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ABSTRACT

We propose a hybrid Gaussian-HMM-Deep-Learning ap-
proach for automatic chord estimation with very large
chord vocabulary. The Gaussian-HMM part is similar to
Chordino, which is used as a segmentation engine to divide
input audio into note spectrogram segments. Two types of
deep learning models are proposed to classify these seg-
ments into chord labels, which are then connected as chord
sequences. Two sets of evaluations are conducted with two
large chord vocabularies. The first evaluation is conducted
in a recent MIREX standard way. Results show that our
approach has obvious advantage over the state-of-the-art
large-vocabulary-with-inversions supportable ACE system
in terms of large vocabularies, although is outperformed
by in small vocabularies. Through analyzing and deduc-
ing system behaviors behind the results, we see interesting
chord confusion patterns made by different systems, which
conceivably point to a demand of more balanced and con-
sistent annotated datasets for training and testing. The sec-
ond evaluation preliminarily demonstrates our approach’s
superiority on a jazz chord vocabulary with 36 chord types,
compared with a Chordino-like Gaussian-HMM baseline
system with augmented vocabulary capacity.

1. INTRODUCTION

Automatic chord estimation (ACE) is currently undergoing
a paradigm shift from Gaussian-HMM (Hidden Markov
Model) approaches to deep learning approaches. Recently,
there have been quite a few deep learning powered ACE
approaches in the field, including a convolutional neu-
ral network (CNN) approach [10], a hybrid feedforward-
recurrent neural network (DNN-RNN) approach [3], a
deep belief network (DBN) approach [19], and a hybrid
DBN-RNN approach [16]. Some are more purely deep
learning oriented, which only apply minimal amount of
feature extractions, while others consider combination of
traditional signal processing techniques and deep learning.
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One common point of these approaches is that they
are all evaluated under major/minor vocabulary (MajMin),
which is far from reflecting the complexity of chord vocab-
ulary in pop/rock music practice. In 2013, MIREX ACE
has introduced a new evaluation scheme [14] focusing on
much more complicated chord vocabulary, the “Sevenths-
Bass”, which includes MajMin, three types of their sev-
enth chords, and all of their inversions. The SeventhsBass,
although also omitting some rare chords in pop/rock prac-
tice, is much closer to the reality compared with MajMin.
It differentiates among triads, sevenths and their inversions
because they all have different harmonic qualities. It is
not only important for ACE systems to be evaluated on
more complex chord vocabulary, but also to actually sup-
port that vocabulary. Unfortunately from 2013 to 2015,
there have been only two systems that actually support
SeventhsBass [6], others mostly do not even support chord
inversions. Not being able to generate inversions is musi-
cally problematic since in some musical context they have
very different harmonic qualities from their root positions.
As shown in Figure 1, for example, the chord inversions
serve as a diatonic or chromatic continuations of the bass
line. If some of these are replaced by their root positions,
the continuations are broken and thus the pieces will sound
very different.

1) | G | D/F# | F | C/E | Cm/Eb | 

2) | A | Bm | A/C# | D | 

3) | C | G/B | Am | Am/G | F | C/E | 

4) | C | F | C/E | D/F# | E/G# | F#/A# | Bm7 | C# |

Figure 1. Four chord progressions that contain bass line
continuations which demand chord inversions. Progres-
sions like 1,2 and 3 are very popular among pop/rock. Pro-
gression 4 induces a key shift from C major to F# minor.

Following the above argument, we propose an ACE
system that not only supports but also be evaluated on
SeventhsBass. This system uses a Chordino-like module
[13] as a chord segmentation engine, and classifies chords
within each segment using a deep learning model. Evalua-
tion results show that the best system variants have obvious
advantage over the state-of-the-art SeventhsBass support-
able ACE system in terms of Sevenths (MajMin + maj7,
min7, 7) and SeventhsBass.
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Besides, we also try the proposed approach on a jazz
vocabulary. The comparison target remains the same ex-
cept for an augmentation of its chord vocabulary capacity.
Since the standard evaluation tool [14] does not apply for
this vocabulary, evaluation is done manually via compari-
son of weighted chord symbol recall 1 . Results show sim-
ilar ranking as in the SeventhsBass’ results, and still the
best system significantly outscores the baseline approach.

