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ABSTRACT

In this paper we present PRIMA: a new model tailored to
symbolic music that detects the meter and the first down-
beat position of a piece. Given onset data, the metrical
structure of a piece is interpreted using the Inner Metric
Analysis (IMA) model. IMA identifies the strong and weak
metrical positions in a piece by performing a periodicity
analysis, resulting in a weight profile for the entire piece.
Next, we reduce IMA to a feature vector and model the
detection of the meter and its first downbeat position prob-
abilistically. In order to solve the meter detection prob-
lem effectively, we explore various feature selection and
parameter optimisation strategies, including Genetic, Max-
imum Likelihood, and Expectation-Maximisation algo-
rithms. PRIMA is evaluated on two datasets of MIDI files:
a corpus of ragtime pieces, and a newly assembled pop
dataset. We show that PRIMA outperforms autocorrelation-
based meter detection as implemented in the MIDItoolbox
on these datasets.

1. INTRODUCTION

When we listen to a piece of music we organise the stream
of auditory events seemingly without any effort. Not only
can we detect the beat days after we are born [31], as
infants we are able to develop the ability to distinguish
between a triple meter and duple meter [18]. The pro-
cessing of metrical structure seems to be a fundamental
human skill that helps us to understand music, synchron-
ize our body movement to the music, and eventually con-
tributes to our musical enjoyment. We believe that a sys-
tem so crucial to human auditory processing must be able
to offer great merit to Music Information Retrieval (MIR)
as well. But what exactly constitutes meter, and how can
models of metrical organisation contribute to typical MIR
problems? With the presentation of the PRIMA ! model we
aim to shed some light on these matters in this paper.

The automatic detection of meter is an interesting and
challenging problem. Metrical structure has a large influ-

! Probabilistic Reduction of Inner Metric Analysis

© W. Bas de Haas, Anja Volk. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: W. Bas de Haas, Anja Volk. “Meter Detection in Symbolic Music
Using Inner Metric Analysis”, 17th International Society for Music In-
formation Retrieval Conference, 2016.

Anja Volk
Utrecht University
A.Volk@uu.nl

ence on the harmonic, melodic and rhythmic structure of a
piece, and can be very helpful in many practical situations.
For instance, in [30] a statistical exploration of common
syncopation patterns in a large corpus of symbolic rag-
time pieces is presented. For correct analysis of synco-
pation patterns knowledge of the meter is essential. How-
ever, many corpora lack reliable meter annotations, mak-
ing automatic meter detection a prerequisite for rhythmic
pattern analysis. Similarly, chord recognition algorithms
have been shown to improve when metrical information is
taken into account, e.g. [3]. Finally, also melodic similarity
estimation benefits from (automatically derived) metrical
information. Humans appear to be more tolerant to note
transformations placed on weak metrical positions [11].

In this paper we present PRIMA: a new model for de-
tecting the meter and the first downbeat in a sequence of
onsets. Where most other approaches reduce the problem
to a binary duple / triple meter detection, PRIMA estimates
all time signatures that are available in the training set and
also detects the first downbeat position. PRIMA’s architec-
ture is outlined as follows: the model employs Inner Metric
Analysis [28, IMA] to determine the strong and weak met-
rical positions in an onset sequence. The IMA is folded into
one-bar profiles, which are subsequently optimised. This
metrical analysis feature serves as input to a probabilistic
model which eventually determines the meter. Finally, two
feature optimisation strategies are discussed and evaluated.

PRIMA is trained and tested on two datasets of MIDI
files: the RAG collection [30] and the newly collected
FMpop collection. The main motivation for choosing
the RAG collection for evaluation is that there is a clear
need for meter and first downbeat detection for facilitat-
ing corpus-based studies on this dataset. Since Ragtime
is a genre that is defined by syncopated rhythms [30], in-
formation on meter and the location of the first downbeat
is crucial for corpus-based rhythm analyses. In order to as-
sess the flexibility of PRIMA, we also train and evaluate the
model on a new dataset of pop music: the FMpop collec-
tion. All data has been produced by music enthusiasts and
is separated into a test and a training set. Both datasets are
too big to manually check all meter annotations. There-
fore, we assume that in the training set the majority of the
meters are correctly annotated. In the test set, the meter
and first downbeat positions are manually corrected, and
this confirms the intuition that the majority of the meters is
correct, but annotation errors do occur.

