PREDICTING MISSING MUSIC COMPONENTS WITH BIDIRECTIONAL
LONG SHORT-TERM MEMORY NEURAL NETWORKS

I-Ting Liu
Carnegie Mellon University
School of Music
itingl@andrew.cmu.edu

ABSTRACT

Successfully predicting missing components (entire parts
or voices) from complex multipart musical textures has
attracted researchers of music information retrieval and
music theory. However, these applications were limited
to either two-part melody and accompaniment (MA) tex-
tures or four-part Soprano-Alto-Tenor-Bass (SATB) tex-
tures. This paper proposes a robust framework appli-
cable to both textures using a Bidirectional Long-Short
Term Memory (BLSTM) recurrent neural network. The
BLSTM system was evaluated using frame-wise accura-
cies on the Nottingham Folk Song dataset and J. S. Bach
Chorales. Experimental results demonstrated that adding
bidirectional links to the neural network improves predic-
tion accuracy by 3% on average. Specifically, BLSTM out-
performs other neural-network based methods by 4.6% on
average for four-part SATB and two-part MA textures (em-
ploying a transition matrix). The high accuracies obtained
with BLSTM on both two-part and four-part textures indi-
cated that BLSTM is the most robust and applicable struc-
ture for predicting missing components from multi-part
musical textures.

1. INTRODUCTION

This paper presents a method for predicting missing com-
ponents from complex multipart musical textures. Specif-
ically, we examine two-part melody and accompaniment
(MA) and Soprano-Alto-Tenor-Bass (SATB) chorale tex-
tures. We treat each voice as a part (e.g. the melody of the
MA texture or the Soprano of the SATB texture) and the
problem we address is given an incomplete texture, how
successfully can we generate the missing part. This project
proposes a robust approach that is capable of handling both
textures elegantly and has applications to any style of mu-
sic. Predictions are made using a Bidirectional Long-Short
Term Memory (BLSTM) recurrent neural network that is
able to learn the relationship between components, and

© I-Ting Liu, Richard Randall. Licensed under a Creative

Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: I-Ting Liu, Richard Randall. “Predicting Missing Music Com-
ponents with Bidirectional Long Short-Term Memory Neural Networks”,
17th International Society for Music Information Retrieval Conference,
2016.

Richard Randall
Carnegie Mellon University
School of Music

Center for the Neural Basis of Cognition

randall@cmu.edu

can thus be trained to predict missing components. This
work demonstrates the capability of the BLSTM system by
conducting experiments on the two tasks mentioned above
with two distinct datasets.

Analyzing music with the aid of computer programs
has attracted researchers of music information retrieval and
music theory over the past twenty years. Music (especially
western tonal music) has always been regarded as a kind
of art with rigorous formalization. Various complex rules
regulate how notes can be and cannot be played together in
complex multipart textures. Such rules change over time
and are subject to multiple factors. As artificial intelli-
gence and machine-learning research advances, it is natu-
ral that computer scientists apply such technique to music
analysis in order to elucidate these rules [2]. Two popu-
lar tasks investigated in this area are (1) generating chord
accompaniments for a given melody in a two-part MA
texture and (2) generating a missing voice for an incom-
plete four-part SATB texture. Successfully accomplish-
ing either task manually is time-consuming and requires
considerable style-specific knowledge and the applications
discussed below are designed to automate and help non-
professional musicians compose and analyze music.

Approaches that treat these problems can be categorized
into two types according to the level of human engagement
in discovering and applying music rules. Early works that
handle incomplete four-part SATB textures were mostly
knowledge-based models. Steels [28] proposed a represen-
tation system to encode musical information and exploited
heuristic search, which takes the form of if-then musical
rules that specifies solutions under different conditions to
generate voices. Ebcioglu built CHORAL, a knowledge-
based system that includes over 350 rules modeling the
style of Johann Sebastian Bach [8]. Due to the large num-
ber of rules involved, some studies modeled the problem
as a constraint satisfaction problem, as was used by Pachet
and Roy [22] on four-part textures and Ramirez, et al. [25]
on two-part textures. Knowledge-based genetic algorithms
were also used as an alternative method to represent the
rules. Mcintyre [21] implemented a system that harmo-
nizes user-defined melody in Baroque style, and Hall [17]
presented a system that selects combination of attributes to
model the harmonization of J. S. Bach’s chorales. Freitas
and Guimaraes also implemented a system based on ge-
netic algorithms in [11]. The fitness function and genetic

225

226

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

operators rely on “music knowledges” to suggest chord
progressions for given melodies.

