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ABSTRACT

Two heads are better than one, and the many are smarter
than the few. Integrating knowledge from multiple sources
has shown to increase retrieval and classification accu-
racy in many domains. The recent explosion of crowd-
sourced information, such as on websites hosting chords
and tabs for popular songs, calls for sophisticated algo-
rithms for data-driven quality assessment and data integra-
tion to create better, and more reliable data. In this pa-
per, we propose to integrate the heterogeneous output of
multiple automatic chord extraction algorithms using data
fusion. First we show that data fusion creates significantly
better chord label sequences from multiple sources, outper-
forming its source material, majority voting and random
source integration. Second, we show that data fusion is
capable of assessing the quality of sources with high pre-
cision from source agreement, without any ground-truth
knowledge. Our study contributes to a growing body of
work showing the benefits of integrating knowledge from
multiple sources in an advanced way.

1. INTRODUCTION AND RELATED WORK

With the rapid growth and expansion of online sources
containing user-generated content, a large amount of con-
flicting data can be found in many domains. For exam-
ple, different encyclopedie@ can provide conflicting infor-
mation on the same subject, and different websites can
provide conflicting departure times for public transporta-
tion. A typical example in the music domain is provided
by websites offering data that allows for playing along with
popular songs, such as tabs or chords. These websites of-
ten provide multiple, conflicting chord label sequences for
the same song. The availability of these large amounts
of data poses the interesting problem of how to combine
the knowledge from different sources to obtain better, and
more reliable data. In this research, we address the prob-
lem of finding the most appropriate chord label sequence
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for a piece out of conflicting chord label sequences. Be-
cause the correctness of chord labels is hard to define (see
e.g. [26]), we define “appropriate” in the context of this
research as agreeing with a ground truth. An example of
another evaluation context could be user satisfaction.

A pivotal problem for integrating data from different
sources is determining which source is more trustworthy.
Assessing the trustworthiness of a source from its data is a
non-trivial problem. Web sources often supply an external
quality assessment of the data they provide, for example
through user ratings (e.g. three or five stars), or popularity
measurements such as search engine page rankings. Un-
fortunately, Macrae et al. have shown in [18] that no cor-
relation was found with the quality of tabs and user ratings
or search engine page ranks. They propose that a better
way to assess source quality is to use features such as the
agreement (concurrency) between the data. Naive meth-
ods of assessing source agreement are often based on the
assumption that the value provided by the majority of the
sources is the correct one. For example, [1] integrates mul-
tiple symbolic music sequences that originate from differ-
ent optical music recognition (OMR) algorithms by picking
the symbol with the absolute majority at every position in
the sequences. It was found that OMR may be improved us-
ing naive source agreement measures, but that substantial
improvements may need more elaborate methods.

Improving results by combining the power of multi-
ple algorithms is an active research area in the music do-
main, whether it is integrating the output of similar algo-
rithms [28], or the integration of the output of different
algorithms [15], such as the integration of features into a
single feature vector to combine the strengths of multiple
feature extractors [12, 19, 20]. Nevertheless, none of these
deal with the integration and quality assessment of hetero-
geneous categorical data provided by different sources.

Recent advancements in data science have resulted in
sophisticated data integration techniques falling under the
umbrella term data fusion, in which the notion of source
agreement plays a central role. We show that data fusion
can achieve a more accurate integration than naive methods
by estimating the trustworthiness of a source, compared to
the more naive approach of just looking at which value is
the most common among sources. To our knowledge no
research into data fusion exists in the music domain. Re-
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search in other domains has shown that data fusion is ca-
pable of assessing correct values with high precision, and
significantly outperforms other integration methods [7,25].

