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ABSTRACT

In many pieces of music, the composer signals how in-
dividual sonic elements (samples, loops, the trumpet sec-
tion) should be grouped by introducing sources or groups
in a layered manner. We propose to discover and lever-
age the layering structure and use it for both structural
segmentation and source separation. We use reconstruc-
tion error from non-negative matrix factorization (NMF)
to guide structure discovery. Reconstruction error spikes at
moments of significant sonic change. This guides segmen-
tation and also lets us group basis sets for NMF. The num-
ber of sources, the types of sources, and when the sources
are active are not known in advance. The only informa-
tion is a specific type of layering structure. There is no
separate training phase to learn a good basis set. No prior
seeding of the NMF matrices is required. Unlike standard
approaches to NMF there is no need for a post-processor
to partition the learned basis functions by group. Source
groups are learned automatically from the data. We eval-
uate our method on mixtures consisting of looping source
groups. This separation approach outperforms a standard
clustering NMF source separation approach on such mix-
tures. We find our segmentation approach is competitive
with state-of-the-art segmentation methods on this dataset.

1. INTRODUCTION

Audio source separation, an open problem in signal pro-
cessing, is the act of isolating sound producing sources (or
groups of sources) in an audio scene. Examples include
isolating a single person’s voice from a crowd of speakers,
the saxophone section from a recording of a jazz big band,
or the drums from a musical recording [13].

A system that can understand and separate musical sig-
nals into meaningful constituent parts (e.g. melody, back-
ing chords, percussion) would have many useful applica-
tions in music information retrieval and signal process-
ing. These include melody transcription [18], audio remix-
ing [28], karaoke [21], and instrument identification [8].

Many approaches have been taken to audio source sep-
aration, some of which take into account salient aspects
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Figure 1. An exemplar layering structure in classical mu-
sic - String Quartet No. 1, Op. 27, Mvt IV, Measures 1-5.
by Edvard Grieg. The instruments enter one at a time in a
layering structure, guiding the ear to both the content and
the different sources.

of musical structure, such as musical scores, or pitch (see
Section 2). Few algorithms have explicitly learned musical
structure from the audio recording (using no prior learning
and no musical score) and used it to guide source discov-
ery and separation. Our approach is designed to leverage
compositional structures that introduce important musical
elements one by one in layers. In our approach, separa-
tion alternates with segmentation, simultaneously discov-
ering the layering structure and the functional groupings of
sounds.

In a layered composition, the composer signals how in-
dividual sound sources (clarinet, cello) or sonic elements
(samples, loops, sets of instruments) should be grouped.
For example, often a song will start by introducing sources
individually (e.g. drums, then guitar, then vocals, etc) or
in groups (the trumpet section). Similarly, in many songs,
there will be a “breakdown”, where most of the mixture
is stripped away, and built back up one element at a time.
In this way, the composer communicates to the listener the
functional musical groups (where each group may consist
of more than one source) in the mixture. This layering
structure is widely found in modern music, especially in
the pop and electronic genres (Figure 2), as well as classi-
cal works (Figure 1).

We propose a separation approach that engages with the
composer’s intent, as expressed in a layered musical struc-
ture, and separates the audio scene using discovered func-
tional elements. This approach links the learning of the
segmentation of music to source separation.

We identify the layering structure in an unsupervised
manner. We use reconstruction error from non-negative
matrix factorization (NMF) to guide structure discovery.
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Reconstruction error spikes at moments of significant sonic
change. This guides segmentation and also lets us know
where to learn a new basis set.

Our approach assumes nothing beyond a layering struc-
ture. The number of sources, the types of sources, and
when the sources are active are not known a priori. In
parallel with discovering the musical elements, the algo-
rithm temporally segments the original music mixture at
moments of significant change. There is no separate train-
ing phase to learn a good basis set. No prior seeding of
the NMF matrices is required. Unlike standard NMF there
is no need for a post-processor that groups the learned ba-
sis functions by source or element [9] [25]. Groupings are
learned automatically from the data by leveraging informa-
tion the composer put there for a listener to find.

Our system produces two kinds of output: a tempo-
ral segmentation of the original audio at points of signif-
icant change, and a separation of the audio into the con-
stituent sonic elements that were introduced at these points
of change. These elements may be individual sources, or
may be groups (eg. stems, orchestra sections).

