
SYSTEMATIC EXPLORATION OF COMPUTATIONAL MUSIC
STRUCTURE RESEARCH

Oriol Nieto
Pandora Media, Inc.

onieto@pandora.com

Juan Pablo Bello
Music and Audio Research Laboratory

New York University
jpbello@nyu.edu

ABSTRACT

In this work we present a framework containing open
source implementations of multiple music structural seg-
mentation algorithms and employ it to explore the hy-
per parameters of features, algorithms, evaluation metrics,
datasets, and annotations of this MIR task. Besides testing
and discussing the relative importance of the moving parts
of the computational music structure eco-system, we also
shed light on its current major challenges. Additionally, a
new dataset containing multiple structural annotations for
tracks that are particularly ambiguous to analyze is intro-
duced, and used to quantify the impact of specific anno-
tators when assessing automatic approaches to this task.
Results suggest that more than one annotation per track is
necessary to fully address the problem of ambiguity in mu-
sic structure research.

1. INTRODUCTION

In recent years, numerous open source packages have been
published to facilitate research in the field of music infor-
mation retrieval. These publications tend to focus on a
specific part of the standard methodology of MIR: audio
feature extraction (e.g., Essentia [2], librosa [14]), datasets
(e.g., SALAMI [22], MSD [1]), evaluation metrics (e.g.,
mir eval [20]), and task-specific algorithm implementations
(e.g., segment boundary detection [13], pattern discovery
[16], beat tracking [4]). What is often missing are inte-
grated frameworks where the choice of different moving
blocks of the whole process (i.e., feature design, algorithm
implementations, annotated datasets and evaluation met-
rics) can be interchanged in a seamless fashion, allowing
the type of in-depth comparative studies on state of the
art techniques that are virtually impossible in the context
of MIREX 1 : e.g., what combination of features or pre-
processing stages maximize results? What mixture of ap-

1 One exception would be MARSYAS [25], where feature extraction,
algorithm implementations for a limited number of tasks, dataset annota-
tions, and evaluations coexist in a single environment.
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proaches should be used if highly accurate boundary lo-
calization is important? What implementations are more
resilient to changes in data, features or prior information?

In this work we introduce an open source framework to
facilitate reproducibility and encourage research in music
structural segmentation. Building on top of existing open
projects [9, 14, 20, 22], this framework combines feature
computation, algorithm implementations, evaluation met-
rics, and annotated datasets in a standalone software fo-
cused on this area of MIR. Besides describing the architec-
ture of this framework, we show its potential by compiling
a new dataset composed of poly-annotated tracks carefully
selected by the presented software, and conducting a se-
ries of experiments to systematically explore the impact of
each moving part of this task. These new data and explo-
rations reinforce the notion that this task is highly ambigu-
ous [3], since we show that the ranking of computational
approaches in terms of performance depends not only on
what feature or dataset is employed, but on which annota-
tion is used as reference.

The rest of this article is organized as follows: In Sec-
tion 2 the framework is introduced. Section 3 discusses the
creation of the new dataset. In Section 4 the explorations
of the different moving parts of the structural segmenta-
tion eco-system are presented. Finally, in Section 5, the
conclusions are drawn.

2. MUSIC STRUCTURE ANALYSIS
FRAMEWORK

MSAF 2 is an open source framework written in Python
that allows to thoroughly analyze the entire music structure
segmentation eco-system. In this section we provide an
overview of this MIR task and a description of the most
relevant characteristics of this framework.

2.1 Structural Segmentation

This task, whose main goal is to automatically identify
the large-scale, non-overlapping segments of a given au-
dio signal (e.g., verse, chorus), has been investigated in
MIR for over a decade [19], and nowadays it is still one
of the most active in MIREX [23]. Potential applications
to motivate its research are numerous, e.g., improve intra-
track navigation, yield enhanced segment-level music rec-

2 https://github.com/urinieto/msaf
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ommendation systems, produce educational visualisation
tools to better understand musical pieces. This task is of-
ten divided in two subproblems: boundary detection and
structural grouping. The former identifies the beginning
and end times of each music segment within a piece, and
the latter labels these segments based on their acoustic sim-
ilarity.