While rules in knowledge-based systems have to be
manually encoded into these systems, rules in probabilis-
tic models and neural networks can be derived by training
corpora without human intervention by the models. Hid-
den Markov Models (HMM) are one of the most com-
mon probabilistic models for the task of generating a chord
sequence given melodies for two-part textures [27]. In
HMM, a pre-selected dataset is used to train a transi-
tion probability matrix, which represents the probability
of changing from one chord to another, and a melody ob-
servation matrix, the probability of encountering each note
when different chords are being played. The optimal chord
sequence is then generated using dynamic programming,
or Viterbi Algorithm. HMM are also used by Allan [1]
to harmonize four-part chorales in the style of J. S. Bach.
In addition to HMM, Markov Model and Bayesian Net-
works are alternative models used for four-part textures by
Biyikoglu [3] and Suzuki, et al. [29]. Raczynski, et al. [24]
proposed a statistical model that combines multiple sim-
ple sub-models. Each sub-model captures different music
aspects such as metric and pitch information, and all of
them are then interpolated into a single model. Paiement,
et al. [23] proposed a multi-level graphical model, which is
proved to capture the long-term dependency among chord
progression better than traditional HMM. One drawback
of probabilistic models is that they cannot correctly handle
data that are not seen in training data. Chuan and Chew [5]
reduced this problem by using a hybrid system for style-
specific chord sequence generation with statistical learning
approach and music theory.

Neural networks have also been used by some re-
searchers. Gang, et al. [13] were one of the earliest that
used neural networks to produce chord harmonization for
given melodies. Jordan’s sequential neural network con-
sisted of a sub-net that learned to identify chord notes for
the melody in each measure, and the result was fed into
the network to learn the relationship between melodies and
chords. The network was later adopted real-time applica-
tion [12, 14]. Consisting of 3 layers, the input layer takes
pitch, metric information and the current chord context,
and the output layer predicts the next chord. Cunha, et
al. [6] also proposed a real-time chord harmonization sys-
tem using multi-layer perceptron (MLP) neural network
and a rule-based sequence tracker that analyzes the struc-
ture of the song in real-time, which provides additional in-
formation on the context of the notes being played.

Hoover, et al. [20] used two Artificial Neural Networks
(ANN) to model the relationship between melodies and ac-
companiment as a function of time. The system was later
extended to generate multi-voice accompaniment by in-
creasing the size of the output layer in [19]. Bellgard and
Tsand [2] trained an effective Bolzmann machine and in-
corporated external constraints so that harmonization fol-
lows the rules of a chorale. Fuelner developed a feed-
forward neural network that harmonizes melodies in spe-
cific styles in [9]. De Prisco, et al. [7] proposed a neural

network that finds appropriate chords to harmonize given
bass lines in four-part SATB chorales by combining three
base networks, each of which models context of different
time lengths.

Although all these previous studies provide valuable in-
sights, a number of constraints exist in their applications.
Most rules encoded in knowledge-based systems are style-
specific, making them hard to apply to other types of mu-
sic efficiently. Probabilistic models and neural networks,
on the other hand, provide a much more adaptable solution
that can be applied to music of different styles by learning
rules from different styles of training data. Nevertheless,
many of the probabilistic models can only handle music
pieces of fixed length. In addition, the transition matrix of
probabilistic models has to be learned using specific mu-
sic representation (e.g. chords) and cannot be generalized
to other representations. Moreover, probabilistic models
tend to ignore long-term dependency among music com-
ponents as they mainly focus on local transitions between
two consecutive components. Existing studies using neural
networks captured long-term dependencies in music and
also are capable of dealing with music pieces of arbitrary
lengths. However, neural networks have been notoriously
hard to train, and their ability to utilize long-term informa-
tion was limited until the introduction of Long-Short Term
Memory (LSTM) cells.