The rest of this paper is organized as follows: Section
2 gives an overview of the proposed ACE system frame-
work and its workflow; Section 3 elaborates the imple-
mentations of two deep learning based models (DBN and
BLSTM-RNN); Section 4 reports both SeventhsBass and
jazz vocabulary evaluation results, with a detailed discus-
sion of chord confusion and how they affect systems’ per-
formances; Section 5 concludes the paper and puts forward
some possible future considerations in ACE.

2. SYSTEM OVERVIEW

The proposed ACE approach 2 has a simple workflow as
shown in Figure 2. The test data goes through a Chordino-
like module for segmentation. Then each note spectrogram
(referred to as “notegram” below) segment will be classi-
fied using a deep learning model. The output chord se-
quence is obtained by connecting the classified labels.

test data

Chordino-like
segments

Chord Classifier

training data

chord labels

Figure 2. System overview. The audio input (test data)
goes through a Chordino-like process for segmentation,
then the segments are classified into chord labels.

The Chordino-like module is implemented according to
the algorithmic description of Chordino [12, 13]. The au-
dio input is first resampled at 11025 Hz, and transformed
by a 4096-point Hamming window short-time-Fourier-
transform (STFT) with 512 point hop size. The linear-scale
spectrogram is then mapped to a log-scale spectrogram, or
notegram. After standard tuning (tuned notegram) and fea-
ture scaling, note activation patterns are extracted from the
notegram via non-negative-least-square (NNLS) method.
A piece of chromagram is derived by bass-treble profiling
of the note activation patterns. The chromagram is then de-
coded and segmented by a Gaussian-HMM with very high
self-transition weights.

The chord classifier is implemented using deep learning
models, which will be discussed in the following section.
Applying different deep learning models leads to different
system variants out of the proposed framework. In the fol-

1 http://www.music-ir.org/mirex/wiki/2013:Audio Chord Estimation
2 the full implementation of this ACE system is accessible via:

https://github.com/tangkk/tangkk-mirex-ace

lowing, we refer to these “variants” as “systems”, and the
framework as the “approach”.

3. DEEP LEARNING MODELS

We consider two types of deep learning models. They both
have input at the tuned notegram level. The deep neu-
ral network will learn the rest of the transformations from
tuned notegram all the way to chord label. Since there are
different numbers of frames in different chord segments, in
order to use a fixed-length input structure, we conducted a
preliminary study and found that 6 sub-segments are good
for single chord classification task. Note that the number of
sub-segments should at least reflect the temporal order of
bass line in order to differentiate root position from inver-
sions. Thus we compute a 6-frame notegram for each seg-
ment as follows: at first the segment is divided into 6 equal-
size sub-segments; if the total number of frames is not di-
visible by 6, the last frame is extended several times to
make it divisible; then notegram in each sub-segment is av-
eraged over time, resulting in one frame per sub-segment.

3.1 DBN Model

We first consider a DBN model. It contains two hidden
layers, each of 800 neurons. The input layer is of 6× 252-
dimension (252 is the size of a notegram frame), and the
output layer is a #chord-way softmax layer. The neurons
of both input and output layers are of Gaussian type (real
value from 0 to 1). The neurons in both hidden layers are
of Bernoulli type (binary value 0 or 1).

During unsupervised pre-training, the first restricted-
Boltzmann-machine (RBM) formed by the first two layers
is considered as a Gaussian-Bernoulli RBM, and the sec-
ond RBM formed by the two hidden layers is considered as
a Bernoulli-Bernoulli RBM. The pre-training is conducted
using persistent-contrastive-divergence-10 [17] (PCD-10),
for 100 epochs with learning rate 0.001. During super-
vised fine-tuning, the network connections are updated us-
ing mini-batch stochastic gradient descent, and the updates
are regularized by dropout [8] (with 0.5 dropout probabil-
ity) and early-stopping. The stopping criteria is monitored
by a validation set, which randomly contains 20% of the
training set. The other 80% are used for computing the
gradients. Due to the randomness of train/validation split,
we repeatedly train 6 models. The model with the best val-
idation score will be saved for testing.