Several open source implementations to approach this
problem have been published [10, 12, 13, 26], but given
the differences in feature extraction, datasets, and evalu-
ation metrics, it can be challenging to easily compare their
results (e.g., Weiss’ implementation [26] expects features
computed with Ellis’ code [5]; Levy’s implementation [10]
is only available in the form of a Vamp Plugin; McFee’s
publication [12] reports non-standard evaluation metrics
with the first and last boundary removed). Our proposed,
open-source MSAF seeks to address these issues by inte-
grating these various components.

In the following subsections, the main parts of this
framework are described. MSAF is written such that any
of these parts could be easily extended.

2.2 Features

Most music structure algorithms accept different types of
features in order to discover structural relations in har-
mony, timbre, loudness or a combination of them. Here we
list the set of features that MSAF can compute by making
use of librosa [14]: Pith Class Profiles (PCPs, representing
harmony), Mel-Frequency Cepstral Coefficients (MFCCs,
representing timbre), Tonal Centroids (or Tonnetz [7], rep-
resenting harmony), and Constant-Q Transform (CQT, rep-
resenting harmony, timbre and loudness).

Each of these features depend on additional analysis pa-
rameters such as sampling rate, FFT size, and hop size.
Furthermore, a beat-tracker [4] (contained in librosa) is
employed to aggregate all the features at a beat level, thus
obtaining the so-called beat-synchronous representations.
This process, which is common in structural segmentation,
reduces the number of feature vectors while introducing
tempo invariance. In this work we rely on this type of fea-
tures exclusively, even though MSAF can operate both on
beat- or frame-synchronous descriptors.

2.3 Algorithms

Algorithms of this task are commonly classified based
on the subtask that they aim to solve. MSAF includes:
seven algorithms that detect boundaries, and five that group
structure (see Table 1).

The implementations in MSAF are either forked from
the public repositories of their original publications [10,
12, 13, 26] or implemented from scratch when no access
to the source code is available. Some differences in the
results might arise given the difficulty of exactly recreating
all implementation details, even though these differences
appear to be minor.

Algorithm Boundary Grouping
2D-Fourier Magnitude Coeffs [15] No Yes

Checkerboard Kernel [6] Yes No
Constrained Cluster [10] Yes Yes

Convex NMF [18] Yes Yes
Laplacian Segmentation [12] Yes Yes

Ordinal LDA [13] Yes No
Shift Invariant PLCA [26] Yes Yes
Structural Features [21] Yes No

Table 1: Approaches included in MSAF and used in the experi-
ments.

2.4 Evaluation Metrics

Structural segmentation employs multiple metrics to eval-
uate each of its two subproblems. For boundary detection,
the Hit Rate is the most standard one, where the estimated
boundaries are considered “hits” if they fall within a cer-
tain time window from the reference ones. This yields Pre-
cision (how many estimated boundaries are correct) and
Recall (how many reference boundaries were estimated)
scores, which are weighted with the standard F -measure.
The time windows are typically 3 or 0.5 seconds. More-
over, sometimes the first and last boundaries are “trimmed”
(i.e., not considered) given the fact that they should corre-
spond to the beginning and end of the track, which should
be trivial to detect. It has been shown that having a stronger
weight on Precision than Recall tends to better align with
perception [17], therefore this weight parameter is also part
of MSAF. The other standard metric to report the quality
of the boundaries is the Median Deviation [24], where the
median deviation from each estimated boundary to its clos-
est reference, and vice versa, are reported.

The most standard metric to assess the quality of the
structural grouping subproblem is the Pairwise Frame
Clustering [10]. This metric compares each pair of frames
by checking whether they belong to the same label (or clus-
ter), both for the estimation and reference. The ratio be-
tween the two sets of pairs over the number of similar pairs
in the estimation yields the Precision metric, while Recall
is the ratio between the two sets over the number of sim-
ilar pairs in the reference. Again, the F -measure weights
these two scores. Finally, an alternative metric named Nor-
malized Conditional Entropy [11], based on the entropy of
each frame between the estimation and reference, is also
reported. This metric is formed by the under- and over-
segmentation scores, which, again, can be compacted in a
single score with the F -measure.