In this research, we apply data fusion to the problem
of finding the most appropriate chord label sequence for a
piece by integrating heterogeneous chord label sequences.
We use a method inspired by the ACCUCOPY model that
was introduced by Dong et al. in [7, 8] to integrate con-
flicting databases. Instead of databases, we propose to in-
tegrate chord label sequences. With the growing amount
of crowd-sourced chord label sequences online, integration
and quality assessment of chord label sequences are impor-
tant for a number of reasons. First, finding the most appro-
priate chord labels from a large amount of possibly noisy
sources by hand is a very cumbersome process. An au-
tomated process combining the shared knowledge among
sources solves this problem by offering a high quality in-
tegration. Second, to be able to rank and offer high quality
data to their users, websites offering conflicting chord la-
bel data need a good way to separate the wheat from the
chaff. Nevertheless, as was argued above, both integration
and quality assessment have shown to be hard problems.

To measure the quality of chord label sequence inte-
gration, we propose to integrate the outputs of different
MIREX Audio Chord Estimation (ACE) algorithms. We
chose this data, because it offers us the most reliable
ground truth information, and detailed analysis of the algo-
rithms to make a high quality assessment of the integrated
output. Our hypothesis is that through data fusion, we can
create a chord label sequence that is significantly better in
terms of comparison to a ground truth than the individual
estimations. Secondly, we hypothesize that the results of
integrated chord label sequences have a lower standard de-
viation on their quality, hence are more reliable.

Contribution. The contribution of this paper is three-
fold. First, we show the first application of data fusion in
the domain of symbolic music. In doing so, we address
the question how heterogeneous chord label sequences de-
scribing a single piece of music can be combined into an
improved chord label sequence. We show that data fusion
outperforms majority voting and random picking of source
values. Second, we show how data fusion can be used to
accurately estimate the relative quality of heterogeneous
chord label sequences. Data fusion is better at capturing
source quality than the most frequently used source quality
assessment methods in multiple sequence analysis. Third,
we show that our purely data-driven method is capable
of capturing important knowledge shared among sources,
without incorporating domain knowledge.

Synopsis. The remainder of this paper is structured as
follows: Section 2 provides an introduction to data fusion.
Section 3 details how integration of chord label sequences
using data fusion is evaluated. Section 4 details the results
of integrating submissions of the MIREX 2013 automatic
chord extraction task. The paper closes with conclusions
and a discussion, which can be found in Section 5.

2. DATA FUSION

We investigate the problem of integrating heterogeneous
chord label sequences using data fusion. Traditionally, the
goal of data fusion is to find the correct values within au-
tonomous and heterogeneous databases (e.g. [9]). For ex-
ample, if we obtain meta-data (fields such as year, com-
poser, etc) from different web sources of the song “Black
Bird” by The Beatles, there is a high probability that some
sources will contradict each other on some values. Some
sources will attribute the composer correctly to “Lennon
- McCartney”, but others will provide just “McCartney”,
“McCarthey”, etc. Typos, malicious editing, data corrup-
tion, incorrectly predicted values, and human ignorance are
some of the reasons why sources are hardly ever error-free.

Nevertheless, if we assume that most of the values that
sources provide are correct, we can argue that values that
are shared among a large amount of sources are often more
probable to be correct than values that are provided by only
a single source. Under the same assumption, we can also
argue that sources that agree more with other sources are
more accurate, because they share more values that are
likely to be correct. Therefore, if a value is provided by
only a single but very accurate source, we can prefer it over
values with higher probabilities from less accurate sources,
the same way we are more open to accepting a deviating
answer from a reputable source in an everyday discussion.

In the above examples, we assume that each source is
independent. In real-life this is rarely the case: informa-
tion can be copied from one website to the other, students
repeat what their teacher tells them and one user can en-
ter the same values in a database twice, which can lead
to inappropriate values being copied by a large number
of sources: “A lie told often enough becomes the truth”
(Lenin ') [8]. Intuitively, we can predict the dependency
of sources from their sharing of inappropriate values. In
general, inappropriate values are assumed to be uniformly
distributed, which implies that sharing a couple of identical
inappropriate values is a rare event. For example, the rare
event of two students sharing a number of identical inap-
propriate answers on an exam is indicative of copying from
each other. Therefore, by analyzing which values with low
probabilities are shared between sources, we can calculate
a probability of their dependence.