We test our method on a dataset of music built from
commercial musical loops, which are placed in a layering
structure. We evaluate the algorithm based on separation
quality, as well as segmentation accuracy. We compare our
source separation method to standard NMF, paired with a
post processer that clusters the learned basis set into groups
in a standard way. We compare our segmentation method
to the algorithms included in the Musical Structure Analy-
sis Framework (MSAF) [16].

The structure of this paper is as follows. First, we de-
scribe related work in audio source separation and mu-
sic segmentation. Then, we give an overview of our pro-
posed separation/segmentation method, illustrated with a
real-world example. We then evaluate our method on our
dataset. Finally, we consider future work and conclude.

2. RELATED WORK
2.1 Music segmentation

A good music segmentation reports perceptually relevant
structural temporal boundaries in a piece of music (e.g.
verse, chorus, bridge, an instrument change, a new source
entering the mixture).

A standard approach for music segmentation is to lever-
age the self-similarity matrix [7]. A novelty curve is ex-
tracted along the diagonal of the matrix using a checker-
board kernel. Peak picking on this novelty curve results in
a music segmentation. The relevance of this segmentation
is tied to the relevance of the similarity measure.

[12] describes a method of segmenting music where
frames of audio are labeled as belonging to different states
in a hidden Markov model, according to a hierarchical la-
beling of spectral features. [10] takes the self-similarity
matrix and uses NMF to find repeating patterns/clusters
within it. These patterns are then used to segment the au-
dio. [17] expands on this work by adding a convex con-
straint to NMF.

[22] infers the structural properties of music based on
structure features that capture both local and global prop-
erties of a time series, with similarity features.

The most similar work to ours is [27], which uses shift
invariant probabilistic latent component analysis to extract
musical riffs and repeated patterns from a piece of music.
The activation of these recurring temporal patterns is used
to then segment the audio. Our approach takes into account
temporal groupings when finding these patterns, whereas
their approach does not.

Our proposed method uses the reconstruction error of a
source model over time in a musical signal in order to find
structural boundaries. We explicitly connect the problem
of music segmentation with the problem of audio source
separation and provide an alternative to existing approaches
to finding points of significant change from the audio.

2.2 Source separation

There are several source separation methods that leverage
high-level musical information in order to perform audio
source separation.

Separation from repeating patterns: REPET [21] sep-
arates the repeating background structure (e.g. bass, back-
ing chords, rhythm from the guitar, and drums in a band)
from a non-repeating foreground (e.g. lead singer with a
melody) by detecting a periodic pattern (e.g. a sequence of
chords that repeats every four bars). While REPET models
the repeating background structure as a whole, our pro-
posed method models the individual musical elements im-
plicit in the composer’s presentation of the material and
does not require a fixed periodic pattern.

In [20], source models are built using a similarity ma-
trix. This work looks for similar time frames anywhere in
the signal, using a similarity measure (cosine similarity)
that does not take musical grouping or temporal structure
into account. Our method leverages the temporal group-
ings created by the composer’s layering of sonic elements.

Informed separation: [4] incorporates outside infor-
mation about the musical signal. A musical score gives
information about the pitch and timing of events in the au-
dio and is commonly used for informed musical separation.
First, [4] finds an alignment between the low-level audio
signal and the high-level musical score (in MIDI form).
The pitch and timing of the event are then used to per-
form audio separation. These score-informed approaches
are elaborated on in [6]. Our approach, does not require
a score. Musical elements are discovered, modelled, and
separated from the mixture using only the mixture, itself.

Non-negative matrix factorization (NMF). Our work
uses NMF which was first proposed for audio source sep-
aration in [24]. Probabilistic latent component analysis
(PLCA) can be seen as a probabilistic formulation of NMF,
and is also used for source separation [23].

NMF finds a factorization of an input matrix X (the
spectrogram) into two matrices, often referred to as spec-
tral templates W and activations H. Straightforward NMF
has two weaknesses when used for source separation that
will be elaborated on in Section 3: (1) there is no guar-



Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

497

F 11025 ol S

< 21961ttt i

2 1098 [Erre .