Although BRNNs have access to both past and future
information, they have been notoriously hard to train be-
cause of “vanishing gradients,” a problem commonly seen
in RNNs when training with gradient based methods. Gra-
dient methods, such as Back-Propagation Through Time
(BPTT) [31], Real-Time Recurrent Learning (RTRL) [26]
and their combinations, update the network by flowing er-
rors “back in time.” As the error propagates from layer to
layer, it tends to either explode or shrink exponentially de-
pending on the magnitude of the weights. Therefore, the
network fails to learn long-term dependency between in-
puts and outputs. Tasks with time lags that are greater than
5-10 time steps are already difficult to learn, not to mention
that dependency of music usually spans across tens to hun-
dreds of notes in time, which contributes to music’s unique
phrase structures. Long short term memory (LSTM) [18]
algorithm was designed to tackle the error-flow problem.

In an LSTM hidden layer, fully-connected memory
blocks replace nonlinear units that are often used in feed-
forward neural network. The core of a memory block is
a linear cell that sums up the inputs, which has a self-
recurrent connection of fixed weight 1.0, preserving all
previous information and ensuring they would not vanish
as they are propagated in time. A memory block also con-
tains three sigmoid gating units: input gate, output gate,
and forget gate. An input gate learns to control when in-
puts are allowed to pass into the cell in the memory block
so that only relevant contents are remembered; an output
gate learns to control when the cell’s output should be
passed out of the block, protecting other units from in-
terference from current irrelevant memory contents; a for-
get gate learns to control when it is time to forget already

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

remembered value, i.e. to reset the memory cell. When
gates are closed, irrelevant information does not enter the
cell and the state of the cell is not altered. The outputs of
all memory blocks are fed back recurrently to all memory
blocks to remember past values. Finally, adding bidirec-
tional links and LSTM cells improves a neural network’s
ability to employ additional timing information. All of the
above contributes to the fact that the proposed BLSTM
model is flexible and effective in generating the missing
component in an incomplete multipart texture.

2. METHOD
2.1 Music Representation

MIDI files are used as input in both training and testing
phases in this project. Multiple input and output neurons
are used to represent different pitches. At each time, the
value of the neuron associated with the particular pitch
played at that time is 1.0. The values of the rest of the
neurons are 0.0. We avoid distributed encodings and other
dimension reduction techniques and represent the data in
this simple form because this representation is common
and assumes that neural networks can learn a more dis-
tributed representation within hidden layers.

The music is split into time frames and the length of
each frame depends on the type of music. Finding missing
music component can then be formulated as a supervised
classification problem. For a song of length ¢1, for every
time ¢ from ¢ to ¢1, given input x(¢), the notes played at
time ¢, find the output y(¢), which is the missing compo-
nent we try to predict. In other words, for two-part MA
textures, y(t) is the chord played at time ¢, while for four-
part SATB textures, y(t) is the pitch of the missing part at
time ¢.

2.2 Generating Accompaniment in Two-Part MA
Texture

2.2.1 Input and Output

The MIDI files are split into eighth note fractions. The
inputs at time ¢, x(t), are the notes of the melody played
at time ¢. Instead of representing the notes by their MIDI
number, which spans the whole range of 88 notes on a key-
board, we used pitch-class representation to encode note
pitches into their corresponding pitch-class number. Pitch
class, also known as “chroma,” is the set of all pitches re-
gardless of their octaves. That is, all C notes (CO, C1, ...
etc.) are all classified as pitch-class C. All notes are repre-
sented with one of the 12 numbers corresponding to the 12
semitones in an octave. In addition to pitch-class informa-
tion, two additional values are added as inputs: Note-Begin
unit and Beat-On unit. In order to be able to tell when a
note ends, a Note-Begin unit is used to differentiate two
consecutive notes of the same pitch from one note that is
held for two time frames as was done by [30]. If the note in
the melody is beginning at the time, the value of the Note-
Begin unit is 1.0; if the note is present but duplicates the
previous note or is not played at all, the value of the unit is

0.0. The Beat-On unit, on the other hand, provides metric
information to the network. If the time ¢ is on a beat, the
value of the Beat-On unit is 1.0, otherwise 0.0. If time ¢
is a rest, the values of all input neurons are 0.0. The time
signature information is obtained via meta-data in MIDI
files.