In this research, instead of using databases, we address
these issues through data fusion on heterogeneous chord
label sequences. Our goal is to take heterogeneous chord
label sequences of the same song and create a chord label
sequence that is better than the individual ones. We take
into account: 1) the accuracy of sources, 2) the probabil-
ities of the values provided by sources, and 3) the prob-
ability of dependency between sources. In the following
sections, we refer to different versions of the same song as
sources, each providing a sequence of values called chord
labels. See Table 1 for an example, showing four sources
(So...3), each providing a sequence of three chord labels,
and FUSION, an example of data fusion output.

! Tronically, this quote’s origin is unclear, but most sources cite Lenin.
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So C:maj A:min A:min F:maj
S1 C:maj F:maj G:maj F:maj
So C:maj F:maj A:min D:min
S3 C:maj F:maj A:min D:min
MV C:maj F:maj A:min ?

DF C:maj F:maj A:min D:min

Table 1: Example of four sources S(o...3) providing different
chord label sequences for the same song. DF shows an example
output of data fusion on these sources. DF is identical to majority
vote (MV) on the first three chord labels. For the last chord label,
DF chooses D : min by taking into account source accuracy, while
majority vote would randomly pick either F :maj or D:min.

2.1 Source Accuracy

By taking into account the accuracy of a source, we can
deal with issues that arise from simple majority voting. For
example in Table 1, the final chord labels in the sequence
(F:maj and D:min) are provided by the same number of
sources. Solving which chord to choose here would re-
quire picking randomly one of the two, or using auxiliary
knowledge such as harmony theory to make a good choice.

Another problem is that sometimes a source can pro-
vide an appropriate chord label that contradicts all other
sources. Majority vote would assign the lowest probability
to this chord, although it might come from a source that
overall agrees a lot with other sources. Intuitively, we have
more trust in a source that we believe is more accurate,
which is implemented as follows. The chord labels of a
source are weighted according to the overall performance
of that source: if a source provides a large number of val-
ues that agree with other sources, we consider it to be more
accurate and more trustworthy, and vice versa.

The accuracy of a source is defined by Dong et al. in [7]
as follows. We calculate source accuracy by taking the
arithmetic mean of the probabilities of all chord labels the
source provides. As an example, suppose we estimate the
probabilities of the chords in Table 1 based on their fre-
quency count (c.q. likelihood). That is, C:ma7j for the
first column is 1, A :min for the second column is 1/4, etc.
Then, if we take the average of the chord label probabil-
ities of the first source in our example of Table 1 we can
calculate the source accuracy A(Sy) of Sy as follows:

1+1a+3/a+1/2
=0
In the same way, we can calculate the source accuracies for
the other three sources which are 0.625, 0.75 and 0.75 for
S1,S2 and S3 respectively.

Assuming that the sources are independent, then the
probability that a source provides an appropriate chord la-
bel is its source accuracy. Conversely, the probability that
a source provides an inappropriate chord is the fraction
of the inverse of the source accuracy over all possible in-
appropriate values n: U=A9)  For example, for major
and minor chord labels we have 12 roots and 2 modes,
which means that for every correct chord label there are
n = (12 % 2) — 1 = 23 inappropriate chord labels. With
more complex chord labels (sevenths, added notes, inver-
sions), n increases combinatorially.

The chord labels of sources with higher accuracies will
be more likely to be selected through the use of vote counts,

A(So) = 0.625 1)

which are used as weights for the probabilities of the chord
labels they provide. With n and A(.S;) we can derive a vote
count VS(S;) of a source S;. The vote count of a source is
computed as follows:

nA(Sﬂ
1—A(S)
Applied to our example, this results in vote counts of 2.62
for Sp and S;, and 2.80 for So and S3. The higher vote

count for Sy and S3 means that its values are more likely to
be appropriate than those of Sy and S;.

