
easily preventable (black), and preventable (red) cases. For each of these principal strata, we report
the estimated APCE on the judge’s decision to impose a signature bond (circles), a small cash bail
amount of 1,000 dollars or less (triangles), and a large cash bail amount of greater than 1,000
(squares). The vertical line for each estimate represents the Bayesian 95% credible interval. The
results show that the PSA provision may make the judge’s decision more lenient for female arrestees
regardless of their risk levels. The PSA provision may also encourage the judge to make a harsher
decision for male arrestees with a greater risk level.
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4.2 Average Principal Causal Effects

Figure 4 presents the estimated APCE of the PSA provision on the three ordinal decision categories,

separately for each of the three outcomes and each principal stratum (see equation (5)). The overall

and subgroup-specific results are given for each of the three principal strata — safe (blue), easily

preventable (black), and preventable (red) cases. For a given principal stratum, we present the

estimated APCE on each decision category — signature bond (circle), small cash bond (triangle),

and large cash bond (square). The left column of each panel shows that the PSA provision has little

overall impact on the judge’s decision across three principal strata for FTA and NCA. There is a

suggestive, but inconclusive, evidence that the PSA provision leads to an overall harsher decision

for NVCA among preventable and easily preventable cases.

We also present the estimated APCE for different gender and racial groups in the remaining

columns of each panel. We find potentially suggestive evidence that the PSA provision may make

it more likely for the judge to impose signature bonds (circles) on female arrestees instead of cash

bonds (triangles and squares) across three outcomes. Interestingly, for all outcomes, this pattern

appears to hold for any of the three principal strata, implying that the PSA provision might not help

the judge distinguish different risk types of female arrestees. Our analysis also finds that for NVCA

the PSA provision may lead to a harsher decision for easily preventable and preventable cases among

male arrestees while it has little effect on the safe cases. This suggests that the PSA provision may

help distinguish different risk types among male arrestees, resulting in better decisions. Interestingly,

there is no discernible racial difference in these effects.

In Appendix S2.2, we explore the estimated APCE for different age groups. We find that the

PSA provision may lead to a harsher decision for arrestees of the 26–35 years old group across three

outcomes. This pattern seems to generally hold across all principal strata though for NVCA the

effects are more pronounced for preventable and easily preventable cases. Finally, our analysis yields

suggestive evidence that across all outcomes, the PSA provision may make the judge’s decision more

lenient for the oldest (46 years old or above) group. This appears to be true across all three outcomes

except that for NVCA this effect may exist only for safe cases.

Finally, we conduct two robustness analyses. First, we perform a frequentist analysis that is based

on Theorem 2 and does not assume an outcome model. The results are shown in Appendix S6, and are

largely consistent with those shown here though the estimation uncertainty of the frequentist analysis,

which makes less stringent assumptions than Bayesian analysis, is greater as expected. Second, we

conduct a sensitivity analysis using the methodology described in Section 3.5. In particular, we set
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the value of correlation parameter ρ to 0.05, 0.1, and 0.3, and examine how the estimated APCE

changes. The results in Appendix S7 show that the results appear to be largely consistent across

different values of ρ although the effects for females tend to exhibit a large degree of estimation

uncertainty especially when the correlation is high and particularly for NVCA. This is not surprising

given the small sample size of female arrestees and only a handful of them commit NVCA.

4.3 Gender and Racial Fairness

We now examine the impacts of the PSA provision on gender and racial fairness. Specifically, we

evaluate the principal fairness of the PSA provision as discussed in Section 3.6. We use gender

(female vs. male) and race (white male vs. non-white male) separately as a protected attribute, and

analyze the two subgroups defined by each of the two variables. While the gender analysis is based

on the entire sample, the racial analysis is based on the male sample due to the limited sample size

for females.

Figure 5 presents the results for gender (top panel) and racial (bottom panel) fairness across

the principal strata and separately for each of the three outcomes. Each column within a given

plot presents ∆r(z) defined in equation (10), which represents the maximal subgroup difference in

the judge’s decision probability distribution within the same principal stratum Ri = r under the

provision of PSA z = 1 (no provision z = 0). In this application, the maximal difference always

occurs at d = 1, allowing us to interpret ∆r(z) as the difference in probability of imposing a cash

bond rather than a signature bond. We also present the estimated difference caused by the PSA

provision in the two maximal subgroup differences, i.e., ∆r(1)−∆r(0). If this difference is estimated

to be positive, then the PSA provision reduces the fairness of judge’s decisions by increasing the

maximal subgroup difference.

When the PSA is not provided, the maximal subgroup differences in the judge’s decision prob-

ability ∆r(0) are relatively small but significantly greater than zero in terms of both gender and

race. For example, within each risk category, the judge is more likely to impose a cash bond on male

arrestees than on female arrestees. In addition, it appears that among male arrestees, the judge is

more likely to impose a cash bond on non-whites than on whites even though they belong to the

same risk category. This suggests that when the PSA is not provided, the judges’ decision may be

biased against males and non-whites according to the principal fairness criterion.

We find that the PSA provision might worsen the gender fairness of judge’s decisions. When

the PSA is provided, the maximal gender difference in the judge’s decision probability is on average

greater than that when it is not provided. The effect is particularly large and statistically significant

24



(a) Gender Fairness
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Figure 5: Gender and Racial Fairness of the PSA Recommendation and Judge’s Decisions. Within
each plot, we show three estimates separately for each principal stratum — the maximal subgroup
difference in the judge’s decision probability of imposing a cash bond with the PSA provision (squares;
∆(1)) and without it (triangles; ∆(0)) as well as the difference between them (circles; ∆(1) −
∆(0)). The vertical solid lines represent the 95% Bayesian credible intervals. A positive value of the
difference would imply that the PSA reduces the fairness of the judge’s decisions. For the gender
analysis (top panel), even without the PSA, the judge seems to be more likely to impose a cash bond
on male arrestees when compared to female arrestees with the same risk levels. The PSA provision
appears to worsen this existing bias. For the race analysis (bottom panel), the PSA provision has
little impact on the existing bias of the judge’s decision against non-whites across all outcomes and
risk levels.

for NVCA and for preventable and easily preventable cases. This is consistent with our finding

that especially for NVCA, the PSA provision might make the judge’s decision more lenient for

female arrestees while it leads to a harsher decision for male arrestees among preventable and easily

preventable cases. Thus, the PSA provision appears to reduce gender fairness.