Taks description: We define the meter detection task
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as follows: given a series of onsets, automatically detect
the time signature and the position of the first beat of the
bar. This first beat position is viewed as the offset of the
meter measured from the starting point of an analysed seg-
ment, and we will refer to this offset as the rotation of the
meter. 2 After all, a metrical hierarchy recurs every bar, and
if the meter is stable, the first beat of the bar can easily be
modelled by rotating the metrical grid. In this paper we
limit our investigation to the 3, 3, 1, 3, §, 12 meters that oc-
cur at least in 40 pieces of the dataset (five different meters
in the RAG, four in the FMpop Collection). Naturally, ad-
ditional meters can be added easily. In the case of duple /
triple classification 3, 3, and § are considered duple meters
and 3, §, and ‘2 are considered triple meters. Within this
study we assume that the meter does not change through-
out an analysed segment, and we consider only MIDI data.

Contribution: The contribution of this paper is
threefold. First, we present a new probabilistic model for
automatically detecting the meter and first downbeat pos-
ition in a piece. PRIMA is conceptually simple, based on
a solid metrical model, flexible, and easy to train on style
specific data, Second, we present a new MIDI dataset con-
taining 7585 pop songs. Furthermore, for small subsets
of this new FMpop Collection and a collection of ragtime
pieces, we also present new ground-truth annotations of
the meter and rotation. Finally, we show that all variants
of PRIMA outperform the autocorrelation-based meter de-
tection implemented in the MIDItoolbox [5].

2. RELATED WORK

The organisation of musical rhythm and meter has been
studied for decades, and it is commonly agreed upon that
this organisation is best represented hierarchically [13].
Within a metrical hierarchy strong metrical positions can
be distinguished from weaker positions, where strong po-
sitions positively correlate with the number of notes, the
duration of the notes, the number of equally spaced notes,
and the stress of the notes [16]. A few (computational)
models have been proposed that formalise the induction of
metrical hierarchies, most notable are the models of Steed-
man [20], Longuet-Higgins & Lee [14] Temperley [21],
and Volk [28]. However, surprisingly little of this work
has been applied to the automatic detection of the meter
(as in the time signature) of a piece of music, especially in
the domain of symbolic music.

Most of the work in meter detection focusses on the au-
dio domain and not on symbolic music. Although large in-
dividual differences exists, in the audio domain the meter
detection systems follow a general architecture that con-
sists of a feature extraction front-end and a model that
accounts for periodicities in the onset or feature data. In
the front-end typically features are used that are associated
with onset detection such as spectral difference, or flux,
and energy spectrum are used [1]. Or, in the symbolic case,

2 We chose the new term rotation for the offset of the meter because
the musical terms generally used to describe this phenomenon, like ana-
crusis, upbeat figure, or pickup, are sometimes interpreted differently.

one simply assumes that onset data is available [9, 22], like
we do in this paper.

After feature extraction the periodicity of the onset data
is analysed, which is typically done using auto-correlation
[2, 23], a (beat) similarity matrix [6, 8], or hidden Markov
models [17, 12]. Next, the most likely meter has to be
derived from the periodicity analysis. Sometimes statist-
ical machine learning techniques, such as Gaussian Mix-
ture Models, Neural Networks, or Support Vector Ma-
chines [9], are applied to this task, but this is less com-
mon in the symbolic domain. The free parameters of these
models are automatically trained on data that has meter an-
notations. Frequently the meter detection problem is sim-
plified to classifying whether a piece uses a duple or triple
meter [9, 23], but some authors aim at detecting more fine-
grained time signatures [19, 24] and can even detect odd
meters in culturally diverse music [10]. Albeit focussed on
the audio domain, for a relatively recent overview of the
field we refer to [24].

2.1 Inner Metric Analysis

Similar to most of the meter detection systems outlined in
the previous section PRIMA relies on periodicity analysis.
However, an important difference is that it uses the Inner
Metric Analysis [28, IMA] instead of the frequently used
autocorrelation. IMA describes the inner metric structure
of a piece of music generated by the actual onsets opposed
to the outer metric structure which is associated with an
abstract grid annotated by a time signature in a score, and
which we try to detect automatically with PRIMA.