VS(S;) = In )

2.2 Chord Label Probabilities

After having defined the accuracy of a source, we can now
determine which chord labels provided by all the sources
are most likely the appropriate labels, by taking into ac-
count source accuracy. In the computation of chord label
probabilities we take into account a) the number of sources
that provide those chord labels and b) the accuracy of their
sources. With these values we calculate the vote count
VC (L) of a chord label £, which is computed as the sum
of the vote counts of its providers:

ve(L)= > VS(o) 3)

ceSE

where S* is the set of all sources that provide the chord
label £. For example, for the vote count of F : ma j in the
last column of the example in Table 1, we take the sum of
the vote counts of S and S7. For the vote count of D :min
we take the sum of the vote counts of S, and S3. To calcu-
late chord label probabilities from chord label vote counts,
we take the fraction of the chord label vote count and the
chord label vote counts of all possible chord labels (D):

 eap(VO(L)
P = 505 eaptve )

Applied to our example from Figure 1, we see that solv-
ing this equation for F:maj results in a probability of
P(F:maj) ~ 0.39, and for D:min results in a proba-
bility of P(D:min) ~ 0.56. Instead of having to choose
randomly as would be necessary in a majority vote, we
can now see that D:min is more probable to be the cor-
rect chord label, because it is provided by sources that are
overall more trustworthy.

4)

2.3 Source Dependency

In the sections above we assumed that all sources are in-
dependent. This is not always the case when we deal with
real-world data. Often, sources derive their data from a
common origin, which means there is some kind of de-
pendency between them. For example, a source can copy
chord labels from another source before changing some
labels, or some Audio Chord Estimation (ACE) algorithm
can estimate multiple (almost) equal chord label sequences
with different parameter settings. This can create a bias in
computing appropriate values. To account for the bias that
can arise from source dependencies, we weight the values
of sources we suspect to have a dependency lower. In a
sense, we award independent contributions from sources
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and punish values that we suspect are dependent on other
sources.

In data fusion, we can detect source dependency di-
rectly from the data by looking at the amount of shared un-
common (rare) chord labels between sources. The intuition
is that sharing a large number of uncommon chord labels is
evidence for source dependency. With this knowledge, we
can compute a weight I(S;, £) for the vote count VC (L)
of a chord label L. This weight tells us the probability that
a source .5; provides a chord label £ independently.

2.4 Solving Catch-22: Iterative Approach

The chord label probabilities, source accuracy and source
dependency are all defined in terms of each other, which
poses a problem for calculating these values. As a solution,
we initialize the chord label probabilities with equal prob-
abilities and iteratively compute source dependency, chord
label probabilities and source accuracy until the chord la-
bel probabilities converge or oscillation of values is de-
tected. The resulting chord label sequence is composed
of the chord labels with the highest probabilities.

For detailed Bayesian analyses of the techniques men-
tioned above we refer to [7,10]. With regard to the scalabil-
ity of data fusion, it has been shown that DF with source de-
pendency runs in polynomial time [7]. Furthermore, [17]
propose a scalability method for very large data sets, re-
ducing the time for source dependency calculation by two
to three orders of magnitude.

3. EXPERIMENTAL SETUP

To evaluate the improvement of chord label sequences us-
ing data fusion we use the output of submissions to the Mu-
sic Information Retrieval Evaluation eXchange (MIREX)
Audio Chord Estimation (ACE) task. For the task, partic-
ipants extract a sequence of chord labels from an audio
music recording. The task requires the estimation chord
labels sequences that include the full characterization of
chord labels (root, quality, and bass note), as well as their
chronological order, specific onset times and durations.
Our evaluation uses estimations from twelve submis-
sions for two Billboard datasets (Section 3.1). Each of
these estimations is sampled at a regular time interval to
make them suitable for data fusion (Section 3.2). We
transform the chord labels of the sampled estimations to
different representations (root only, major/minor and ma-
jor/minor with sevenths) (Section 3.3) to evaluate the in-
tegration of different chord types. The sampled estima-
tions are integrated using data fusion per song. To measure
the quality of the data fusion integration, we calculate the
Weighted Chord Symbol Recall (WCSR) (Section 3.4).