For comparison, we also consider a feed-forward mul-
tilayer perceptron (MLP) model, whose network configu-
ration is the same as the DBN, but trained using only the
fine-tuning procedure described above.

3.2 BLSTM-RNN Model

Historically, long-short-term-memory (LSTM) [9] unit is
introduced to try to solve the gradient vanishing problem
[2] when training a recurrent neural network with a long
sequence of examples.
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3.2.1 LSTM Unit

Instead of having only one input port, an LSTM unit has
four input ports. As shown in Figure 3, three of them are
used for gating purpose, and the other is used for normal
purpose. Each gate computes an output gating signal from
the weighted sum of its inputs using a non-linear activation
function. The gating signal computed by input gate, out-
put gate and forget gate will interact with both the LSTM
unit’s input value and the LSTM cell value through simple
multiplications, resulting in the LSTM unit’s output value.
Input gate regulates the amount of input feeding into the
cell; forget gate regulates the current cell value by the pre-
vious cell value; and output gate regulates the amount of
output by interacting with the current cell value. Since all
functions involved in an LSTM unit are differentiable or
partially differentiable, all connections can be trained us-
ing the same back-propagation-through-time (BPTT) [7]
technique as used in training a normal RNN.

Cell

O I F

…

…

L

Figure 3. LSTM unit. O = output gate; I = input gate; F =
forget gate; Black dots indicate multiplication operations

3.2.2 BLSTM-RNN

We then consider a BLSTM-RNN model [7] as shown in
Figure 4. It has both forward and backward LSTM layers,
each of which has 800 LSTM units. Before the #chord-way
softmax output layer, it performs mean pooling to summa-
rize results from all frames. During training, the RNN is
always unrolled to 6 frames, and the weights are updated
via BPTT using AdaDelta algorithm [18], regularized with
dropout (with 0.5 dropout probability) and early-stopping,
monitored by a validation set chosen in the same way as
in DBN’s case. Due to the randomness of train/validation
split, we repeatedly train 6 models. The model with the
best validation score will be saved for testing.

4. EVALUATION

For SeventhsBass ACE implementation, four datasets of
266 tracks in total are used in training. They con-
tain both eastern and western pop/rock songs. They
are: 1, JayChou29 dataset [5]; 2, a Chinese pop song
dataset (CNPop20) 3 ; 3, Carole King + Queen dataset

3 containing 20 songs from both male and female singer-songwriters
from Chinese cultural backgrounds including mainland China, Hong
Kong and Taiwan

input layer

252 neurons /each

forward layer

800 LSTM units/ 

each

#chord-way

softmax

backward layer

800 LSTM units / 

each

Wif

Uf

Wib

Ub

6 frames

Mean Pooling

Wo

Figure 4. Bidirectional-long-short-term-memory recur-
rent neural network (BLSTM-RNN) used in the proposed
approach

(KingQueen26) 4 ; 4, 191 songs from USPop dataset (U) 5 .
In order to see the effect of data size, all models will be in-
crementally trained on: 1, JayChou29 and CNPop20 (CJ);
2, CJ + KingQueen26 (CJK); 3, all four datasets (CJKU).

For Jazz ACE implementation, 99 pieces of jazz chord
comping + soloing dataset extracted from a jazz guitar
book [15] (JazzGuitar99) are used as training/validation
dataset, and 7 pieces from Gary Burton’s online course [1]
(GaryBurton7) are used as test dataset. JazzGuitar99’s an-
notations are taken directly from the book, and GaryBur-
ton7’s annotations are taken from the leadsheets provided
along with the course. The jazz chord vocabulary contains
36 types 6 . Note that inversions are not considered in this
preliminary jazz ACE study because: 1. there are very few
inversion notations in the currently used datasets; 2. it re-
sults in huge number of classes based on these 36 types.