What distinguishes IMA from other metrical models,
such as Temperley’s Grouper [21], is that IMA is flexible
with respect to the number of metric hierarchies induced.
It can therefore be applied both to music with a strong
sense of meter, e.g. pop music, and to music with less pro-
nounced or ambiguous meters. IMA has been evaluated in
listening experiments [25], and on diverse corpora of mu-
sic, such as classical pieces [26], rags [28], latin american
dances [4] and on 20th century compositions [29].

IMA is performed by assigning a metric weight or a
spectral weight to each onset of the piece. The general idea
is to search for all chains of equally spaced onsets within a
piece and then to assign a weight to each onset. This chain
of equally spaced onsets underlying IMA is called a local
meter and is defined as follows. Let On denote the set of
all onsets of notes in a given piece. We define every subset
m C On of equally spaced onsets to be a local meter if
it contains at least three onsets and is not a subset of any
other subset of equally spaced onsets. Each local meter can
be identified by three parameters: the starting position of
the first onset s, the period denoting the distance between
consecutive onsets d, and the number of repetitions k£ of
the period (which equals the size of the set minus one).

The metric weight of an onset o is calculated as the
weighted sum of the length k,,, of all local meters m that
coincide at this onset (o € m), weighted by parameter p
that regulates the influence of the length of the local meters
on the metric weight. Let M (¢) be the set of all local
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meters of the piece of length at least ¢, then the metric
weight of an onset, o € On, is defined as follows:

Wi p(0) = > kP, (1)

{meM (¢):0em}

The spectral weight is calculated in a similar fashion,
but for the spectral weight each local meter is extended
throughout the entire piece. The idea behind this is that the
metrical structure induced by the onsets stretches beyond
the region in which onsets occurs. The extension of a local
meter m is defined as ext(ms q%) = {s + id, Vi} where i
is an integer number. For all discrete metrical positions ¢,
regardless whether it contains an onset or not, the spectral
weight is defined as follows:

SWy,(t) = > k. )

{meM(£):tcext(m)}

In this paper we have used the standard parameters p = 2,
and ¢ = 2. Hence, we consider all local meters that exist in
apiece. A more elaborate explanation of the IMA including
examples can be found in [28].

3. IMA BASED METER DETECTION

In this section we will outline the PRIMA model in a
bottom-up fashion. We start with the input MIDI data, and
describe how we transform this into onset data, perform
IMA and finally optimise a feature based on IMA. Next, we
explain how this feature is used in a probabilistic model to
detect the meter and rotation of sequence of onsets, and we
elaborate on two different training strategies.

3.1 Quantisation and Preprocessing

Before we can perform IMA, we have to preprocess the
MIDI files to obtain a quantised sequence of onsets. The
following preprocessing steps are taken:

To be able to find periodicities, the onset data should
be quantised properly. Within Western tonal music duple
as well as triple subdivisions of the beat occur commonly.
Hence, we use a metrical grid consisting of 12 equally
spaced onset positions per quarter note. With this we can
quantise both straight and swung eight notes. Here, swing
refers to the characteristic long-short rhythmical pattern
that is particularly common in Jazz, but is found through-
out popular music.

In the quantisation process we use the length of a
quarter note as annotated in the MIDI file. This MIDI time
division specifies the number of MIDI ticks per quarter note
and controls the resolution of the MIDI data. Because the
MIDI time division is constant, strong tempo deviations in
the MIDI data might distort the quantisation process and
the following analyses. To estimate the quality of the
alignment of the MIDI data to the metrical grid, we collect
the quantisation deviation for every onset, and the average
quantisation deviation divided by the MIDI time division
gives a good estimate of the quantisation error. To make
sure that the analysed files can be quantised reasonably
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Figure 1. The construction of NSW profiles for a piece in
i: (1) displays IMA, (2) displays the NSW profiles derived
from IMA for a i and a i meter, and (3) shows how two
bins are selected from each profile and used to estimate the
probability of that meter. The ellipse represents the Gaus-
sian distribution fitted to selected bins of the NSW profiles
in the training phase. Note that the j NSW profile does not
resemble a typical i and receives a low probability. Also,
the selected bins may differ per optimisation strategy.

well, we discard all MIDI files with an average quantisa-
tion error higher than 2 percent.