3

g 452

& Qoo 0:30

Time (s)

s
510 Normalized reconstruction error over time for sampled lay
L L o o
coghinnnn L
o LN T T B T T A B B B A A B B O I O O B A O O A B O O B A O VN L O e O O B B A A A S N S I
0B i |
2040 i } 7 Frii
E
S 0.0 T T e TP P T e T e b
8”70 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
o« Time (beats)
o
o N . " .
I Normalized reconstruction error over time for full discovered layer
¢ 1.0 T e T e e e T T T T e e T T T T T e T T TR
e ol L ‘
o L T T T I O A B B O L O B T I O O B A B O B I I [ " I
B 0.6p s ccceeeeeccceeeeoffflg I m‘!‘mu-l{” IRERERRRRlRRE NI
g0.44:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::AWWWMWMW&WWHMMMM:M
Sooltin i UL I
€ 0 [ A LA L LA LA LA AA A A AT A LA L LA L LA L L LAAA A A 18 i
S o ol A A A A A A A A A A A L s
%70 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 24
-4

Time (beats)

Figure 2. The top graph shows the spectrogram of 0:00 to 1:01 of One More Time, by Daft Punk. Ground truth segmentation
is shown by the solid vertical black lines, where each line signals a new source starting. The middle graph shows the
behavior of the reconstruction error of a sampled source layer over time (e). When new layers begin, reconstruction error
noticeably spikes and changes behavior. The bottom graph shows the reconstruction error over time for a full model of the
first layer. Beats are shown by the vertical dashed black lines.

antee that an individual template (a column of W) corre-
sponds to only one source and (2) spectral templates are
not grouped by source. Until one knows which templates
correspond to a particular source or element of interest, one
cannot separate out that element from the audio.

One may solve these problems by using prior training
data to learn templates, or meta-data, such as musical scores
[6], to seed matrices with approximately-correct templates
and activations. User guidance to select the portions of the
audio to learn from has also been used [2].

To group spectral templates by source without user guid-
ance, researchers typically apply timbre-based clustering

negative matrix X as the product of two matrices W and
H. In audio source separation, X is the power spectrogram
of the audio signal, which is given as input. W is inter-
preted as a set of spectral templates (e.g. individual notes,
the spectrum of a snare hit, etc.). H is interpreted as an
activation matrix indicating when the spectral templates of
W are active in the mixture. The goal is to learn this dic-
tionary of spectral templates and activation functions. To
find W and H, some initial pair of W and H are created
with (possibly random) initial values. Then, a gradient de-
scent algorithm is employed [11] to update W and H at

each step, using an objective function such as:

[9]1[25]. This does not consider temporal grouping of sources.

There are many cases where sound sources with dissimilar
spectra (e.g. a high squeak and a tom drum, as in Work-
ing in a Coal Mine by DEVO) are temporally grouped as a
single functional element by the composer. Such elements
will not be grouped together with timbre-based clustering.

A non-negative Hidden Markov model (NHMM) [15]
has been used to separate individual spoken voices from
mixtures. Here, multiple sets of spectral templates are
learned from prior training data and the system dynam-
ically switches between template sets based on the esti-
mated current state in the NHMM Markov model. A sim-
ilar idea is exploited in [3], where a classification system
is employed to determine whether a spectral frame is de-
scribed by a learned dictionary for speech.

Our approach leverages temporal grouping created by
composers in layered music. This lets us appropriately
learn and group spectral templates without the need for
prior training, user input or extra information from a musi-
cal score, or post-processing.

3. NON-NEGATIVE MATRIX FACTORIZATION

We now provide a brief overview of non-negative matrix
factorization (NMF). NMF is a method to factorize a non-

argminw u||X — WH||%

(M

where || - || refers to the Frobenius norm. Once the differ-
ence between WH and X falls below an error tolerance,

the factorization is complete.