All training data are to be used at their tuned notegram
level, which does not contain phase information. Assum-
ing well temperament, we can augment all training data
by pitch shifting their notegrams to all 12 keys with zero
padding. Adjusting the chord labels accordingly, this re-
sults in 12 times of training data.

4.1 SeventhsBass Vocabulary Systems Evaluation

SeventhsBass evaluation is conducted in a MIREX stan-
dard way. We use TheBeatles180 (B) as the test set and
run end-to-end automatic chord transcriptions from raw
audio to chord progression for every track within. The met-
ric score is computed in a weighted chord symbol recall
(WCSR) way using the MIREX ACE evaluation tool [14].
All systems are compared with each other and compared
with Chordino. Chordino is the only other suitable system

4 http://isophonics.net/datasets
5 https://github.com/tmc323/Chord-Annotations
6 They are: maj, min, min6, 6, maj7, maj7#5, maj7#11, maj7b5, min7,

minmaj7, min7b5, min7#5, 7, 7b5, 7b9, 7#9, 7#5#9, 7#5b9, 7b5b9, 7#5,
7sus4, aug7, dim7, maj9, min9, 9, 9#11, min11, min11b5, 11, min13,
maj13, 13, 13b9, 69 and N
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Mm MmB S SB
Chordino 74.30 71.40 52.99 50.60
CJ-MLP 67.25 62.27 55.15 50.86
CJ-DBN 70.68 66.52 58.23 54.71

CJ-BLSTM 69.09 64.51 56.47 52.74
CJK-MLP 65.18 63.12 53.82 52.00
CJK-DBN 67.44 65.56 55.64 54.03

CJK-BLSTM 70.46 68.56 59.11 57.50
CJKU-MLP 67.95 65.87 55.98 54.09
CJKU-DBN 68.53 66.49 56.19 54.37

CJKU-BLSTM 72.62 70.47 59.37 57.47

Table 1. WCSRs of four main MIREX ACE vocabulary
(Mm = MajMin, MmB = MajMinBass, S = Sevenths, SB
= SeventhsBass; CJ = JayChou29 + CNPop20; CJK = CJ
+ KingQueen26; CJKU = CJK + USPop191)

for comparison because this is the only publicly available
system which also supports SeventhsBass vocabulary [4].

Here we argue for the validity of our evaluation method-
ology. Note that our systems are trained with combination
of C, J, K, U, and tested on B. Some may challenge that
since these two sets may be drawn from two different chord
populations (NOT in terms of chord types, but chord ren-
dering styles), thus the test results may not reflect the true
system performance. It is true that they contain different
distributions of chord rendering styles, especially in terms
of the “dominant sevenths” chord, as also reflected in the
results and discussions in Section 4.1.2. But as we will see
in the results, in general, the C,J,K,U-trained systems gen-
eralize very well on B. In fact, since there could be count-
less of possible chord rendering styles of each chord, it is
difficult to “make sure” that two datasets are drawn from
the “same” population, not to mention that it is even more
difficult to define the possible “properties” of such “pop-
ulation”. An average k-fold cross-validation score could
be a better indication of system performance in terms of
the combined CJKUB training/test set, but neither is this a
standard benchmarking method, nor can this score be di-
rectly compared with an expert system such as Chordino.

4.1.1 Overall Results of SeventhsBass

The WCSRs of four main MIREX ACE vocabularies are
shown in Table 1. In MajMin and MajMinBass, Chordino
still does the best among all systems. But in Sevenths and
SeventhsBass (the main focus in this paper), all our sys-
tems perform better than Chordino, with CJ-DBN, CJK-
BLSTM and CJKU-BLSTM performing best.