After quantising the MIDI data, we collect all onset
data from all voices and remove duplicate onsets. Next,
the MIDI data is segmented at all positions where a meter
change is annotated in the MIDI file. Segments that are
empty or shorter than 4 bars are excluded from further ana-
lysis. Also, MIDI files that do not contain meter annota-
tions at all are ignored in the training phase.

3.2 Normalised spectral weight profiles

We use the spectral weights of IMA to construct a fea-
ture for detecting the meter in a piece. More specific-
ally, this feature will model the conditional probability of
a certain meter given a sequence of onsets. As we will
explain in more detail in the next section, the distribu-
tion of these features will be modelled with a Gaussian
distribution. We call this feature a Normalised Spectral
Weight (NSW) profile, and discern three stages in construct-
ing them: (1) perform IMA, (2) folding the IMA in one-bar
profiles and normalising the weights profiles, and (3) se-
lecting the most relevant bins for modelling the Gaussian
distribution. These three stages are displayed schematic-
ally in Figure 1, and are detailed below.

IMA marks the metrical importance of every quantised
onset position in a piece. Because of the large numbers
of spectral weights and the large differences per piece,
IMA cannot be used to detect the meter directly. How-
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ever, we can fold the analysis into one-bar profiles to get
a more concise metrical representation for every candidate
meter. These one-bar profiles are created by summing the
spectral weights per quantised position within a bar. Con-
sequently, the shape of these profiles is determined by the
meter (beats per bar), the length of piece (longer pieces
yield higher spectral weights), and the number of quant-
isation bins.

We normalise spectral weights in the one-bar profiles
by applying Formula 3:

normalise(w) = log(nfu; +a) 3)

Here, w is the summed spectral weight of a particular
quantised beat position and n is the number of bars used to
create the profile. We use a parameter § to control the ef-
fect of the length of the piece in the normalisation. Further-
more, because many quantised beat positions might have
a summed metrical weight of 0, and this will cause prob-
lems when we fit Gaussian models to these profiles, we use
Laplace smoothing [15, p. 260] and add a constant factor o
to all weights. Finally, because statistical analysis of large
amounts of profiles showed that differences in weights are
distributed normally on a logarithmic scale, we apply the
natural logarithm in Eq. 3. For the results in this report
we have used 5 = 2 and o = 1. We call these profiles
Normalised Spectral Weight (NSW) Profiles.

The raw NSW profiles cannot yet be conveniently used
as a feature for meter detection: the dimensionality of the
NSW profiles is relatively high, and the dimensionality dif-
fers per meter. Also, not every metrical position within a
bar is equally important. For instance, the first beat of the
bar will have a high spectral weight, while the metrical po-
sition of the second eighth note will generally have a much
lower spectral weight. Hence, we select profile bins that
contain the information most relevant for meter detection.

The selection of the relevant profile bins is a special case
of feature dimensionality reduction where the feature bins
are highly dependent on each other. In this section we in-
troduce two selection methods that will be experimentally
verified in Section 4.3. A first intuition is to select the n
profile bins that have the highest weights on average for
a given dataset. A brief analysis showed that these bins
roughly correspond to the first n principal components.
However, a preliminary evaluation shows that NSW pro-
files containing only these bins perform relatively poorly.
Hence, in order to learn more about what are the distinct-
ive bins in the profiles, we use a Genetic Algorithm (GA)
to explore the space of possible bin selections. > When we
analyse these bin selections, we notice that the GA selects
bins for a meter that contain weights that are maximally
different to other meters.

3 Note that these n profile bins may differ between meters, and n does
not have to be the same for all meters, as long as the bin selection of
the examined profile is exactly the same as the selection used in the tem-
plate profile for that meter. For the implementation of the GA we use the
Haskell library https://github.com/boegel/GA, using a popu-
lation size of 100 candidates, a crossover rate of 0.7, a mutation rate of
0.2, and Eq. 5 as fitness function.