However, the PSA provision does not have a statistically significant impact on the racial fairness

of judges’ decisions among male arrestees. For instance, in the principal stratum of safe cases,

we find that when the PSA is provided, the maximal difference in the judge’s decision probability

(between non-white males and white males) is essentially identical to that when it is not provided.

This suggests that the PSA may not alter the racial bias of judge’s decisions against non-whites.
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(a) The cases whose PSA recommendation is a signature bond
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(b) The cases whose PSA recommendation is a cash bond
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Figure 6: Estimated Proportion of Cases for Which Cash Bond is Optimal. Each column represents
the results based on one of the three outcomes (FTA, NCA, and NVCA). The top (bottom) panel
shows the results for the cases whose PSA recommendation is a signature (cash) bond. In each plot,
the contour lines represent the estimated proportions of cases for which a cash bond is optimal, given
the cost of an unnecessarily harsh decision (c1; y-axis) and that of a negative outcome (c0; x-axis).
A dark grey area represents a greater proportion of such cases. The results show that regardless of
the PSA recommendation, a signature bond is optimal unless the cost of a negative outcome is much
greater than the cost of an unnecessarily harsh decision.

4.4 Optimal Decision

Finally, we empirically investigate the optimal decision as discussed in Section 3.7 by comparing

it with the PSA recommendation under different values of the costs. Given a specific pair of cost

parameters (c0, c1) and the experimental estimate of er(x) for r = 0, . . . , k, we can compute the

optimal decision for each case according to equation (12) and then obtain the estimated proportion

of cases, for which a cash bond (either small or large amount) is optimal. We repeat this process for

a grid of different values for the cost of a negative outcome (c0; FTA, NCA, and NVCA) and that

of an unnecessarily harsh decision (c1).
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The top panel of Figure 6 presents the results for the cases whose PSA recommendation is a

signature bond (FTA score less than or equal to 4, NCA score less than or equal to 4, and NVCA

flag equals to 0). In contrast, the bottom panel of the figure shows the results for the other cases

(i.e., the PSA recommendation is a cash bond). In each plot, a darker grey region represents a

greater proportion. The results suggest that unless the cost of a negative outcome is much larger

than the cost of an unnecessarily harsh decision, imposing a signature bond is the optimal decision

for a vast majority of cases.

We also find that for all three outcomes, a cash bond is optimal for a greater proportion of cases

when the PSA recommendation is indeed a cash bond. However, this difference is small, suggesting

that the PSA recommendation is only mildly informative. Similar results are found even if we

separately examine three PSA scores (see Figure S13 in Appendix S8).

4.5 Comparison between the Judge’s Decisions and PSA Recommendations

Lastly, we compare the judge’s actual decision with the PSA recommendation in terms of the ex-

pected utility given in equation (11). The top panel of Figure 7 represents the results for the

treatment group (i.e., the judge’s decision with PSA), whereas the bottom panel represents those

for the control group (i.e., the judge’s decision without PSA). A darker grey area indicates that the

expected utility for the judge’s decision is estimated to be greater than the PSA recommendation.

Most of these estimates are statistically significant (see Figure S14 for more details). We find that

unless the cost of a negative outcome is much greater than the cost of an unnecessarily harsh de-

cision, the judge’s decision (with or without PSA scores) yields a greater expected utility than the

PSA recommendation. This is especially true for NVCA. In other words, the PSA recommendations

may be unnecessarily more stringent than the judge’s decisions.

5 Concluding Remarks

In today’s data-rich society, many human decisions are guided by algorithmic-recommendations.

While some of these algorithmic-assisted human decisions may be trivial and routine (e.g., online

shopping and movie suggestions), others that are much more consequential include judicial and

medical decision-making. As algorithmic recommendation systems play increasingly important roles

in our lives, we believe that a policy-relevant question is how such systems influence human decisions

and how the biases of algorithmic recommendations interact with those of human decisions. Thus, it

is essential to empirically evaluate the impacts of algorithmic recommendations on human decisions.

In this paper, we present a set of general statistical methods that can be used for the experimental

27



(a) Treatment Group

−0.0
8

−0.0
4

00.0
4

0.0
8

0

1

2

3

0.0 2.5 5.0 7.5 10.0
Cost of FTA (c0)

C
os

t o
f u

nn
ec

es
sa

ril
y 

ha
rs

h 
de

ci
si

on
 (

c 1
) Failure to Appear (FTA)

−0.06

−0.02

0.02
0.06

0

1

2

3

0.0 2.5 5.0 7.5 10.0
Cost of NCA (c0)

New Criminal Activity (NCA)

−0.02

0.02

0.06

0.1

0.14

0

1

2

3

0.0 2.5 5.0 7.5 10.0
Cost of NVCA (c0)

New Violent Criminal Activity (NVCA)

(b) Control Group

−0.1

−0.0
6

−0.0
2

0.0
2

0.0
60.1

0

1

2

3

0.0 2.5 5.0 7.5 10.0
Cost of FTA (c0)

C
os

t o
f u

nn
ec

es
sa

ril
y 

ha
rs

h 
de

ci
si

on
 (

c 1
)

−0.08

−0.04
0

0.04

0.08

0.12

0

1

2

3

0.0 2.5 5.0 7.5 10.0
Cost of NCA (c0)

−0.02

0.02

0.06

0.1

0.14

0.18

0

1

2

3

0.0 2.5 5.0 7.5 10.0
Cost of NVCA (c0)

Figure 7: Estimated Difference in the Expected Utility between the Judge’s Decisions and PSA
Recommendations for the Treatment (top panel) and Control (bottom panel) Group. Each column
represents the results base on one of the three outcomes with a darker region indicating the values of
the costs (the cost of a negative outcome and the cost of an unnecessarily harsh decision) for which
the Judge’s decision yields a higher expected utility (i.e., more optimal) than the corresponding PSA
recommendation. The results show that the judge’s decision is more optimal than the PSA recom-
mendation unless the cost of a negative outcome is much higher than the cost of an unnecessarily
harsh decision. This pattern holds for all outcomes and is unchanged by the provision of PSA.