Let’s take CJ-DBN as representative for the moment. It
seems that it performs better at recognizing seventh chords
but worse at inversions compared with Chordino, but this is
not a correct deduction from the table. Note that Sevenths
is a collapse of chords, regardless of root positions or in-
versions, to their maj, min, maj7, min7 or 7 forms; and
MajMinBass is a collapse of chords, regardless of tetrads
or triads, to their maj, min, maj/3, maj/5, min/b3 or min/5
forms. Considering SeventhsBass as all chords in their
original forms, the score boost from SeventhsBass to Sev-
enths indicates the amount of confusion between root po-
sitions and inversions (let’s call it “bass confusion”); the
score boost from SeventhsBass to MajMinBass indicates

maj min maj/3 maj/5 min/b3 min/5
maj (r) 0.66 0.03 0.00 0.02 0.00 0.00
min (r) 0.10 0.60 0.00 0.01 0.00 0.00

maj/3 (r) 0.35 0.13 0.19 0.00 0.00 0.00
maj/5 (r) 0.50 0.08 0.00 0.23 0.00 0.00

min/b3 (r) 0.36 0.30 0.01 0.06 0.00 0.00
min/5 (r) 0.19 0.55 0.04 0.04 0.00 0.00

Table 3. Chordino’s bass confusion matrix.

maj min maj/3 maj/5 min/b3 min/5
maj (r) 0.72 0.06 0.03 0.03 0.00 0.00
min (r) 0.15 0.63 0.02 0.02 0.00 0.00

maj/3 (r) 0.34 0.28 0.23 0.01 0.00 0.02
maj/5 (r) 0.49 0.11 0.03 0.19 0.01 0.00

min/b3 (r) 0.39 0.20 0.06 0.07 0.01 0.00
min/5 (r) 0.28 0.28 0.11 0.06 0.00 0.06

Table 4. CJ-DBN’s bass confusion matrix.

the amount of confusion between tetrads and triads (let’s
call it “seventh confusion”); and the score boost from Sev-
enthsBass to MajMin approximately sums up two types of
confusion. It should be noted that there are yet other types
of confusion, such as confusion of roots, or of maj and min,
which could not be regarded as correct in any ways under
the current evaluation method.

Following this deduction, the Sevenths result actu-
ally indicates that CJ-DBN still scores much better than
Chordino if bypassing bass confusion; while the MajMin-
Bass result indicates that CJ-DBN scores much lower than
Chordino if bypassing seventh confusion. Therefore com-
pared with Chordino, CJ-DBN has a better chance of bass
confusion, but less chance of seventh confusion. Notice
that in CJ-DBN, the difference between MmB and SB is
much larger than that between S and SB, which means
the net amount of seventh confusion is much more than
that of bass confusion. The same is also true in Chordino.
Therefore in both systems, there are much higher chances
of making seventh confusion than bass confusion.

As for the intra-comparison among all proposed sys-
tems, three observations are noticeable: 1, DBN has ad-
vantage over MLP, and this advantage decreases with the
increase of training data size; 2, BLSTM-RNN has obvi-
ous advantage over DBN with big enough training data
size; 3, the investment of more data yields diminishing
return. The first point is mainly due to the intensive un-
supervised pre-training in DBN. The second point demon-
strates that the proposed BLSTM-RNN model has better
capability in modeling a single chord than the proposed
DBN model. BLSTM-RNN is good at modeling tempo-
ral dependency, but DBN is good at modeling spacial de-
pendency. An input feature with 6 frames of time depen-
dent notegrams should be more suitable for temporal mod-
eling, thus a plausible reason behind the second observa-
tion. The third observation may possibly point to a ground
truth annotation consistency problem [11], which will be
explained in next subsection.

4.1.2 Details of SeventhsBass

A deeper look at the per chord-type WCSR of Sevenths-
Bass may reveal more details behind the overall scores.
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SeventhsBass M/5 M/3 M M7/5 M7/3 M7/7 M7 7/5 7/3 7/b7 7 m/5 m/b3 m m7/5 m7/b3 m7/b7 m7
B% 2.0 1.0 63.3 0.0 0.2 0.3 0.8 0.1 0.1 0.4 8.3 0.6 0.4 15.0 0.0 0.1 0.4 2.4