There are typically many approximate solutions that fall
below any given error bound. If one varies the initial W
and H and restarts, a different decomposition is likely to
occur. Many of these will not have the property that each
spectral template (each column of W) represents exactly
one element of interest. For example, it is common for a
single spectral template to contain audio from two or more
elements of interest (e.g. a mixture of piano and voice in
one template). Since these templates are the atomic units
of separation with NMF, mixed templates preclude suc-
cessful source separation. Therefore, something must be
done to ensure that, after gradient descent is complete,
each spectral template belongs to precisely one group or
source of interest. An additional issue is that, to perform
meaningful source separation, one must partition these spec-
tral templates into groups of interest for separation. For
example, if the goal is to separate piano from drums in a
mixture of piano and drums, all the templates modeling the

drums should be grouped together.
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One can solve these problems by using prior training
data, running the algorithm on audio containing an iso-
lated element of interest to learn a restricted set of W. One
can repeat this for multiple elements of interest to separate
audio from a mixture using these prior learned templates.
This avoids the issues caused from learning the spectral
templates directly from the mixture: one template having
portions of two sources, and not knowing which templates
belong to the same musical element. One may also use
prior knowledge (e.g. a musical score) to seed the W and
H matrices with values close to the desired final goal. We
propose an alternative way of grouping spectral templates
that does not require prior seeding of matrices [6] or user
segmentation of audio to learn the basis set for each desired
group [2], nor post-processing to cluster templates.

4. PROPOSED APPROACH

Our approach has four stages: estimation, segmentation,
modeling, and separation. We cycle through these four
stages in that order until all elements and structure have
been found.

Estimation: We assume the composer is applying the
compositional technique of layering. This means that es-
timating the source model from the first few audio frames
will give us an initial model of the first layer present in the
recording. Note that in our implementation, we beat track
the audio [14] [5]. Beat tracking reduces the search space
for a plausible segmentation, but is not integral to our ap-
proach.

We use the frames from the first four beats to learn the
initial spectral dictionary. Consider two time segments in
the audio, with ¢, j and k as temporal boundaries: X =
[X;.j—1,X;:k]. To build this model, we use NMF on a
segment of X;.;_1 to find spectral templates W ;.

Segmentation: Once an estimated dictionary W gt is
found, we measure how well it models the mixture over
time. Keeping W g fixed, learn the activation matrix H
for the second portion. The reconstruction error for this is:

ETTOT(WestH, Xj:k) = HXj:k - WestH‘ ‘2F (2)

Equation 2 measures how well the templates in Wg¢
model the input X. For example, assume W gt Was con-

structed a spectrogram of snare drum hits in segment Xj.;_1.

If a guitar and bass are added to the mixture somewhere in
the range j : k,then the reconstruction error on Xj., will
be greater than the reconstruction error on X;.;_1. We use
reconstruction error as a signal for segmentation. We slide
the boundaries j, k over the the mixture, and calculate er-
ror for each of these time segments, as shown in Figure 2.
This gives us e, a vector of reconstruction errors for each
time segment.

In the middle graph in Figure 2, we show reconstruction
error over time, quantized at the beat level. Reconstruc-
tion error spikes on beats where the audio contains new
sounds not modeled in Wegt. As layers are introduced
by the artist, reconstruction error of the initial model rises

Algorithm 1 Method for finding level changes in recon-
struction error over time, where ® is the element-wise
product. e is a vector where e(t) is the reconstruction er-
ror for Wegq at time step ¢. lag is the size of a smoothing
window for e. p and q affect how sensitive the algorithm is
when finding boundary points. We use lag = 16, p = 5.5
and ¢ = .25 in our implementation. These values were
found when training on a different dataset, containing 5
mixtures, than the one in Section 5.
lag, p, q + initialize, tunable parameters
e < reconstruction error over time for Wggt
e« (e®e) > Element-wise product
d + max(Ae/At)
for i from lag to length(e) do
window <« €i—lag:i—1
m < median(abs(window - median(window))
if abs(e; — median(window)) > p * m then
if abs(e; — e;_1) > ¢ = d then
return ¢ > Boundary frame in X
end if
end if
end for
return length(e)

> Indexing e

> Last frame in X

considerably. Identifying sections of significant change in
reconstruction error gives a segmentation on the music. In
Figure 2, the segmentation is shown by solid vertical lines.
At each solid line, a new layer is introduced into the mix-
ture. Our method for identifying these sections uses a mov-
ing median absolute deviation, and is detailed in Algorithm
1.