3.1 Billboard datasets

We evaluate data fusion on chord label estimations for two
subsets of the Billboard dataset?, which was introduced
by Burgoyne et al. in [3]. The Billboard dataset contains
time-aligned transcriptions of chord labels from songs that

2 available from http://ddmal.music.megill.ca/billboard

appeared in the Billboard “Hot 100” chart in the United
States between 1958 and 1991. All transcriptions are anno-
tated by trained jazz musicians and verified by independent
music experts. For the MIREX 2013 ACE task, two subsets
of the Billboard dataset were used: the 2012 Billboard set
(BB12) and the 2013 Billboard (BB13) set. BB12 contains
chord label annotations for 188 songs, corresponding to
entries 1000—1300 in the Billboard set. BB13 contains the
annotations for 188 different songs: entries 1300—1500.

Twelve teams participated for both datasets, some with
multiple submissions: CB3 & CB4 [5], CF2 [4], KO1 &
KO2 [16], NG1 & NG2 [13], NMSDI1 & NMSD2 [21],
PP3 & PP4 [22], and SB [27]. Their submissions are used
to evaluate data fusion, for which the Billboard annotations
serve as a ground truth.

3.2 Sampling

The MIREX ACE task requires teams to not only estimate
which chord labels appear in a song, but also when they
appear. Because of differences in approaches, timestamps
of the estimated chord labels do not necessarily agree be-
tween teams. This is a problem for data fusion, which ex-
pects an equal length and sampling rate of the sources that
will be integrated. As a solution, we sample the estima-
tions at a regular interval.

In the past, MIREX used a 10 millisecond sampling ap-
proach to calculate the quality of an estimated chord label
sequence. Since MIREX 2013, the ground-truth and es-
timated chord labels are viewed as continuous segmenta-
tions of the audio [23]. Because of our data constraint, we
use the pre-2013 10 millisecond sampling approach. An
initial evaluation using different sampling frequencies in
the range 0.1 millisecond to 0.5 seconds, we found only
minor differences in data fusion output. The estimated
chord label sequences are sampled per song from each
team, and used as input to the data fusion algorithm.

3.3 Chord Types

The MIREX ACE task is evaluated on different chord types.
To accurately compare our results with those of the teams,
and to investigate the effect of integrating different chord
types, we follow the chord vocabulary mappings that were
introduced by [23] and are standardized in the MIREX eval-
uation. We map the sampled sequences of estimated chord
labels into three chord vocabularies before applying data
fusion: root notes only (R), major/minor only chords (MM),
and major/minor with sevenths (MM7).

Note that the MIREX 2013 evaluation also includes ma-
jor/minor with inversions and major/minor seventh chords
with inversions. Since there are only two teams that esti-
mated inversions we did not take these into account in our
evaluation.

3.4 Evaluation

From the data fusion output sequences for all songs, we
calculate the Weighted Chord Symbol Recall (WCSR). The
WCSR reflects the proportion of correctly labeled chords in
a single song, weighted by the length of the song [14,23].
To measure the improvement of data fusion, we compare
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its WCSR with the WCSR of the best scoring team. In ad-
dition to data fusion, we compute baseline measurements.
We compare the data fusion results with a majority vote
(MV) and random picking (RND) technique.

For Mv we simply take the most frequent chord la-
bel every 10 milliseconds. In case multiple chord labels
are most frequent, we randomly pick from the most fre-
quent chord labels. For the example in Table 1, the output
would be either C:maj, F:maj, A:min, F:major
C:maj, F:maj, A:min, D:min. For RND we se-
lect a chord from a random source every 10 milliseconds.
For the example in Table 1, RND essentially picks one from
4* possible chord label combinations by picking a chord
label from a randomly chosen source per column.