These metrics are reported in MIREX, and are trans-
parently implemented in mir eval [20], which MSAF em-
ploys.

2.5 Datasets

The following annotated datasets are the most common
for assessing structural segmentation: Isophonics – 298
annotated tracks mostly of popular music 3 ; SALAMI –
two human references plus three levels of annotation per

3 http://isophonics.net/datasets
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track [22]. It contains 769 musical pieces ranging from
western popular music to world music 4 ; The Beatles TUT
– refined version of 174 annotations of The Beatles cor-
rected and published by members of the Tampere Univer-
sity of Technology 5 .

Additionally, we make use of these uncommon and
novel datasets: Cerulean – 104 songs collected by a com-
pany, subjectively deemed to be challenging tracks within
a large collection. The genre of the songs varies from clas-
sical to heavy metal; Epiphyte – another industrial set of
1002 tracks composed mainly of pop music songs; Sargon
– small set of 30 minutes of heavy metal tracks released
under a Creative Commons license; SPAM – new dataset
discussed in the next section.

All of these datasets are converted to the JAMS for-
mat [9], which is the default format that MSAF employs,
and are publicly available in the MSAF repository (except
Cerulean and Epiphyte, which are privately owned). This
format is JSON-compatible and allows for multiple anno-
tations in a single file for numerous tasks operating on a
given audio track, making it ideal for the purposes of this
work.

3. STRUCTURAL POLY-ANNOTATIONS OF
MUSIC

SPAM is a new dataset composed of 50 tracks sampled
from a large collection containing all the previously dis-
cussed sets (a total of 2,173 tracks). Following an approach
inspired by [8], all MSAF algorithms were run on these
2,173 tracks. The tracks were then ranked based on the
average Hit Rate F -Measure with 3 seconds window (i.e.,
the most standard metric for boundary detection) across all
algorithms. Formally, the rank is computed using the mean
ground-truth precision (MGP) score, defined as follows:

MGPi(B, g) =
1

M

M∑

j=1

g(bij) (1)

whereB ∈ RN,M is the matrix containing all the boundary
estimations bij ∈ B for track i ∈ [1, N ] using algorithm
j ∈ [1,M ], and g is the evaluation function (i.e., Hit Rate
at 3 seconds). Ranking the tracks using this metric yields
a list sorted by how challenging these tracks are for auto-
matic segmentation.

The SPAM dataset is composed by the 45 most chal-
lenging tracks (i.e., the 45 at the bottom of the ranked list)
plus the 5 least challenging (i.e., the top 5 tracks in the list).
The number of tracks was kept small to facilitate the col-
lection of five additional annotations using the same guide-
lines as in SALAMI. These five annotations were collected
by music students (four graduates and one undergraduate)
from the Steinhardt School at New York University, with
an average number of years in musical training of 15.3 ±
4.9, and with at least 10 years of experience as players

4 Only the first half of the full SALAMI annotations were used, since
the authors did not have access to the rest of audio files.

5 http://www.cs.tut.fi/sgn/arg/paulus/
beatles sections TUT.zip

of a musical instrument. The goal was to create a set in
which to explore the variability of structural annotations
across subjects, focusing on the most challenging tracks
(45) while still having a reduced control group (5). This
split could foster further investigation on the differences
between easy and challenging tracks.

The type of music ranges between jazz and blues, clas-
sical, world music, rock, western pop, and live recordings.
Due to legal copyright issues, the audio of these tracks
is not available, however, the features described in Sec-
tion 2.2 are included along with the five annotations for
each of the 50 tracks of SPAM.