The outputs at time ¢, y(¢), is the chord played at time
t. We limit chord selection to major, minor, diminished,
suspended, and augmented triads as in [27], resulting in
52 chords in total ' . The output units represent these 52
chords in a manner similar to the input neurons: the value
of the neuron corresponding to the chord played at that
time has a value of 1.0, and the values of the rest of the
neurons are all 0.0.

2.2.2 Training the Network

The input layer has 14 input neurons: 12 neurons for each
pitch in the pitch class, one neuron for note-begin and one
for beat-on unit. The network consists of two hidden lay-
ers for both forward and backward states, resulting in four
hidden layers in total. In every hidden layer are 20 LSTM
blocks with one memory cell. The output layer uses the
softmax activation function and cross entropy error func-
tion as in [15]. Softmax function is a standard function for
multi-class classification that squashes a K-dimensional
vector z in the range of (0, 1), which takes the form

evi

- Zf:l ek

The softmax function ensures that all the output neurons
sum to one at every time step, and thus can be regarded as
the probability of the output chord given the inputs at that
time.

Each music piece is presented to the network one at a
time, frame-by-frame. The network is trained via standard
gradient-descent Back-Prorogation. A split of data is used
as the validation set for early-stopping in order to avoid
over-fitting of the training data. If there is no improvement
on the validation set for 30 epochs, training is finished and
the network setting with the lowest classification error on
the validation set is used for testing.

o(z); , for j=1,..,K (1)

2.2.3 Markov Model as Post-Processing

The network trained in 2.2.2 can then be used to predict the
chord associated with each melody note by choosing the
output neuron that has the highest activation at each time.
However, the predicted chord at each time is independent
of the chord predicted in the previous and succeeding time.
While there are forward and backward links in the hidden
layers of the network, there is no recurrent connections
from the final neuron output to the network. The chord
might sound good with the melody, but the transition from
one chord to another might not make sense at all. In fact,

' We represent the note of the chords with their pitches rather than
pitch names. Therefore, A augmented chord would have the same repre-
sentation as F augmented: the former consists of A, C#, and E#, whose
pitches are the same as that of the component of the latter, F, A, and C#.

227

228

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

how one chord transits from and to the other typically fol-
lows specific chord-progression rules depending on differ-
ent music styles. A bi-gram Markov Model is thus added
to learn the probability of transitioning from each chord
to possible successors independent of the melody, which
will be referred to as the transition matrix. The transition
matrix is smoothed using linear interpolation with a uni-
gram model. The model also learns the statistics of the
start chords.

Instead of selecting the output neuron with the highest
activations, the first £ neurons with the highest activations
are chosen as candidates. Dynamic programming is then
used to determine the optimal chord sequence among the
candidates using the previously-learned transition matrix.

2.3 Generating the Missing Part in Four-Part SATB
Textures

2.3.1 Input and Output

Without loss of generality, we sample the melody at every
eighth note for similar reasons as explained by Prisco, et
al. [7]. Notes that are shorter in length are considered as
passing notes and are ignored here. The inputs at time ¢,
x(t), are the pitches of the notes played at time ¢, span-
ning the whole range of 88 notes (A0, C8) on a keyboard,
resulting a 88-dimensional vector. If a note ¢ is played at
time ¢, the value of the neuron associated with the particu-
lar pitch is 1.0, i.e. x;(¢) = 1.0. The number of non-zero
elements in x(¢), which are the number notes played each
time, ranges from one to three, depending on the number
of voices present.

For the task of predicting the missing voice in a four-
part texture where the other three voices are present, the
input is polyphonic music. In this case, there are at
most three non-zero elements in x; for every time ¢, i.e.