evaluation of algorithm-assisted human decision making. We applied these methods to the first-

ever randomized controlled trial for assessing the impacts of the PSA provision on judges’ pretrial

decisions. There are several findings that emerge from our analysis. First, we find that the PSA

provision has little overall impacts on the judge’s decisions. Second, we find potentially suggestive

evidence the PSA provision may encourage the judge to make more lenient decisions for female

arrestees regardless of their risk levels while leading to more stringent decisions for males who are

classified as risky. Third, the PSA provision appears to widen the existing gender bias of the judge’s

decisions against male arrestees whereas it does not seem to alter the existing racial bias against
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non-whites among male arrestees. Finally, we find that for a vast majority of cases, the optimal

decision is to impose a signature bond rather than a cash bond unless the cost of a new crime is

much higher than that of a decision that may result in unnecessary incarceration. This suggests that

the PSA recommendations may be harsher than necessary. These results might bring into question

the utilities of using PSA in judicial decision-making.
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Supplementary Appendix

S1 Distribution of Judge’s Decisions given the PSA for Subgroups

S1.1 Female Arrestees
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(b) Control Group
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Figure S1: The Distribution of Judge’s Decisions given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among Female
Arrestees.
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S1.2 Non-white Male Arrestees
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(b) Control Group
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Figure S2: The Distribution of Judge’s Decisions given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among Non-
white Male Arrestees.
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S1.3 White Male Arrestees
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(b) Control Group
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Figure S3: The Distribution of Judge’s Decisions given the Pretrial Public Safety Assessment (PSA)
among the Cases in the Treatment (Top Panel) and Control (Bottom Panel) Groups Among White
Male Arrestees.
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S2 Subgroup Analysis for Age Groups

In this appendix, we conduct the subgroup analysis for different age groups.

S2.1 Age Distribution, Descriptive Statistics, and Average Causal Effects
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Figure S4: The Distribution of Age in the Treatment (Left Panel) and Control (Right Panel) Groups
Among Arrestees.

no PSA PSA

Signature Cash bond Signature Cash bond
bond ≤$1000 >$1000 bond ≤$1000 >$1000 Total (%)

22 or below 135 24 22 136 24 16 357
(7.1) (1.3) (1.2) (7.2) (1.3) (0.8) (18.9)

23 – 28 158 25 23 148 29 28 411
(8.4) (1.3) (1.2) (7.8) (1.5) (1.5) (21.7)

29 – 35 157 40 14 151 33 28 423
(8.3) (2.1) (0.7) (8.0) (1.7) (1.5) (22.3)

36 – 45 142 22 26 133 30 22 375
(7.5) (1.2) (1.4) (7.0) (1.6) (1.2) (19.9)

46 or above 113 21 21 137 14 19 325
(6.0) (1.1) (1.1) (7.2) (0.7) (1.0) (17.1)

Table 2: The Joint Distribution of Treatment Assignment, Decisions, and Age. The table shows the
number of cases in each category with the corresponding percentage in parentheses.

Figure S4 presents the distribution of age for the treatment and control groups. As expected,
the two distribution is similar. We observe that the age distribution is right skewed with many more
young arrestees. Table 2 presents the descriptive statistics for different age groups examined here.
We divide the arrestees into five subgroups with different ranges of age (aged 22 or below, between
23 to 28, between 29 to 35, between 36 to 45, 46 or above). Within each age group, the signature
bond appears to be the dominant decision.
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Figure S5: Estimated Average Causal Effects of PSA Provision on Judge’s Decisions and Outcome
Variables for First Arrest Cases (FTA, NCA, and NVCA). The results are based on the difference-
in-means estimator. The vertical bars represent the 95% confidence intervals. In the left figure, we
report the estimated average causal effect of the PSA provision on the decision to charge a signature
bond (circles), a small cash bail ($1,000 dollars or less; triangles), and a large cash bail (greater
than $1,000; squares). In the right figure, we report the estimated average causal effect of the PSA
provision on the three different outcome variables: FTA (open circles), NCA (open triangles), and
NVCA (open squares).

Figure S5 presents the estimated ITT effects of PSA provision on judge’s decisions (top panel)
and arrestee’s behaviors (bottom panel). We find that the PSA provision has little effect on the
judge’s decisions with the exception of the 29 – 35 years old group and the oldest group. For the 29
– 35 years old group, the PSA appears to lead to a harsher decision while for the 46 or older group
the effect is opposite. As for the effects on arrestee’s behavior, our analysis suggests that the PSA
provision may increase NVCA among female arrestees and the 29 – 35 years old group.
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S2.2 Principal Stratum Proportion and Average Principal Strata Effects
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Figure S6: Estimated Population Proportion of Each Principal Stratum. Each panel represents the
result using three different outcome variables (FTA, NCA, and NVCA). In each column, the blue,
black, and red diamonds represent the estimates for safe, easily preventable, and preventable cases,
respectively. These three estimates do not sum to one because there is an additional principal stratum
of risky cases that represents a group of arrestees who will commit a new FTA (or NCA/NVCA)
regardless of judges’ decisions. The solid vertical lines represent 95% Bayesian credible intervals.

Figure S6 presents the estimated proportion of each principal stratum for different age groups.
We observe that the principal stratum size is similar across age groups with the safe cases being
the most dominant. The proportion of safe cases appears to be greater for older age groups though
the rate of increase is modest. The interpretation of Figure S7 is given in the last paragraph of
Section 4.2.

38



safe

easily

preventable

prevent−

able

−0.1

0.0

0.1

17~22 23~28 29~35 36~45 46~

Failure to Appear (FTA)

−0.1

0.0

0.1

17~22 23~28 29~35 36~45 46~

New Criminal Activity (NCA)

−0.1

0.0

0.1

17~22 23~28 29~35 36~45 46~

signature bond small cash bond large cash bond

New Violent Criminal Activity (NVCA)

Figure S7: Estimated Average Principal Causal Effects (APCE) of the PSA Provision on Judges’
Decision. Each plot presents the age group-specific results for a different outcome variable. Each
column of a plot shows the estimated APCE of the PSA provision for safe (blue), easily preventable
(black), and preventable (red) cases. For each of these principal strata, we report the estimated
APCE on the decision to charge a signature bond (circles), a small cash bail amount of 1,000 dollars
or less (triangles), and a large cash bail amount of greater than 1,000 (squares). The vertical line
for each estimate represents the Bayesian 95% credible interval.
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S3 Proofs of the Theorems

S3.1 Lemmas

To prove the theorems, we need some lemmas.