4. EXPERIMENTS

In this section we report a series of experiments to fur-
ther explore the task of structural segmentation carried out
using MSAF, classified by the moving parts described pre-
viously. Each experiment can be subdivided based on the
subproblems of boundary detection and structural group-
ing. For each experiment the default parameters are the
following, unless otherwise specified: sampling rate is
11025Hz; FFT and hop sizes are 2048 and 512 samples,
respectively; default feature type is beat-synchronous PCP;
number of octaves and starting frequency for the PCPs are
7 and 27.5Hz, respectively; number of MFCCs is fixed to
14; number of CQT bins, starting at 27.5Hz, is 87; eval-
uation metrics are the F -measures of the Hit Rate with
3 seconds window and the Pairwise Frame Clustering for
boundary detection and structural grouping, respectively;
the boundaries used as input to the structural grouping al-
gorithms are annotated; and the default dataset is The Bea-
tles TUT. Code to reproduce the plots and results is avail-
able online 6 .

4.1 Features

We start by running all MSAF algorithms 7 using differ-
ent types of features. In Figure 1 we can see, as expected,
that the average scores of the boundary algorithms vary
based on the feature types. This aligns with the results of a
two-way ANOVA on the F -measure of the Hit Rate using
the algorithms and features as factors, where the effect on
the type of features is significant (F (3, 3460) = 4.20, p <
0.01). Also as expected, there is significant interaction be-
tween factors (F (12, 3460) = 15.15, p < 0.01), which can
be seen in the plot when observing the poor performance
of the Constrained Clustering algorithm for the Constant-Q
features in comparison with the rest of the features.

A similar behavior occurs when analyzing the perfor-
mance of the structural grouping algorithms, as can be
seen in Figure 2. The two-way ANOVA confirms de-
pendency of the type of features for these algorithms
(F (3, 2768) = 18.07, p < 0.01), with significant inter-
action (F (9, 2768) = 14.5, p < 0.01) mostly due to the
behavior, again, of the Constrained Clustering algorithm

6 https://github.com/urinieto/msaf-experiments
7 Except Ordinal LDA and Laplacian Segmentation, since they only

accept a specific combination of features as input.
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Figure 1: Boundary algorithms’ performance depending
on the type of features.
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Figure 2: Structural algorithms’ performance depending
on the type of features.

when using Constant-Q features. Convex NMF still per-
forms slightly better with this type of features, while the
rest of the algorithms seem to be optimized to operate on
the features suggested in their original publications.

This experiment yields two major points: (i) features
describing timbre information (CQT, MFCCs) seem to
be slightly better than those describing pitch information
(PCPs, Tonnetz) for boundary detection, but the reverse
seems to be true for clustering, and (ii) the Structural Fea-
tures and Convex NMF methods obtain better results when
using CQT, while in their original publications they rec-
ommend using harmonic features such as PCPs.

4.2 Algorithms

The quality of the segment boundaries can impact the re-
sults of the structural grouping subproblem [21]. MSAF
lets us explore this by using the output of several bound-
ary algorithms as input to the structural algorithms. Fig-
ure 3 shows average scores of the structural algorithms in
MSAF. Additionally, the results with annotated boundaries
are used and plotted in the first column. The boundary
methods are sorted from left to right based on their perfor-
mance on The Beatles TUT dataset. As expected, the qual-
ity of the boundary detection process affects the structural
subproblem. A two-way ANOVA on the F -measure of the
Pairwise Frame Cluster, with boundary and structural algo-
rithms as factors, confirms this (F (7, 6920) = 183.10, p <
0.01). A significant interaction between the two factors is
also present (F (28, 6920) = 16.44, p < 0.01), suggest-
ing that the ranking of the algorithms will vary depend-
ing on the boundaries employed. This is confirmed by the
Friedman test, which ranks the structural algorithms us-
ing Structural Features boundaries (F (4) = 242.31, p <
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Figure 3: Performance of the structural algorithms con-
tained in MSAF when using different types of previously
estimated boundaries as input.

0.01) differently than when using Convex NMF bound-
aries (F (4) = 225.05, p < 0.01). For example, the
2D Fourier Magnitude Coefficients method becomes lower
ranked than Convex NMF in the latter case, as can be seen
in the plot.