4. RESULTS

We are interested in obtaining improved, reliable chord se-
quences from quality assessed existing estimations. There-
fore, we analyze our results in three ways. Firstly, to mea-
sure improvement, we show the difference in WCSR be-
tween the best scoring team and RND, MV and DF. This
way, we can analyze the performance increase (or de-
crease) for each of these integration methods. The differ-
ences are visualized in Figure 1 for the BB12 and BB13
datasets. For each of the three methods, it shows the dif-
ference in WCSR for root notes R major/minor only chords
MM, and major/minor + sevenths chords (MM7). For de-
tailed individual results an analyses of the teams on both
datasets, we refer to [2] and MIREX. 3

Secondly, to measure the reliability of the integrations,
we analyze the standard deviation of the scores of MV and
DF. We leave RND out of this analysis because of its poor
results. The ideal integration should have 1) a high WCSR
and 2) a low standard deviation, because this means that
the integration is 1) good and 2) reliable. Table 2 shows
the difference with the average standard deviation of the
teams. Sections 4.1 - 4.2 report the results in WCSR differ-
ence and standard deviation.

Thirdly, in Section 4.3 we analyze the correlation be-
tween source accuracy and WCSR, and compare the corre-
lation with other source quality assessments. These corre-
lations will tell us to which extent DF is capable of assess-
ing the quality of sources compared to other, widely used
multiple sequence analysis methods.

3 http://www.music-ir.org/mirex/wiki/2013:MIREX2013_Results
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Figure 1: Difference in WCSR with best team for random picking
(RND), majority vote (MV) and data fusion (DF). R = root notes,
MM = major/minor chords and MM7 = major/minor + sevenths.

MM
MM7

BB12 BB13
R MM MM7 R MM MM7

DF 2.5 -2.8 -2.2 -0.5 -0.9 -1.8

MV -1.4 -1.8 -0.97 -0.3 -0.4 -1

Table 2: Difference in standard deviation for DF and MV com-
pared to the average standard deviation of the teams. Lower is
better, best values are bold.

4.1 Results of Integrating R, MM and MM7

The left hand sides of the triple-bar groups in Figure 1
show that for both BB12 and BB13, RND performs the
worst among RND, MV and DF. RND decreases the WCSR
between 8.7% and 12% point, compared to the best per-
forming teams (CB3 and KO1 for BB12 and BB13 respec-
tively) for all chord types. This means that picking ran-
dom values from sources does not capture shared knowl-
edge in a meaningful way. The middle bars in Figure 1
show that MV integrates knowledge better than RND. MV
moderately improves the best algorithm with a difference
between 0.6% and 2.1% point.

The right hand sides of the bar groups in Figure 1 show
that in both datasets and in all chord types, DF outperforms
all other methods with an increase between 3.6% point and
5.4% point compared to the best team. We tested the scores
of RND, MV and DF and the best performing teams using
a Friedman test for repeated measurements, accompanied
by Tukeys Honest Significant Difference tests for each pair
of algorithms. We find that DF significantly outperforms
the best submission, RND and MV on all datasets on all
datasets (p < 0.01). These results combined show that DF
is capable of capturing knowledge shared among sources
needed to outperform all other methods.

In Table 2, we find that for both BB12 and BB13, both
MV and DF decrease the standard deviation compared to
the average standard deviation of the teams. In fact, we find
that DF outperforms MV, improving the standard deviation
by a factor two compared to MV. Together, these results
mean that on average, DF creates the best sequences with
the least errors for all datasets and all chord types.

4.2 Influence of Chord Types on Integration

The results detailed above show that DF is not only capa-
ble to significantly outperform all other tested methods on
all tested chord labels types, but also produces the most
reliable output, because of the low standard deviation.
Comparing the RND, MV and DF results between chord
types in Figure 1, we see that the WCSR of RND decreases
with a larger chord vocabulary. Because specificity in-
creases the probability of random errors for any algorithm,
the probability that RND will pick a good chord label ran-
domly goes down with an increase of the chord vocabulary.
For MV, we see that the results are somewhat stable with
an increase of the chord vocabulary. Nevertheless, MV is
also sensitive for randomly matching chord labels, which
explains the drop in accuracy for MM7 for BB13 on the
left hand side of Figure 1. Most interestingly, we observe
that the performance of DF increases with a larger chord
vocabulary. The explanation is that specificity helps DF
to separate good sources from bad sources. With a larger
chord vocabulary, sources will agree with each other on
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Figure 2: Correlation between WCSR and source accuracy. Plot-
ted are R, MM and MM7. One dot is one estimated chord label
sequence for one song from one team.

more specific chord labels, which decreases the probabil-
ity of unwanted random source agreement.