Lemma S1 Consider two random variables X and Y with finite moments. Let f1(x) and f2(y) be
their density functions. Then, any function g(·)

E{g(X)} = E
{
f1(Y )

f2(Y )
g(Y )

}
.

Proof is straightforward and hence omitted.

Lemma S2 For a binary decision, Assumption 4 implies {Yi(1), Yi(0)}⊥⊥Di | Xi, Zi = z under As-
sumption 3. For a discrete decision, Assumption 4 implies Ri⊥⊥Di | Xi, Zi = z under Assumption 6.

Proof of Lemma S2. For a binary decision, we have

Pr{Yi(1) = 1, Yi(0) = 1 | Di,Xi, Zi = z} = Pr{Yi(1) = 1 | Di,Xi, Zi = z}
= Pr{Yi(1) = 1 | Xi, Zi = z}
= Pr{Yi(1) = 1, Yi(0) = 1 | Xi, Zi = z},

where the first and third equality follow from Assumption 3 and the second equality follows from
Assumption 4. Similarly, we have

Pr{Yi(1) = 0, Yi(0) = 0 | Di,Xi, Zi = z} = Pr{Yi(0) = 0 | Di,Xi, Zi = z}
= Pr{Yi(0) = 0 | Xi, Zi = z}
= Pr{Yi(1) = 0, Yi(0) = 0 | Xi, Zi = z},

where the first and third equality follow from Assumption 3 and the second equality follows from
Assumption 4. As a result, {Yi(1), Yi(0)}⊥⊥Di | Xi, Zi = z because {Yi(1), Yi(0)} takes only three
values.

For a discrete decision Di taking values in {0, . . . , k}, we have

Pr(Ri = r | Di,Xi, Zi = z) = Pr(Ri ≥ r | Di,Xi, Zi = z)− Pr(Ri ≥ r + 1 | Di,Xi, Zi = z)

= Pr(Yi(r − 1) = 1 | Di,Xi, Zi = z)− Pr(Yi(r) = 1 | Di,Xi, Zi = z)

= Pr(Yi(r − 1) = 1 | Xi, Zi = z)− Pr(Yi(r) = 1 | Xi, Zi = z)

= Pr(Ri ≥ r | Xi, Zi = z)− Pr(Ri ≥ r + 1 | Xi, Zi = z)

= Pr(Ri = r | Di,Xi, Zi = z),

where the second and the fourth equality follow from the definition of Ri and the third equality
follows from Assumption 4. As a result, Ri⊥⊥Di | Xi, Zi = z. �

S3.2 Proof of Theorem 1

First, Assumption 3 implies,

Pr{Yi(0) = 0, Yi(1) = 0} = Pr{Yi(0) = 0}, Pr{Yi(0) = 1, Yi(1) = 1} = Pr{Yi(1) = 1},
Pr{Yi(0) = 1, Yi(1) = 0} = 1− Pr{Yi(0) = 0} − Pr{Yi(1) = 1}.
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Second, we have

Pr{Di(z) = 1, Yi(0) = 0, Yi(1) = 0}
= Pr{Yi(0) = 0, Yi(1) = 0} − Pr{Di(z) = 0, Yi(0) = 0, Yi(1) = 0}
= Pr{Yi(0) = 0} − Pr{Di(z) = 0, Yi(0) = 0}
= Pr{Yi(0) = 0} − Pr{Di(z) = 0, Yi(Di(z)) = 0 | Zi = z}
= Pr{Yi(0) = 0} − Pr(Di = 0, Yi = 0 | Zi = z),

where the second equality follows from Assumption 3 and the third equality follows from Assump-
tion 1. Similarly, we can obtain

Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 1} = Pr{Di(z) = 1, Yi(1) = 1}
= Pr{Di(z) = 1, Yi(Di(z)) = 1 | Zi = z}
= Pr(Di = 1, Yi = 1 | Zi = z).

Therefore,

Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 0}
= pr{Di(z) = 1} − Pr{Di(z) = 1, Yi(0) = 0, Yi(1) = 0} − Pr{Di(z) = 1, Yi(0) = 1, Yi(1) = 1}
= pr{Di = 1 | Zi = z} − Pr{Yi(0) = 0}+ Pr(Di = 0, Yi = 0 | Zi = z)− Pr(Di = 1, Yi = 1 | Zi = z)

= Pr(Yi = 0 | Zi = z)− Pr{Yi(0) = 0}.

Finally, we have,

APCEp =
Pr{Di(1) = 1, Yi(0) = 1, Yi(1) = 0} − Pr{Di(0) = 1, Yi(0) = 1, Yi(1) = 0}

Pr{Yi(0) = 1, Yi(1) = 0}

=
Pr(Yi = 1 | Zi = 0)− Pr(Yi = 1 | Zi = 1)

Pr{Yi(0) = 1} − Pr{Yi(1) = 1}
,

APCEr =
Pr{Di(1) = 1, Yi(0) = 1, Yi(1) = 1} − Pr{Di(0) = 1, Yi(0) = 1, Yi(1) = 1}

Pr{Yi(0) = 1, Yi(1) = 1}

=
Pr(Di = 1, Yi = 1 | Zi = 1)− Pr(Di = 1, Yi = 1 | Zi = 0)

Pr{Yi(1) = 1}
,

and

APCEs =
Pr{Di(1) = 1, Yi(0) = 0, Yi(1) = 0} − Pr{Di(0) = 1, Yi(0) = 0, Yi(1) = 0}

Pr{Yi(0) = 0}

=
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

Pr{Yi(0) = 0}
.