Chordino 19.9 17.1 54.4 0.0 0.0 0.0 55.6 0.0 0.0 5.7 41.0 0.0 0.0 54.3 0.0 0.0 0.0 51.0
CJ-MLP 15.8 19.8 58.2 0.0 0.0 0.0 30.0 0.0 0.0 9.5 11.5 3.7 0.7 54.2 0.0 0.0 0.2 19.9
CJ-DBN 19.2 21.7 63.0 0.0 0.0 0.0 35.5 0.0 0.0 20.8 9.0 5.6 0.7 59.8 0.0 0.0 0.0 21.6

CJ-BLSTM 15.3 22.4 60.4 0.0 0.0 0.0 34.8 0.0 0.0 13.1 10.2 10.2 1.0 59.0 0.0 0.0 0.0 28.0
CJK-MLP 5.6 14.2 62.7 0.0 0.0 0.0 30.7 0.0 0.0 2.7 10.0 1.7 0.0 46.7 0.0 0.0 0.0 22.8
CJK-DBN 7.6 19.2 64.2 0.0 0.0 0.0 37.7 0.0 0.0 5.0 13.5 1.9 1.6 51.5 0.0 0.0 0.0 27.0

CJK-BLSTM 6.4 12.0 70.5 0.0 0.0 0.0 37.8 0.0 0.0 10.2 8.5 9.8 1.9 48.7 0.0 0.0 0.3 32.1
CJKU-MLP 11.8 18.3 63.8 0.0 0.0 0.0 18.4 0.0 0.0 3.7 19.4 0.5 0.4 52.7 0.0 0.0 0.6 20.9
CJKU-DBN 8.2 16.2 64.3 0.0 0.0 0.0 19.5 0.0 0.0 1.2 20.4 1.9 2.1 52.9 0.0 0.0 0.0 20.2

CJKU-BLSTM 22.4 16.1 66.6 0.0 0.0 0.0 33.2 0.0 0.0 8.9 23.9 2.8 3.2 59.0 0.0 0.0 0.3 26.6

Table 2. WCSRs of every SeventhsBass category. (M=maj, m=min). %B shows the constitution of chord in test set.

Table 2 shows the categorical breakdowns of the Sevenths-
Bass’ WCSRs. Our systems’ advantages in M and m are
as expected. As the training data contains huge amount of
their examples, deep learning models can take full advan-
tages and draw clear boundaries between M v.s.non-M and
m v.s. non-m. Table 3 and 4 show a comparison of bass
confusion in Chordino and CJ-DBN 7 , which not only re-
flects CJ-DBN’s advantages in M and m, but also confirms
our previous deduction that CJ-DBN makes slightly more
bass confusion than Chordino.

The results of M/5, M/3 and 7/b7 deserve further inves-
tigation. The “CJ-” systems generally perform better than
Chordino in these categories. This could be due to both
C and J contain a large number of consistent annotations
of these chords. In the meantime we observe their scores
generally drop with introduction of K and U, seemingly in
exchange for more score boost from M. This seems contra-
dictory: since all three chord types (M, M/3 and M/5) have
clear distinctions by definition, thus given a neural net-
work with enough modeling capacity and properly trained
(which we assume is the case), more ground truth data
should yield better classification boundaries. But instead
the introduction of K and U also introduces chaotic classi-
fication behaviors regarding, M/3, M/5, 7/b7 and M. Thus
we have to believe that these results conceivably point to a
ground truth annotation consistency problem [11], where,
for example, some similarly rendering M/3 chords in dif-
ferent datasets are annotated differently (as M, M/3, M/5
or others), so that when trained on a combined dataset,
the classifier is getting confused about the boundaries be-
tween those similar chords. Assuming more inversions
are “mis-annotated” 8 as root positions than vice versa
(which might unfortunately be true), if such inconsisten-
cies abound, classifications will be bias towards the domi-
nating root position chords.