Modeling: once the segmentation is found, we learn a
model using NMF on the entire first segment. This gives us
‘W ui, which is different from Wgi, which was learned
from just first four beats of the signal. In Figure 2, the first
segment is the first half of the audio. Wiy is the final
model used for separating the first layer from the mixture.
As can be seen in the bottom graph of Figure 2, once the
full model is learned, the reconstruction error of the first
layer drops.

Separation: once the full model Wgy is learned, we
use it for separation. To perform separation, we construct
a binary mask using NMF. Wyg,; is kept fixed, and H is
initialized randomly for the entire mixture. The objective
function described in Section 3 is minimized only over H.
Once H is found, W1 H tells us when the elements of
Wiean are active. We use a binary mask for separation,
obtained via:

M = round(WemH © max(WeganH, abs(X)))
where @ indicates element-wise division and ® is element-

wise multiplication. We reconstruct the layer using:

Xlayer =MoX (3)
XT‘(:S’idual - (1 - M) oX (4)
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Figure 3. Construction of a single mixture using a layering
structure in our dataset, from 3 randomly selected loops
each from 3 sets A, B, and C.

where © indicates element-wise product. X, ¢sidual 1S the
mixture without the layer. We restart at the estimation
stage above, this time using X.cs;duaqi @s the input, and set-
ting the start point to the segmentation boundary found in
the segmentation stage above. Taking the inverse Fourier
transform of X4y, gives us the audio signal of the sepa-
rated layer.

Termination: if X,..s;quq; 1S empty (no source groups
remain in the mixture), we terminate.

5. EVALUATION
5.1 Dataset

We evaluate our approach in two ways: separation qual-
ity, and segmentation accuracy. To do this, we construct
a dataset where ground truth is known for separation and
segmentation. As our approach looks for a layering struc-
ture, we devise mixtures where this layering occurs. We
obtain source audio from Looperman [1], an online re-
source for musicians and composers looking for loops and
samples to use in their creative work. Each loop from
Looperman is intended by its contributor to represent a sin-
gle source. Each loop can consist of a single sound produc-
ing source (e.g. solo piano) or a complex group of sources
working together (e.g. a highly varied drumkit).

From Looperman, we downloaded 15 of these loops,
each 8 seconds long at 120 beats per minute. These loops
are divided into three sets of 5 loops each. Set A contained
5 loops of rhythmic material (drum-kit based loops mixed
with electronics), set B contained 5 loops of harmonic and
rhythmic material performed on guitars, and set C' con-
tained 5 loops of piano. We arranged these loops to create
mixtures that had layering structure, as seen in Figure 3.

We start with a random loop from set A, then add a ran-
dom loop from B, then add a random loop from C, for a
total length of 24 seconds. We produce 125 of these mix-
tures.

Ground truth segmentation boundaries are at 8 seconds
(when the second loop comes in), and at 16 seconds (when
the third loop comes in). In Figure 3, each row is ground
truth for separation.

Separation quality results

20l —~19/07

better values
Measure (dB)

SDR SIR SAR
Separation quality measure

NMF (Clustered MFCC, K = 24)
NMF (Clustered MFCC, K = 100)
Proposed

I |deal binary mask

Figure 4. Separation performance of current and proposed
algorithms, and an ideal binary mask. Higher numbers are
better. The ideal binary mask is an upper bound on sepa-
ration performance. The error bars indicate standard devi-
ations above and below the mean.

Deviation between est. and ref. boundaries
% 4.0
§ 3.5 3.30s

=

3 3.0
3
825
520
g 1.5
o 1.0 0.97 s
(o)

g 0.5 0.53 s 0.53s J

Z 0.0

better values

Proposed CNMF SF Foote
Segmentation approach

Figure 5. Segmentation performance of current and pro-
posed algorithms. Est. and ref. refers to the median de-
viation in seconds between a ground truth boundary and a
boundary estimated by the algorithm. Lower numbers are
better. The error bars indicate standard deviations above
and below the mean.

5.2 Methods for comparison

For separation, we compare our approach to a separation
method in [25]. In this method, they use NMF on the en-
tire mixture spectrogram, and then cluster the components
into sources using MFCCs. Each cluster of components is
then used to reconstruct a single source in the mixture. In
our approach, the number of components (K) was fixed at
K = 8, giving a total of X' = 24 components for the entire
mixture. For direct comparison, we give the method in [25]
K = 24 components. We also look at the case where [25]
is given K = 100 components.