�

S3.3 Proof of Theorem 2

Assumption 4 and Lemma S2 imply,

E{Di(z) | Yi(1) = y1, Yi(0) = y0} = E [E{Di(z) | Xi, Yi(1) = y1, Yi(0) = y0} | Yi(1) = y1, Yi(0) = y0]

= E [E{Di(z) | Xi} | Yi(1) = y1, Yi(0) = y0] .
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Based on Lemma S1,

E [E{Di(z) | Xi} | Yi(1) = y1, Yi(0) = y0]

= E
[

Pr{Xi | Yi(1) = y1, Yi(0) = y0}
Pr(Xi)

E{Di(z) | Xi}
]

= E

(
E

[
Pr{Xi | Yi(1) = y1, Yi(0) = y0}

Pr(Xi)
Di(z)

∣∣∣∣∣Xi

])

= E

(
E

[
Pr{Yi(1) = y1, Yi(0) = y0 | Xi}

Pr{Yi(1) = y1, Yi(0) = y0}
Di(z)

∣∣∣∣∣Xi

])

= E
[

Pr{Yi(1) = y1, Yi(0) = y0 | Xi}
Pr{Yi(1) = y1, Yi(0) = y0}

Di(z)

]
= E

[
Pr{Yi(1) = y1, Yi(0) = y0 | Xi}

Pr{Yi(1) = y1, Yi(0) = y0}
Di

∣∣∣∣∣Zi = z

]
, (S1)

where the last equality follows from Assumption 1. We can then obtain the expressions for APCEp,
APCEr and APCEs by choosing different values of y1 and y0 in (S1). �

S3.4 Proof of Theorem 3

Assumption 1 implies,

Pr{Di(z) = d, Yi(d) = y} = Pr{Di(z) = d, Yi(Di(z)) = y | Zi = z} = Pr(Di = d, Yi = y | Zi = z).

Therefore,

Pr{Di(z) = 1 | Yi(0) = y} =
Pr{Di(z) = 1, Yi(0) = y}

Pr{Yi(0) = y}

=
Pr{Yi(0) = y} − Pr{Di(z) = 0, Yi(0) = y}

Pr{Yi(0) = y}

=
Pr{Yi(0) = y} − Pr(Di = 0, Yi = y | Zi = z)

Pr{Yi(0) = y}

As a result, we have

APCEp =
Pr(Di = 0, Yi = 1 | Zi = 0)− Pr(Di = 0, Yi = 1 | Zi = 1)

Pr{Yi(0) = 1}
,

APCEs =
Pr(Di = 0, Yi = 0 | Zi = 0)− Pr(Di = 0, Yi = 0 | Zi = 1)

Pr{Yi(0) = 0}
.

�

S3.5 Proof of Theorem 5

Using the law of total expectation, we have

E[1{Di(z) ≥ r} | Ri = r] = E(E[1{Di(z) ≥ r} | Xi, Ri = r] | Ri = r)

= E(E[1{Di(z) ≥ r} | Xi] | Ri = r)

= E
(

Pr(Xi | Ri = r)

Pr(Xi)
E[1{Di(z) ≥ r} | Xi]

)
= E

(
Pr(Ri = r | Xi)

Pr(Ri = r)
E[1{Di(z) ≥ r} | Xi]

)
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= E
[

Pr(Ri = r | Xi)

Pr(Ri = r)
1{Di(z) ≥ r}

]
= E

[
Pr(Ri = r | Xi)

Pr(Ri = r)
1{Di ≥ r} | Zi = z

]
,

where the second equality follows from Assumption 4 and Lemma S2, and the last equality follows
from Assumption 1. Thus,

APCEp(r) = E{wr(Xi)1(Di ≥ r) | Zi = 1} − E{wr(Xi)1(Di ≥ r) | Zi = 0}.

We can prove the expression for APCEs similarly. �

S4 Details of the Bayesian Estimation

We only consider the algorithm for sensitivity analysis with ordinal decision since the computation
of the original analysis is straightforward by setting the sensitivity parameters to zero. Consider the
model given in equations (7) and (8). We can write equation (7) in terms of the observed data as,

D∗i = βZZi + X>i βX + ZiX
>
i βZX + εi1, (S2)

where

Di =



0 D∗ ≤ θZi,1

1 θZi,1 < D∗i ≤ θZi,2

...
...

k − 1 θZi,k−1 < D∗i ≤ θZi,k

k θZi,k < D∗i

.

We then consider equation (8). For r = 0, . . . , k, because Ri ≥ r + 1 is equivalent to Yi(r) = 1, we
have

Pr{Y (r) = 1} = Pr(R∗i > δr) = Pr(X>i αX + εi2 > δr) = Pr(−δr + X>i αX + εi2 > 0).

Therefore, we can introduce a latent variable Y ∗(r), and write

Y ∗i (r) = −δr + X>i αX + εi2, (S3)

where Yi(r) = 1 if Y ∗i (r) > 0 and Yi(r) = 0 if Y ∗i (r) ≤ 0. We can further write (S3) in terms of the
observed data as

Y ∗i = −
k∑
r=0

δr1(Di = r) + X>i αX + εi2, (S4)

where Yi = 1 if Y ∗i > 0 and Yi = 0 if Y ∗i ≤ 0.
Combining (S2) and (S4), we have

D∗i = βZZi + X>i βX + ZiX
>
i βZX + εi1,

Y ∗i = −
k∑
d=0

δd1(Di = d) + X>i αX + εi2,
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where (
εi1
εi2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

and

Di =



0 D∗ ≤ θZi,1

1 θZi,1 < D∗i ≤ θZi,2

...
...

k − 1 θZi,k−1 < D∗i ≤ θZi,k

k θZi,k < D∗i

, Yi =

{
0 Y ∗i ≤ 0

1 Y ∗i > 0

with δd ≤ δd′ for d ≤ d′.
We choose multivariate normal priors for the regression coefficients, (βZ , β

>
X , β

>
ZX) ∼N2p+1(0,ΣD)

and αX ∼ Np(0,ΣR). We choose the priors for θ and δ in the following manner. We first choose
a normal prior for θz1 and δ0, θz1 ∼ N(0, σ20) and δ0 ∼ N(0, σ20) for z = 0, 1. We then choose
truncated normal priors for other parameters, θzj ∼ N(0, σ20)1(θzj ≥ θz,j−1) for j = 2, . . . , k and
δl ∼ N(0, σ20)1(δl ≥ δl−1) for l = 1, . . . , k. In this way, we guarantee that θ’s and δ’s are increasing.
In our empirical analysis, we choose ΣD = 0.01 · I2p+1, ΣD = 0.01 · Ip, and σ0 = 10

Treating Y ∗i and D∗i as missing data, we can write the complete-data likelihood as

L(θ, β, δ, α)

=
n∏
i=1

Li(θ, β, δ, α)

∝
n∏
i=1

exp

− 1

2(1− ρ2)

(D∗ −X>i βX − βZZi − ZiX>i βZX)2 +

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗ −X>i βX − βZZi)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
.