4.3 Source Quality Assessment

The previous sections show that data fusion is capable of
selecting good chord labels from the coherence between
the sources, without ground truth knowledge. A pivotal
part of data fusion is the computation of source accuracy,
which provides a relative score for each source compared
to the other sources. There are circumstances in which we
are more interested in the estimation of source accuracy
than the actual integration of source data. For example,
ranking a number of different crowd sourced chord label
sequences of the same song obtained from web sources,
(e.g. investigated by [18]). Investigating the relationship
between source accuracy and the WCSR provides insight
whether data fusion is capable of assessing the accuracy of
the sources in a way that reflects WCSR. WCSR reflects the
quality of the chord sequences and therefore the quality of
the algorithm. This relationship is shown in Figure 2, in
which the WCSR is plotted against the DF source accuracy.

Initial observation of Figure 2 shows that for both
BB12 and BB13, WCSR and source accuracy are distributed
along a more or less diagonal line, meaning that a higher
WCSR is associated with a higher DF source accuracy, and
vice versa. This indicates a strong correlation, which is
confirmed by the Spearman’s rank correlation coefficient
(SRCC). To analyze the relative performance of source
quality assessment of DF, we compare its correlation with
widely used sequence scoring methods. These are often
used in bioinformatics, where sequence ranking is at the
root of a multitude of problems. Table 3 compares the
SRCC of different similarity scoring methods for BB12 and
BB13. The table shows the correlations between WCSR
and DF, bigrams (BIGRAM), profile hidden Markov mod-
els (PHMM), percentage identity (PID), and neigbor-joining
trees (NJT). BIGRAM compares the relative balance of spe-
cific character pairs appearing in succession, also known
as bigrams. Sequences belonging to the same group should
be stochastic products of the same probabilistic model [6].
PHMM turns the sources into a position-specific scoring
system by creating a profile with position-probabilities. A
source is scored through comparison with the profile of all
other sources [11]. PID is the fraction of equal characters
divided by the length of the source. NJT is a bottom-up
clustering method for the creation of phylogenetic trees, in
which the distance from the root is the score [24].

BB12 BB13
R MM MM7 R MM MM7
DF 0.87 085 0.82 077 077 0.76

BIGRAM 0.18 0.18 0.16 0.2 0.22 029

PHMM* 022 — @ — 022 — —
PID 0.18 0.2 0.19 0.25 0.27 0.29
NIT 0.2 022 0.21 0.24 0.25 0.27

Table 3: Spearman’s rank correlation coefficient (p) of WCSR
and other source scoring methods. Best performing algorithms
are bold. All values are significant with p < 0.01.

The table shows that DF source accuracy has the highest
correlation with WCSR among all other methods. These
results show that data fusion is capable of assessing the
quality of the sources without any ground-truth knowledge
in a way that is closely related to the actual source quality.

5. DISCUSSION AND CONCLUSION

Through this study, we have shown for the first time that
using data fusion, we can integrate the knowledge con-
tained in heterogeneous ACE output to create improved,
and more reliable chord label sequences. Data fusion inte-
gration outperforms all individual ACE algorithms, as well
as majority voting and random picking of source values.
Furthermore, we have shown that with data fusion, one can
not only generate high quality integrations, but also accu-
rately estimate the quality of sources from their coherence,
without any ground truth knowledge. Source accuracy out-
performs other popular sequence ranking methods.

Our findings demonstrate that knowledge from multiple
sources can be integrated effectively, efficiently and in an
intuitive way. Because the proposed method is agnostic
to the domain of the data, it could be applied to melodies
or other musical sequences as well. We believe that fur-
ther analysis of data fusion in crowd-sourced data has the
potential to provide non-trivial insights into musical varia-
tion, ambiguity and perception. We believe that data fusion
has many important applications in music information re-
trieval research and in the music industry for problems re-
lating to managing large amounts of crowd-sourced data.
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