Interesting conclusions can be drawn: first, some struc-
tural algorithms are more robust to the quality of the
boundaries than others (e.g., 2D-FMC sees a strong impact
on its performance when not using annotated boundaries,
especially when compared with the Laplacian method).
Second, the best performing boundary algorithm will not
necessarily make the results of a structural algorithm bet-
ter, as can be seen in the structural results of C-NMF and
SI-PLCA. To exemplify this, note how SF (which tends
to outperform all other methods in terms of the standard
metric, see Figure 1) produce, in fact, one of the lowest re-
sults in structural grouping for the C-NMF method. On the
other hand, the Laplacian method (which outputs bound-
aries that are comparable to the ones by the Checkerboard
kernel), obtains results on the structural part that are much
better than those by SF. Finally, depending on the bound-
aries used, structural algorithms will be ranked differently
in terms of performance (especially when using annotated
boundaries as input). This is something that is not cur-
rently taken into account in the MIREX competition, and
might be an interesting asset to add in the future for a
deeper evaluation of the subtask of structural grouping.

4.3 Evaluation Metrics

In this section we explore the different results obtained
by MSAF algorithms when assessed using the available
metrics. For boundary detection, the metrics described
in Section 2.4 are explored, which are depicted in Fig-
ure 4a as “Dev E2R” for the median deviations from Esti-
mations to References (R2E for the swapped version), and
“HR n” for the Hit Rate with a time window of n sec-
onds (the w and t indicate the weighted and trimmed ver-
sions, respectively). The median deviations are divided
by 4 in order to normalize the scores within the range
of 0 to 1, and then inversed in order to indicate a bet-
ter performance with a higher score. As expected, scores
are significantly different depending on the metric used,

550 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



Dev_E2R Dev_R2E HR_3 HR_3w HR_3t HR_0.5 HR_0.5w HR_0.5t
Metrics

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

Checkerboard Kernel
Constrained Clustering
Convex NMF
Laplacian Segmentation
Ordinal LDA
Shift-Invariant PLCA
Structural Features

(a) Boundaries

PWF NCE
Metrics

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

es

2D Fourier Magnitude Coeffs
Constrained Clustering
Convex NMF
Laplacian Segmentation
Shift-Invariant PLCA

(b) Structure

Figure 4: Scores of MSAF algorithms depending on eval-
uation metrics.

which is confirmed by the two-way ANOVA of the scores
with metrics and algorithms as factors (the metric effect
is F (7, 9688) = 458, p < 0.01). But perhaps more in-
teresting is the fact that some algorithms perform better
with some metrics than others (as suggested by the in-
teraction effect of the two-way ANOVA: F (42, 9688) =
11.24, p < 0.01). For example, SF is the best algorithm
in terms of the Hit Rate with a 3 seconds window, but it
is surpassed by the Laplacian and OLDA algorithms when
using a shorter window of 0.5, as the Friedman test con-
firms (F (6) = 200.13, p < 0.01) for the ranking of the
Hit Rate with 3 seconds, which is different than the one
for 0.5 seconds (F (6) = 210.67, p < 0.01). Therefore,
we can state that, amongst these algorithms, SF is ideal
if precise boundary localization is not necessary (HR 3),
whereas Laplacian outperforms other methods when this
localization has to be accurate (HR 0.5).

In terms of structural algorithms, two metrics (Pairwise
Frame Clustering and Normalized Conditional Entropies)
are depicted in Figure 4b. A similar behavior occurs
here, where algorithms will be ranked differently depend-
ing on the metric of choice (Friedman test for the struc-
tural algorithms evaluated using the PWF yields F (4) =
230.11, p < 0.01 and different ranking than the one for
NCE, which results in F (4) = 215.12, p < 0.01). Interest-
ingly, all algorithms except Laplacian tend to yield better
results when using the NCE scores. Given these results, it
would be hard to firmly conclude what the best structural
algorithm is for this dataset, since 2D-FMC outperforms
Laplacian when evaluated using the NCE scores, which is
the opposite behavior when using the PWF.