Imputation Step. We first impute the missing data given the observed data and parameters.
Using R package tmvtnorm, we can jointly sample Y ∗i and D∗i . Given (Di, Yi, Zi,X

>
i , θ, β, α, δ),

(D∗i , Y
∗
i ) follows a truncated bivariate normal distribution whose means are given by X>i βX+βZZi+

ZiX
>
i βZX and −

∑k
d=0 δd1(Di = d) + X>i αX , and whose covariance matrix has unit variances and

correlation ρ where D∗ is truncated within interval [θzd, θz,d+1] if Zi = z and Di = d (we define
θ0 = −∞ and θk+1 =∞) and Y ∗i is truncated within (−∞, 0) if Yi = 0 and [1,∞) if Yi = 1.

Posterior Sampling Step. The posterior distribution is proportional to

n∏
i=1

exp

− 1

2(1− ρ2)

(D∗ −X>i βX − βZZi − ZiX>i βZX)2 +

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗ −X>i βX − βZZi − ZiX>i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])

· exp

{
−

(βZ , β
>
X , β

>
ZX)Σ−1D (βZ , β

>
X , β

>
ZX)>

2

}
· exp

(
−
α>XΣ−1R αX

2

)
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· exp

(
− θ

2
11

2σ20

)
exp

(
− δ20

2σ20

) k∏
j=2

{
exp

(
−
θ21j
2σ20

)
1(θ1j ≥ θ1,j−1)

}
k∏
l=1

{
exp

(
−
δ2l

2σ20

)
1(δl ≥ δl−1)

}

· exp

(
− θ

2
01

2σ20

) k∏
j=2

{
exp

(
−
θ20j
2σ20

)
1(θ0j ≥ θ0,j−1)

}
.

We first sample (βZ , β
>
X , β

>
ZX). From the posterior distribution, we have

f(βZ , β
>
X , β

>
ZX | ·)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
(D∗i −X>i βX − βZZi − ZiX

>
i βZX)2

−2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
· exp

{
− (βZ , β

>
X , β

>
ZX)>Σ−1

D (βZ , β
>
X , β

>
ZX)

2

}

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
(βZ , β

>
X , β

>
ZX)(Zi,X

>
i , ZiX

>
i )
>(Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)> − 2D∗i (Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)>

+2ρ

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}
(Zi,X

>
i , ZiX

>
i )(βZ , β

>
X , β

>
ZX)>

])
· exp

{
− (βZ , β

>
X , β

>
ZX)>Σ−1

D (βZ , β
>
X , β

>
ZX)

2

}
.

Therefore, we can sample

(βZ , β
>
X , β

>
ZX)> | · ∼Np+1(µ̂D, Σ̂D),

where

Σ̂D =

{
1

1− ρ2
n∑
i=1

(Zi,X
>
i , ZiX

>
i )>(Zi,X

>
i , ZiX

>
i ) + Σ−1D

}−1
,

µ̂D = Σ̂D

(
1

1− ρ2
n∑
i=1

(Zi,X
>
i , ZiX

>
i )>

[
D∗i − ρ

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
.

We then consider sampling αX . We have

f(αX | ·)

∝
n∏

i=1

exp

− 1

2(1− ρ2)

{Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}2

−2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i +

k∑
d=0

δd1(Di = d)−X>i αX

}])
· exp

(
−α
>
XΣ−1

R αX

2

)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
α>XX>i XiαX − 2

{
Y ∗i +

k∑
d=0

δd1(Di = d)

}
XiαX + 2ρ(D∗i −X>i βX − βZZi − ZiX

>
i βZX)XiαX

])

· exp
(
−α
>
XΣ−1

R αX

2

)
.

Therefore, we can sample

αX | · ∼Np(µ̂R, Σ̂R),

where

Σ̂R =

{
1

1− ρ2
n∑
i=1

X>i Xi + Σ−1R

}−1
,
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µ̂R = Σ̂D

(
1

1− ρ2
n∑
i=1

Xi

[{
Y ∗i +

k∑
d=0

δd1(Di = d)

}
− ρ(D∗i −X>i βX − βZZi − ZiX>i βZX)

])
.

To sample δ’s, we write
∑k

d=0 δd1(Di = d) = δ0 +
∑k

d=1(δd − δd−1)1(Di ≥ d) and denote
Wi = (1,1(Di ≥ 1), . . . ,1(Di ≥ k)) and δ = (δ0, δ1 − δ0, . . . , δk − δk−1). Thus, we have

f(δ | ·)

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[{
Y ∗i +Wiδ −X>i αX

}2

− 2ρ(D∗i −X>i βX − βZZi − ZiX
>
i βZX)

{
Y ∗i +Wiδ −X>i αX

}])

· exp
(
− δ20
2σ2

0

) k∏
d=1

{
exp

(
− δ2l
2σ2

0

)
1(δd − δd−1 ≥ 0)

}

∝
n∏

i=1

exp

(
− 1

2(1− ρ2)

[
δ>W>

i Wiδ + 2
(
Y ∗i −X>i αX

)
Wiδ − 2ρ(D∗i −X>i βX − βZZi − ZiX

>
i βZX)Wiδ

])

· exp
(
− δ20
2σ2

0

) k∏
d=1

{
exp

(
− δ2l
2σ2

0

)
1(δd − δd−1 ≥ 0)

}
.

Therefore, we can draw from a truncated normal distribution with mean and covariance matrix

Σ̂δ =

{
1

1− ρ2
n∑
i=1

W>
i Wi + σ−20

}−1
,

µ̂δ = Σ̂D

[
1

1− ρ2
n∑
i=1

W>
i

{
ρ(D∗i −X>i βX − βZZi − ZiX>i βZX)−

(
Y ∗i −X>i αX

)}]
,

where the 2-th to (k + 1)-th element is truncated within interval [0,∞). We can then transform δ
to obtain (δ0, δ1, . . . , δk).