Training a GA on large amounts of data takes a lot of
time, even if the NSW profiles are pre-calculated. Since
we have a clear intuition about how the GA selects profile
bins, we might be able to mimic this behaviour without ex-
ploring the complete space of possible bin selections. Re-
call when we classify a single piece, we calculate multiple
NSW profiles for a single IMA: one for each meter. If we
select the same bins in each profile for matching, i.e. every
first beat of a bar, the chances are considerable that this
selection will match multiple meters well. Hence, we se-
lect the n bins of which the NSW profiles of the ground-
truth meter are maximally different from the NSW profiles
of other meters. In this calculation we define maximally
different as having a maximal absolute difference in spec-
tral weight, and n does not differ between meters. We call
this method the Maximally Different Bin (MDB) Selection.

3.3 A probabilistic meter classification model

To restate our initial goal: we want to determine the meter
and its rotation given a sequence of note onsets. Ignor-
ing rotation, a good starting point is to match NSW pro-
files with template profiles of specific meters. However,
although the spectral weights of IMA reflect human intu-
itions about the musical meter [27], it is rather difficult to
design such templates profiles by hand. Moreover, these
template profiles might be style specific. Hence, we pro-
pose a model that learns these templates from a dataset.

Another style dependent factor that influences meter de-
tection is the distribution of meters in a dataset. For in-
stance, in Ragtime 3 and 3 occur frequently, while pop
music is predominantly notated in a § meter. Just match-
ing NSW profiles with meter templates will not take this
into account. When we combine simple profile matching
with a weighting based on a meter distribution (prior), this
conceptually equals a Naive Bayes classifier [15]. There-
fore, probabilistically modelling meter detection is a nat-
ural choice.

If we ignore the rotations for sake of simplicity, we can
express the probability of a meter given a set of note onsets
with Equation 4:

P(meter|onsets) oc P(onsets|meter) - P(meter)  (4)

Here, P(onset/meter) reflects the probability of an onset
sequence given a certain meter, and o denotes “is propor-
tional to”. Naturally, certain meters occur more regularly
in a dataset than others which is modelled by P(meter).
The conditional probability P(onset|meter) can be estim-
ated using NSW profiles. Given a piece and a specific meter
we create an NSW profile that can be used as multidimen-
sional feature. Given a large dataset that provides us with
sequences of onsets and meters, we can model the distri-
bution of the NSW profiles as Gaussian distributions. For
every meter in the dataset we estimate the mean and co-
variance matrix of a single Gaussian distribution with the
expectation-maximization algorithm [7]. The prior prob-
ability of a certain meter, P(meter), can be estimated with
maximum likelihood estimation, which equals the number
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of times a certain meter occurs in a dataset divided by the
total number of meters in the dataset.

Adding the estimation of the rotation makes the prob-
lem slightly more complicated. A natural way of incorpor-
ating rotation is to add it as a single random variable that
is dependent on the meter. This makes sense because it
is likely that the kind of rotation depends on the kind of
meter: an anacrusis in a § meter is likely to differ from an
anacrusis in a 3 meter. Hence, we can transform Eq. 4 into
the following equation:

P(a,rly) o< P(ylz,r) - P(rlz) - P(x) (5)

Similar to Eq. 4, we estimate the meter x given an onset
pattern y, but now we also add the rotation r. The term
P(y|x,r) can again be modelled with NSw profiles, but
now the profiles should also be rotated according to the ro-
tation . The term P(x) reflects the probability of a meter
and can be estimated with maximum likelihood estimation.

We do not consider all possible rotations. For a § meter
there are 4 - 12 = 48 possible rotations, many of which are
not likely to occur in practise. The rotations are modelled
as a fraction of a bar, making the rotation meter independ-
ent. Furthermore, we rotate clock-wise, e.g. % represents
an anacrusis of one quarter note in a § meter. The space of
possible rotations can be further reduced by only consid-
ering two kinds of rotations: rotations for duple and triple
meters. After all, given the very similar metrical structure
of 7 and 4, we expect that the rotations will be similar as
well (but on another absolute metrical level, e.g. eighth in-
stead of quarter notes). For duple meters we explore eight,
and for triple meters we explore six different rotations.