The most noticeable drawback of our systems is the
poor performance of all sevenths chords (M7, 7 and m7)
compared with Chordino. Chordino has a very nice and
balanced chord confusion matrix. Shown in Table 5, al-
most every chord type has less than 50% confusion with
other types. As for our approach, taking CJK-BLSTM as
example, the main problem is that both M7 and 7 chords
are easily confused with maj, and m7 is easily confused

7 The numbers in the table are normalized durations. Reference labels
are indicated by “(r)”

8 technically not necessarily a “miss” but let’s just use this expression
for convenience in this context

maj min maj7 min7 7
maj (r) 0.66 0.03 0.11 0.03 0.13
min (r) 0.10 0.60 0.03 0.20 0.03
maj7 (r) 0.22 0.08 0.62 0.02 0.01
min7 (r) 0.12 0.20 0.01 0.56 0.08

7 (r) 0.30 0.08 0.06 0.06 0.47

Table 5. Chordino’s seventh confusion matrix.

maj min maj7 min7 7
maj (r) 0.82 0.05 0.03 0.02 0.03
min (r) 0.21 0.52 0.01 0.17 0.02
maj7 (r) 0.42 0.07 0.39 0.03 0.01
min7 (r) 0.21 0.31 0.02 0.34 0.03

7 (r) 0.67 0.12 0.01 0.05 0.10

Table 6. CJK-BLSTM’s seventh confusion matrix

with min (Table 6). The most undesirable case is the con-
fusion between 7 and maj . The main reason behind this,
as we try to analyze, is the different distribution of 7s in
the training datasets and the test dataset. The Beatles’ al-
bums contain a lot of chord progressions that involve 7s,
where the bass lines are moving by arpeggio or running
as broken chords, but in CJK, there are very few such ex-
amples. CJK contains 7s that are mostly bass line static.
Thus CJK-BLSTM does not have enough chance to learn
7 in dynamic bass line population, resulting in these poor
results. This analysis is to some degree confirmed by the
much better scores of 7 after adding dataset U, which con-
tains a lot more 7 chord renderings in dynamic style.

For Sevenths’ inversions other than “7/b7”, since there
are not many examples in all datasets, it is not meaningful
for further discussion. Actually, their WCSRs are all rela-
tively low. This fact might in some sense invalidate the ne-
cessity to recognize more complicated inversions, but does
not invalidate the need to capture inversions in general.

4.2 Jazz Chord Vocabulary Systems Evaluation

Following the MIREX ACE convention, system perfor-
mance on jazz chord vocabulary should also be evaluated
based on WCSR. The WCSR score computing procedure
in its fairest/strictest sense should count each chord as it is

µ σ2

Bass - Chord Bass 1 0.1
Treble - Chord Note 1 0.2

Neither bass nor treble 0 0.2
“N” Chord 1 0.2

Table 7. Gaussian model of Jazz-Chordino
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systems WCSR SQ
Jazz-Chordino 57.99 81.68

Jazz-MLP 61.81 76.18
Jazz-DBN 62.33 80.73

Jazz-BLSTM 66.41 80.78

Table 8. WCSRs and SQ (segmentation quality) of jazz
chord vocabulary.

without applying any sort of mapping scheme, as happens
to SeventhsBass. In the following we evaluate each system
in this way. The baseline is an augmented Chordino with
jazz vocabulary extension (Jazz-Chordino). The augmen-
tation is done within its Gaussian-HMM engine by apply-
ing the jazz chord dictionary to the Gaussian model, whose
setting is described in Table 7.

The jazz vocabulary systems have the same system
framework as the SeventhsBass systems, but their deep
learning models are trained using JazzGuitar99 dataset.
All systems are tested using GaryBurton7 dataset 9 . Re-
sults are shown in Table 8. Jazz-BLSTM system per-
forms the best, and outperforms Jazz-Chordino by about
10 points. The ranking is very similar to SeventhsBass’,
but the results are in a sense more convincing, since the
test set is not dominated by chords like major and minor.
In fact the composition of chords in GaryBurton7 is rela-
tively balanced, though rare chords are still rare. Therefore
in this set of results we see clearly the advantage of hy-
brid Gaussian-HMM-Deep-Learning approach over a pure
Gaussian-HMM approach for very large chord vocabulary.