Finally, we sample

θz1 | · ∼ TN(0, σ20; max
i:Zi=z,Di=0

D∗i , min
i:Zi=z,Di=1

(D∗i , θ2)).

We then sample

θzj | · ∼ TN(0, σ20; max
i:Zi=z,Di=j−1

(D∗i , θj−1), min
i:Zi=z,Di=j

(D∗i , θj+1))

for j = 2, . . . , k − 1, and

θzk | · ∼ TN(0, σ20; max
i:Zi=z,Di=k−1

(D∗i , θk−1), min
i:Zi=z,Di=k

D∗i ).

The MCMC gives the posterior distributions of the parameters and therefore we can obtain
the posterior distributions of Pr(Di | Ri,Xi = x, Zi = z) and Pr(Ri | Xi = x). As a result, for
r = 1, . . . , k, we have

APCEp(r) = Pr{Di(1) ≥ r | Ri = r} − Pr{Di(0) ≥ r | Ri = r}

=
E {Pr(Di(1) ≥ r,Ri = r | Xi)}

E{Pr(Ri = r | Xi)}
− E {Pr(Di(0) ≥ r,Ri = r | Xi)}

E{Pr(Ri = r | Xi)}
,

APCEs = Pr{Di(1) = 0 | Ri = 0} − Pr{Di(0) = 0 | Ri = 0}

=
E {Pr(Di(1) = 0, Ri = 0 | Xi)}

E{Pr(Ri = 0 | Xi)}
− E {Pr(Di(0) = 0, Ri = 0 | Xi)}

E{Pr(Ri = 0 | Xi)}
.

We can calculate the conditional probabilities Pr{Di(z), Ri | Xi} and Pr(Ri | Xi) based on the
posterior sample of the coefficients, and then replace the expectation with the empirical average to
obtain the estimates.
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S5 Optimal PSA Provision

In this appendix, we consider the optimal PSA provision rule and conduct an empirical analysis.
Let ξ be a PSA provision rule, i.e., ξ(x) = 1 (the PSA is provided) if x ∈ B1 and ξ(x) = 0 (the
PSA is not provided) if x ∈ B0, where X = B0

⋃
B1 and B0 ∩ B1 = ∅. The judges will make their

decisions based on the PSA and other available information included in Xi = x. To consider the
influence of the PSA on judges’ decision, we define δi1 the potential decision rule of case i if the
judge received the PSA and δi0 if not. Thus, δiz(x) = d if x ∈ Xi,zd where Xi,zd is a partition of the

covariate space with X =
⋃k
d=0Xi,zd and Xi,zd ∩Xi,zd′ = ∅ for z = 0, 1. Although we allow the judge

to make a different decision even if the observed case characteristics Xi are identical, we assume that
the judges’ decisions are identically distributed given the observed case characteristics and the PSA
provision. That is, we assume Pr{δiz(x) = d} = Pr{δi′z(x) = d} for fixed x, z and i 6= i′, where the
probability is taken with respect to the super population of all cases.

Given this setup, we derive the optimal PSA provision rule. As before, we consider the 0–1 utility
Ui(ξ) = 1{δi,ξ(Xi)(Xi) = Ri}. This utility equals one, if the judge makes the most lenient decision to
prevent an arrestee from engaging in NCA (NVCA or FTA), and equals zero otherwise. As before,
we begin by rewriting the expected utility in the following manner,

E{Ui(ξ)} = E
[
1{Ri = δi,ξ(Xi)(Xi)}

]
=

k∑
r=0

E
[
1{Ri = r, δi,ξ(Xi)(Xi) = r}

]
=

k∑
r=0

1∑
z=0

E[1{Ri = r, δiz(Xi) = r,Xi ∈ Bz}].

Under the unconfoundedness assumption, we can write,

E[1{Ri = r, δiz(Xi) = r,Xi ∈ Bz}] = E[Pr(Ri = r | Xi) · Pr{δiz(Xi) = r | Xi} · 1{Xi ∈ Bz}]
= E[er(Xi) · Pr{δiz(Xi) = r} · 1{Xi ∈ Bz}].

Because in the experiment, the provision of PSA is randomized, we can estimate Pr{δiz(Xi) =
r} = Pr(Di = r | Zi = z,Xi) from the data. Therefore, we obtain

E{Ui(ξ)} =
∑
z=0,1

E

([
k∑
r=0

er(Xi) · Pr(Di = r | Zi = z,Xi)

]
· 1{Xi ∈ Bz}

)
.

Then, the optimal PSA provision rule is,

ξ(x) = argmax
z=0,1

hz(x) where hz(x) =
k∑
r=0

er(x) · Pr(Di = r | Zi = z,Xi). (S5)

Thus, we can use the experimental data to derive the optimal PSA provision rule.
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S6 Frequentist Analysis

In this appendix, we implement frequentist analysis and present the results. We fit the model defined
in equation (S4) with probit regression. Recall that for r = 0, . . . , k, Ri ≥ r + 1 is equivalent to
Yi(r) = 1. Hence, we can estimate the conditional probabilities er(Xi) for each r = 0, . . . , k based on
the estimates of the regression coefficients. We estimate APCEp(r) and APCEs using Hajek estimator
as follows,

ÂPCEp(r) =

∑
i ŵr(Xi)1(Di ≥ 1)1(Zi = 1)∑

i ŵr(Xi)1(Zi = 1)
−
∑

i ŵr(Xi)1(Di ≥ 1)1(Zi = 0)∑
i ŵr(Xi)1(Zi = 0)

,

ÂPCEs =

∑
i ŵ0(Xi)1(Di = 0)1(Zi = 1)∑

i ŵ0(Xi)1(Zi = 1)
−
∑

i ŵ0(Xi)1(Di = 0)1(Zi = 0)∑
i ŵ0(Xi)1(Zi = 0)