For segmentation, we compare our approach with [22],
[17], and [7].
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Approach Median deviation (s) | Avg # of segments
CNMF [17] .53 6.152
SF [22] 97 4.024
Foote [7] 3.3 3.048
Proposed .53 3.216

Table 1. Segmentation results for various approaches. In
the dataset, an accurate segmentation reports 3 segments.
While CNMF reports similar average median deviation
from estimated to reference boundaries to the proposed
method, it finds almost twice the number of boundaries.
Foote finds a number of segments closer to ground truth,
but the boundaries are in the wrong place.

5.3 Results
5.3.1 Separation

To measure separation quality, we use the BSS Eval tool-
box [26] as implemented in [19], which reports Source-to-
Distortion (SDR), Source-to-Interference (SIR), and Source-
to-Artifact (SAR) ratios. For all of these, we compare our
proposed approach to an NMF clustering approach based
on MFCCs in [25]. This clustering approach was given
the number of sources to find in the mixture. This is in
contrast to our algorithm, where the number of sources is
unknown, and instead is discovered. We also compare to
an ideal binary mask. Results are in Figure 4, which shows
mean SDR, SIR, and SAR for different source separation
methods.

As seen in Figure 4, our approach found sources that
correlated with the target sources, giving SDR and SIR
more comparable to the ideal binary mask. This is in con-
trast to the clustering approach, which found sources that
poorly correlated with the actual target sources, resulting in
low values for SDR and SIR, even when using more com-
ponents than our approach (K = 100 vs. K = 24). The
clustering mechanism in [25] leverages MFCCs, and finds
sources that are related in terms of resonant characteristics
(e.g. instrument types) but fails to model sources that have
multiple distinct timbres working together.

Our results indicate that separation based on NMF re-
construction error is a useful signal to guide the grouping
of spectral templates for NMF, and boost separation qual-
ity on layered mixtures.

5.3.2 Segmentation

To measure segmentation accuracy, we use the median ab-
solute time difference from a reference boundary to its near-
est estimated boundary, and vice versa. For both of these
measures, we compare our proposed approach with [22],
[17], and [7], implemented in MSAF [16], as shown in Fig-
ure 5.

We find that our approach is as accurate as existing
state-of-the-art, as can be seen in Figure 5 and Table 1.
Our results indicate that, when finding a segmentation of
a mixture, in which segment boundaries are dictated by
sources entering the mixture, current approaches are not
sufficient. Our approach, because it uses reconstruction er-

ror of source models to drive the segmentation, finds more
accurate segment boundaries.

6. CONCLUSIONS

We have presented a method for source separation and mu-
sic segmentation which uses reconstruction error in non-
negative matrix factorization to find and model groups of
sources according to discovered layered structure. Our
method does not require pre-processing of the mixture or
post-processing of the basis sets. It requires no user input,
or pre-trained external data. It bootstraps an understand-
ing of both the segmentation and the separation from the
mixture alone. It is a step towards a framework in which
separation and segmentation algorithms can inform one an-
other, for mutual benefit. It makes no assumptions on what
a source actually is, but rather finds functional sources im-
plied by a specific type of musical structure.

We showed that tracking reconstruction error of a source
model over time in a mixture is a helpful approach to find-
ing structural boundary points in the mixture. These struc-
tural boundary points can be used to guide NMF. This sep-
aration approach outperforms NMF that clusters spectral
templates via heuristics. This work demonstrates a clear,
novel, and useful relationship between the problems of sep-
aration and segmentation.

The principles behind this approach can be expanded to
other source separation approaches. Since source separa-
tion algorithms rely on specific cues (e.g. repetition like
in REPET, or a spectral model like in NMF), the temporal
failure points of source separation algorithms (e.g. the re-
peating period has failed, or the model found by NMF has
failed to reconstruct the mixture) may be a useful cue for
music segmentation.

The approach presented here exploits the compositional
technique of layering employed in many musical works.
For future approaches, we would like to build separation
techniques which leverage other compositional techniques
and musical structures, perhaps integrating our work with
existing work in segmentation.
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