Unfortunately, estimating the prior probability of the ro-
tation given a certain meter, i.e. P(r|x), is not trivial be-
cause we rely on MIDI data in which the rotation is not
annotated. Hence, we need another way of estimating this
prior probability of the rotation. We estimate the rotation
by calculating all rotations of the NSW profiles and pick
the rotation that maximises probability of the annotated
ground-truth meter. Having an estimation of the best fit-
ting rotation per piece, we can perform maximum likeli-
hood estimation by counting different rotations for each
meter in order to obtain the rotation probabilities.

3.4 Training

We train and evaluate PRIMA on two datasets (see Sec. 4.1
and 4.2). These datasets consist of MIDI files created by
music enthusiasts that might have all sorts of musical back-
grounds. Hence, it is safe to assume that the meter annota-
tions in these MIDI files might sometimes be incorrect. A
likely scenario is, for instance, that MIDI creation software
adds a § meter starting at the first note onset by default,
while the piece in question starts with an upbeat and is best
notated in 3. Nevertheless, we assume that the majority of
the meters is annotated correctly, and that incorrect meters
will only marginally effect the training of PRIMA.

In this paper we evaluate two different ways of training
PRIMA. We use Maximally Different Bin (MDB) selection
in the feature training phase, or alternatively, we use a GA

to select the most salient NSW profile bins. After the bin
selection, we use Maximum Likelihood estimation to learn
the priors and rotation, as described in the previous section,
and Expectation-Maximisation for fitting the Gaussian dis-
tributions.

4. EVALUATION

To assess the quality of the meter and rotations calculated
by PRIMA, we randomly separate our datasets into test-
ing and training sets. The test sets are manually corrected
and assured to have a correct meter and rotation. The next
two sections will detail the data used to train and evaluate
PRIMA. The manual inspection of the meters and rotations
confirms the intuition that most of the meters are correct,
but the data does contain meter and rotation errors.

4.1 RAG collection

The RAG collection that has been introduced in [30] cur-
rently consists of 11545 MIDI files of ragtime pieces that
are collected from the Internet by a community of Ragtime
enthusiasts. The collection is accompanied by an elaborate
compendium # that stores additional information about in-
dividual ragtime compositions, like year, title, composer,
publisher, etc. The MIDI files in the RAG collection de-
scribe many pieces from the ragtime era (approx. 1890 ~
1920), but also modern ragtime compositions. The dataset
is separated randomly in a test set of 200 pieces and a train-
ing set of 11345 pieces. After the preprocessing detailed
in Sec. 3.1, 74 and 4600 pieces are considered suitable for
respectively testing and training. For one piece we had to
correct the meter and for another piece the rotation.

4.2 FMpop collection

The RAG corpus only contains pieces in the ragtime style.
In order to study how well PRIMA predicts the meter
and rotation of regular pop music, we collected 7585
MIDI files from the website Free-Midi.org.> This collec-
tion comprises MIDI files describing pop music from the
1950 onwards, including various recent hit songs, and we
call this collection the FMpop collection. For evaluation
we randomly select a test set of 200 pieces and we use the
remainder for training. In the training and test sets, 3122
and 89 pieces successfully pass the preprocessing stage,
respectively. Most of the pieces that drop out have a quant-
isation error greater than 2 percent. For three pieces we
had to correct the meter, and for four pieces the rotation.

4.3 Experiments

We perform experiments on both the RAG and the FMpop
collections in which we evaluate the detection performance
by comparing the proportion of correctly classified meters,
rotations, and the combinations of the two. In these experi-
ments we probe three different training variants of PRIMA:
(1) a variant where we use Maximally Different Bin (MDB)

4see http://ragtimecompendium.tripod.com/ for more
information
Shttp://www.free-midi.org/
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RAG Collection

(Training) model Meter Rotation Both
Duple / Triple meters

MIDItoolbox .76 — —
MDB selection (2 bins) 97 .88 .86
MDB selection (3 bins) .97 .97 .95
GA optimized 97 .99 .96
Meters: 2,2, 3,4, §

MDB selection (2 bins) .85 .92 .80
MDB selection (3 bins) .80 .92 .76
GA optimised .84 .93 .82

Table 1. The proportion of correctly detected meter and
rotation in the RAG collection. The first section shows the
duple / triple meter classification, the second section shows
the proportions for the five most used time signatures.