,

where ŵr(x) = êr(x)/{ 1n
∑

i êr(Xi)}. We use bootstrap to compute the 95% confidence interval.
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Figure S8: Estimated Average Principal Causal Effects (APCE) of PSA Provision on Judge’s Decision
based on Frequentist Analysis. Each plot presents the overall and subgroup-specific results for a
different outcome variable. Each column of a plot shows the estimated APCE of the PSA provision
for safe (blue), easily preventable (black), and preventable (red) cases. For each of these principal
strata, we report the estimated APCE on the decision to charge a signature bond (circles), a small
cash bail amount of 1,000 dollars or less (triangles), and a large cash bail amount of greater than
1,000 (squares). The vertical line for each estimate represents the 95% confidence interval.
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Figure S9: Estimated Average Principal Causal Effects (APCE) of PSA Provision on Judge’s Decision
based on Frequentist Analysis. Each plot presents the age group-specific results for a different
outcome variable. Each column of a plot shows the estimated APCE of the PSA provision for safe
(blue), easily preventable (black), and preventable (red) cases. For each of these principal strata,
we report the estimated APCE on the decision to charge a signature bond (circles), a small cash
bail amount of 1,000 dollars or less (triangles), and a large cash bail amount of greater than 1,000
(squares). The vertical line for each estimate represents the 95% confidence interval.

Figures S8 presents the estimated APCE of the PSA provision on the three ordinal decision
categories, separately for FTA and NCA within each principal stratum. The results for NVCA are
not presented due to the fact that the number of events is too small for an informative subgroup
analysis. The results are largely consistent with those of the Bayesian analysis presented in the main
text. Figure S9 presents the results for each age group similar to the one in Appendix S2.
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S7 Sensitivity Analysis
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Figure S10: Estimated Average Principal Causal Effects (APCE) of PSA Provision on Judge’s De-
cision with ρ = 0.05. Each plot presents the overall and subgroup-specific results for a different
outcome variable. Each column of a plot shows the estimated APCE of the PSA provision for safe
(blue), easily preventable (black), and preventable (red) cases. For each of these principal strata,
we report the estimated APCE on the decision to charge a signature bond (circles), a small cash
bail amount of 1,000 dollars or less (triangles), and a large cash bail amount of greater than 1,000
(squares). The vertical line for each estimate represents the Bayesian 95% credible interval.
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Figure S11: Estimated Average Principal Causal Effects (APCE) of PSA Provision on Judge’s Deci-
sion with ρ = 0.1. Each plot presents the overall and subgroup-specific results for a different outcome
variable. Each column of a plot shows the estimated APCE of the PSA provision for safe (blue),
easily preventable (black), and preventable (red) cases. For each of these principal strata, we report
the estimated APCE on the decision to charge a signature bond (circles), a small cash bail amount
of 1,000 dollars or less (triangles), and a large cash bail amount of greater than 1,000 (squares). The
vertical line for each estimate represents the Bayesian 95% credible interval.
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Figure S12: Estimated Average Principal Causal Effects (APCE) of PSA Provision on Judge’s Deci-
sion with ρ = 0.3. Each plot presents the overall and subgroup-specific results for a different outcome
variable. Each column of a plot shows the estimated APCE of the PSA provision for safe (blue),
easily preventable (black), and preventable (red) cases. For each of these principal strata, we report
the estimated APCE on the decision to charge a signature bond (circles), a small cash bail amount
of 1,000 dollars or less (triangles), and a large cash bail amount of greater than 1,000 (squares). The
vertical line for each estimate represents the Bayesian 95% credible interval.
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S8 Additional Results for Optimal Decision

(a) The cases whose PSA recommendation is a signature bond
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(b) The cases whose PSA recommendation is a cash bond
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Figure S13: Estimated Proportion of Cases for Which Cash Bond is Optimal. Each column represents
the results based on one of the three outcomes (FTA, NCA, and NVCA). The top (bottom) panel
shows the results for the cases whose PSA recommendation is a signature (cash) bond. Unlike
Figure 6, which uses the combined PSA recommendation, the results are based on the separate
PSA recommendation for each outcome. In each plot, the contour lines represents the estimated
proportion of cases, for which a cash bond is optimal, given the cost of an unnecessarily harsh decision
(y-axis) and that of a negative outcome (x-axis). A grey area represents a greater proportion of such
cases.
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S9 Additional Results for Comparison between the Judge’s Deci-
sions and PSA Recommendation

(a) Treatment Group
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(b) Control Group

Cost of unnecessarily

harsh decision (c1) = 2
Cost of unnecessarily

harsh decision (c1) = 3

Cost of unnecessarily

harsh decision (c1) = 0
Cost of unnecessarily

harsh decision (c1) = 1

0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

−0.2

−0.1

0.0

0.1

−0.2

−0.1

0.0

0.1

Cost of FTA (c0)

D
iff

er
en

ce
 in

 th
e 

E
xp

ec
te

d 
U

til
ity

Failure to Appear (FTA)

Cost of unnecessarily

harsh decision (c1) = 2
Cost of unnecessarily

harsh decision (c1) = 3

Cost of unnecessarily

harsh decision (c1) = 0
Cost of unnecessarily

harsh decision (c1) = 1

0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

−0.2

−0.1

0.0

0.1

−0.2

−0.1

0.0

0.1

Cost of NCA (c0)

D
iff

er
en

ce
 in

 th
e 

E
xp

ec
te

d 
U

til
ity

New Criminal Activity (NCA)

Cost of unnecessarily

harsh decision (c1) = 2
Cost of unnecessarily

harsh decision (c1) = 3

Cost of unnecessarily

harsh decision (c1) = 0
Cost of unnecessarily

harsh decision (c1) = 1

0 1 2 3 4 5 6 7 8 910 0 1 2 3 4 5 6 7 8 910

0.0

0.1

0.2

0.0

0.1

0.2

Cost of NVCA (c0)

D
iff

er
en

ce
 in

 th
e 

E
xp

ec
te

d 
U

til
ity

New Violent Criminal Activity (NVCA)

Figure S14: Estimated Difference in the Expected Utility under Selected Values of Cost Parameters
between the Judge’s Decisions and PSA Recommendations for the Treatment (top row) and Control
(bottom row) Group. Each column represents the results base on one of the three outcomes, given
the cost of an unnecessarily harsh decision (c1; each panel) and that of a negative outcome (c0;
x-axis). A positive value implies that the Judge’s decision yields a higher expected utility (i.e.,
more optimal) than the corresponding PSA recommendation. The vertical line for each estimate
represents the Bayesian 95% credible interval.
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