Meanwhile, notice that the SQ of these systems are
all relatively high, and these are achieved in pure jazz
test audio. All systems use Jazz-Chordino’s Gaussian-
HMM as segmentation engine. The differences between
SQ scores are caused by different merging of consecu-
tive chord boundaries in different systems. Obviously the
success of Jazz-BLSTM is based on the success of the
Gaussian-HMM segmentation at the beginning; then based
on the robust segmentation it performs classifications with-
out taking care of chord progression context. This task is
comfortable to deal with by a fixed-length input deep learn-
ing model. The advantage may not be obvious under a
small chord vocabulary, but is obvious under a large chord
vocabulary.

5. CONCLUSION

In this paper we propose a hybrid Gaussian-HMM-Deep-
Learning approach towards SeventhsBass and jazz vocab-
ulary automatic chord estimation. Based on a Chordino-
like segmentation engine, the approach applies two types
of deep learning models, i.e., DBN and BLSTM-RNN, for
chord classifications.

For SeventhsBass implementation, we train several
models of each type using four datasets in an incremen-
tal way. The systems are tested using another dataset,
and compared with Chordino. Results show that the

9 Composition of chords in GaryBurton7: maj:0.09; min7:0.13;
7:0.22; min7b5:0.12; 7b9:0.06; min:0.1; maj:0.14; others:0.14.

best system variant, CJKU-BLSTM obviously outper-
forms Chordino in both Sevenths and SeventhsBass, but
is slightly outperformed by Chordino in MajMin and Ma-
jMinBass. We find that our system tends to make more
bass confusion but less seventh confusion compared with
Chordino. The major success of our systems is in triads,
while the major drawbacks are in sevenths chords. The
trends within the results along incremental training data
sizes may indicate a possible data annotation inconsistency
issue that conceivably leads to diminishing return effect.

For jazz vocabulary implementation, we train one
model for each type using JazzGuitar99 dataset, test them
using GaryBurton7 dataset, and compare them with a
Chordino-like system augmented with jazz chord vocabu-
lary (Jazz-Chordino). Results show a similar system rank-
ing as in SeventhsBass’ results, with high segmentation
qualities. The best system, Jazz-BLSTM, outscores Jazz-
Chordino obviously. Given that GaryBurton7 is a rela-
tively chord balanced dataset, the results demonstrate more
clearly the advantage of hybrid Gaussian-HMM-Deep-
Learning approach over pure Gaussian-HMM approach,
which might not be so obvious with much smaller chord
vocabulary.

Generally speaking, Chordino is an elegant music
knowledge driven expert system that generally recognizes
chords very well. But at times it fails also because of its
simplicity, which fails to capture chords rendered in ab-
normal ways. On the other hand, our approach is data
driven. The success or non-success of it depends highly on
the chord balancing, distribution and population of train-
ing data. While performances on some dominating chords
benefit much from the data, other performances suffer a lot
from data insufficiency or inconsistency.

There are a few concerns to be addressed. The first con-
cern is about the manually engineered segmentation en-
gine. The Gaussian-HMM segmentation engine is good
indeed, but for scientific interest, we are also very curious
about whether by doing a deep training on huge amount
of data can one system learn that transformation. Prelimi-
nary researches are ongoing, but none of our attempts have
achieved that level yet. We believe this can be achieved
gradually by deeper models and more data. A separate
training for segmentation only might be beneficial. The
second concern is about datasets. A better training based
system asks for more ground truth annotations, especially
those of skew classes, so as to train a more balanced system
and to avoid the main contribution of performance being
dominated by a few classes. Generally more data will lead
to more examples of skew classes, but due to annotation
inconsistency issue, simply “more data” may not be the fi-
nal solution at all, which leaves much more works to be
done in this area. Finally there is a concern of vocabulary
size (seems contradictory to the previous concern), which
asks for gradually exploring ACE systems’ capabilities on
more complex vocabularies as it is the way to approach the
ultimate goal of ACE, which is to match human expert’s
ability of doing chord recognition.
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