FMpop Collection

(Training) model Meter Rotation Both
Duple / Triple meters

MIDItoolbox .74 — —
MDB selection (2 bins) 94 .90 .85
MDB selection (3 bins) .90 .93 .84
GA optimized .94 .88 .83
Meters: 3, 4, 8, 2

MDB selection (2 bins) .94 .81 .79
MDB selection (3 bins) .94 .81 .78
GA optimised 94 91 .87

Table 2. The correctly detected proportion for on the
FMpop collection for duple / triple meter classification and
for the four most used time signatures.

selection in which we select the two most salient bins and
(2) a variant in which we select the three most salient bins.
Finally, (3) we also use a Genetic algorithm to select the
bins and estimate the rotation priors.

To place the performance of PRIMA into context, we
compare the results to the meter detection model imple-
mented in the MIDItoolbox [5]. This model only pre-
dicts whether a meter is duple or triple and does not pre-
dict the time signature. Therefore, we can compare the
MIDItoolbox meter finding to PRIMA only in the duple /
triple case. To ensure we use the exact same input data, we
have written our own NMAT export script that transforms
the MIDI as preprocessed by PRIMA into a matrix that can
be parsed by the MIDItoolbox. All source code and data
reported in this study is available on request.

4.4 Results

We evaluate the performance PRIMA and its different train-
ing strategies on duple / triple meter detection and the de-
tection of five different time signatures. In Table 1 the pro-
portions of correctly detected meters in the RAG collection
are displayed. In the duple / triple meter detection exper-

iments all variants of PRIMA outperform the MIDItoolbox
meter detection. We tested the statistical significance of all
individual differences between MIDItoolbox meter detec-
tion and PRIMA using McNemar’s x? test, and all differ-
ences are significant (p < 0.001). In the classification of
five different time signatures the performance drops con-
siderably. However, rags are mostly notated in 3, 4, and 3
meters, and even experienced musicians have difficulty de-
termining what is the correct meter. Still PRIMA achieves a
96 percent correct estimation for meter and rotation in the
duple / triple experiment and 82 percent correct estimation
on the full time signature detection.

In Table 2 the proportions of correctly classified meters
in the FMpop Collection are displayed. Also on onsets ex-
tracted from popular music, PRIMA outperforms the MIDI-
toolbox meter finding. Again, we tested the statistical sig-
nificance of the differences between all PRIMA variants
using McNemar’s X2 test, and all differences are statist-
ically significant (p < 0.002 for GA and MDB selection (2
bins), and p < 0.017 for MDB selection (3 bins)). Overall,
PRIMA’s performance on the FMpop Collection is lower
than on the RAG Collection for the duple / triple detection,
but higher for time signature detection. Respectively, 85
and 87 percent correct classification is achieved for both
meter and rotation. Generally, the GA seems to yield the
best results.

5. DISCUSSION AND CONCLUSION

We presented a new model for detecting the meter and first
downbeat position of a piece of music. We showed that
IMA is valuable in the context of meter and first down-
beat detection. PRIMA is flexible, can be easily trained
on new data, and is conceptually simple. We have shown
that PRIMA performs well on the FMpop and RAG Col-
lections and outperforms the MIDItoolbox meter finding
model. However, while PRIMA can be trained on data of
specific styles, the parameters of the MIDItoolbox meter
detection model are fixed. Hence, the performance of
the MIDItoolbox should be seen as a baseline system that
places PRIMA’s results into context.

In this study we applied PRIMA to MIDI data only be-
cause we believe that corpus based analyses on collections
like the RAG collection can really benefit from meter find-
ing. Nevertheless, PRIMA’s IMA based feature and probab-
ilistic model are generic and can be easily applied to onset
sequences extracted from audio data. Hence, it would be
interesting to investigate how PRIMA model performs on
audio data, and compare it to the state-of-the-art in audio
meter detection. We strongly believe that also in the au-
dio domain meter detection can benefit from IMA. We are
confident that IMA has the potential to aid in solving many
MIR tasks in both the audio and the symbolic domain.
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