4.4 Datasets

In Figure 5, the average scores for all boundary algorithms
in MSAF on different datasets are depicted. If a dataset
contains more than one annotation per track, the first an-
notator in their JAMS files is used. As expected, differ-
ent results are obtained depending on the dataset, as con-
firmed by the two-way ANOVA on the evaluation met-
ric with dataset and algorithm as factors (dataset effect:
F (5, 16604) = 512.18, p < 0.01). From the plot it can
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Figure 5: Boundary algorithms’ performance depending
on dataset.
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Figure 6: Structural algorithms’ performance depending
on dataset.

also be seen that some algorithms perform better than oth-
ers depending on the dataset, which might indicate that
they are tuned to solve this problem for a specific type of
music. Overall, some datasets seem generally more chal-
lenging than others, the SPAM dataset being the one that
obtains the worst results, which aligns with the method
used to collect their data explained in Section 3.

In terms of the structural algorithms (Figure 6), the two-
way ANOVA identifies significant variation, with a rele-
vant effect on the dataset of F (6, 11875) = 133.16, p <
0.01. Contrasting with the boundary results, the scores for
the SPAM dataset are, on average, one of the highest in
terms of structural grouping. This, by itself, warrants dis-
cussion, since this dataset was chosen to be particularly
challenging from a machine point of view, but only when
taking the boundary detection subproblem into account.
What these results suggest is that, (i) given the human ref-
erence boundaries (which are supposed to be difficult to
detect), the structural algorithms perform well at cluster-
ing the predefined segments, and/or (ii) we might need a
better evaluation metric for the structural subproblem.
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Figure 7: Scores of the boundary algorithms for each hu-
man reference in the SPAM dataset.

4.5 Human References

The last experiment focuses on analyzing the amount of
variation of the MSAF algorithms depending on the an-
notator used. For this purpose, the five annotations per
track of the SPAM dataset become particularly helpful.
Starting with the boundaries, we can see in Figure 7 how
variable the scores become when using different annota-
tors for the same exact set of audio files. The two-way
ANOVA of HR 3 with annotators and algorithms as fac-
tors validates this by reporting a significant annotator ef-
fect (F (4, 1705) = 4.05, p < 0.01). This suggests that
subjectivity plays an important role for this subtask, and
more than one set of boundaries would be actually valid
from a human perspective. Therefore, the idea of a sin-
gle “ground-truth” for boundary detection can potentially
be misleading. Given this amount of variation depending
on the annotator, it is interesting to see that the ranking
also changes, making it difficult to compare algorithm be-
haviors. Even though the Laplacian algorithm performs
the best for the majority of annotators, it is ranked as sec-
ond when using annotator 0 by the Friedman test (F (5) =
21.24, p < 0.01), while it is ranked as first for the rest
of annotators. These results suggest that, given the sub-
jectivity effect in this task, it is indeed important to col-
lect as many references as possible in order to better assess
boundary algorithms.

Lastly, the results of the structural algorithms contrast
with the previously discussed ones. In this case, there is
little dependency on the human reference chosen, as there
is no significant effect for the annotator factor in the two-
way ANOVA (F (4, 1225) = 1.08, p = 0.37), without sig-
nificant interaction (F (16, 1225) = 0.93, p = 0.53). This
advocates that the structural grouping subproblem, when
applied to a dataset where the grouping is not particularly
challenging (as depicted in Figure 6), is not as affected
by subjectivity as the boundary detection one, even though
further analysis with larger and more challenging datasets
—and perhaps with automatically estimated boundaries—
should be performed in order to confirm this.
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Figure 8: Scores of the structural algorithms for each hu-
man reference in the SPAM dataset.

5. CONCLUSIONS

We have presented an open-source framework that facili-
tates the task of analyzing, assessing, and comparing multi-
ple implementations of structural segmentation algorithms
and have employed it to compile a new poly-annotated
dataset and to systematically explore the different moving
parts of this MIR task. These experiments show that the
relative rankings between algorithms tend to change de-
pending on these parts, making it difficult to choose the
“best” computational approach. Results also illustrate the
problem of ambiguity in this task, and it is our hope that the
new SPAM dataset will help researchers to further address
this problem. In the future, we wish not only to include
more algorithms in this open framework, but to have ac-
cess to similar frameworks to encourage research on other
areas of MIR.

6. REFERENCES

[1] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman,
and Paul Lamere. The Million Song Dataset. In Proc of the
12th International Society of Music Information Retrieval,
pages 591–596, Miami, FL, USA, 2011.

[2] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez, Sankalp
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