88
Ve > xi(t) < 3. If the task is to predict one missing
i=1

voice given only one of the three other voices, there is at
most one non-zero element in x(¢). The reason why we do
not represent the notes with their pitch-class profile as we
did when handling two-part MA texture is that the network
depends on octave information to identify which voice the
notes belong to. The outputs at time ¢, y(¢), is the pre-
dicted missing note at time ¢, which falls in the pitch range
of any of the four voices, depending on the task specified
by our training data. Similarly, the value of the neuron as-
sociated with the particular pitch played at the time ¢ is 1.0,
otherwise 0.0.

2.3.2 Training the Network

The network structure is the same as the one used in Sec-
tion 2.2.2 except that the number of input neurons and out-
put neurons are 88, and that we use 20 LSTM blocks for
the first hidden layer and 50 LSTM blocks for the second
hidden layer. Similar to what we did for two-part MA tex-
tures, each music piece is presented to the network one at
a time, frame-by-frame. If the task is to generate one miss-
ing voice given any of the three other voices, then the three
present voices are given to the network individually as if

they are independent melodies. In this case, each music
piece is actually presented to the network three times and
each time only one of the three voices is presented. This
method gave the best results.

2.3.3 Predict Missing Voice with the Trained Network

The trained network is ready to predict the missing voice
by doing an 88-class classification on the input voice. At
each time frame, the neuron with the highest activations
is selected, and the pitch it represents is considered as the
pitch of the missing voice.

3. EVALUATION

3.1 Generating Missing Accompaniment in Two-Part
MA Texture

3.1.1 Dataset

The system’s performance on two-part MA textures is eval-
uated using the Nottingham Dataset [10] transcribed from
ABC format, which is also used in [4] for composing poly-
phonic music. The dataset consists of 1024 double-track
MIDI files, with melody on one track and accompaniment
on the other. The length of the pieces ranges from 10 sec-
onds to 7.5 minutes, the median being 1 minute and 4 sec-
onds. Those without accompaniment and those whose ac-
companiment are more complicated than simple chord pro-
gressions are discarded, resulting in 962 MIDI files com-
prising more than 1000 minutes, in total. Songs not in the
key of C major nor A minor (874 of them) were trans-
posed to C major/A minor after probabilistically deter-
mining their original key using the Krumhansl-Schmuckler
key-finding algorithm.

The chords were annotated at every beat or at every
quarter note. Seventh chords were reduced to triads, and
rests were replaced with previous chords. 60% of the
dataset is selected randomly as training data, 20% as val-
idation data, and 20% as testing data. Training finishes
when validation accuracy does not improve for 30 epochs.
All results for the training and testing sets were recorded
at the time when the classification error on the validation
set is lowest.

3.1.2 Effects of Including Metric Information in Input

Since the network learns the input melody as a sequence in
time and has no access to information other than pitches,
we added Beat-On flag to a frame when it is on a beat
according to the time signature meta-data in MIDI files
(Group iii and iv). We also added Note-Begin (Group ii
and iv) to differentiate two consecutive notes of the same
pitch from two distinctive notes, as mentioned in Sec-
tion 2.2.1. All three groups were sampled every eighth
note, and the MIDI note range (50, 95) was used as the
input range. Table 3.1.2 shows the classification accuracy
of the three groups as well as the one where neither flag is
provided as a reference. Two groups where Beat-On flag
is added, Group iii and iv, perform significantly better than
the groups without the beat information (Group i), with a

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

Training Set | Test Set
72.88% 68.54
72.11% 68.86
75.82% 70.34
75.76% 70.61

(i) Pitch Information only
(i1) Note-Begin

(iii) Beat-On

(iv) Note-Begin and Beat-On

Table 1. Classification accuracy of the dataset when a
Note-Begin flag, Beat-On flag, and both flags are added
to the inputs.

Training Set | Test Set
(i) 8th Note + Range 75.76% 70.65 %
(ii) 8th Note + PC 73.13% 72.05 %
(iii) 16th Note + Range 73.10% 69.50 %
(iv) 16th Note + PC 74.02% 70.67 %

Table 2. Classification accuracy of the dataset when us-
ing various representations of pitches at various sampling
rates.

95% confidence interval of 0.84%, 0.80% and 0.79% indi-
vidually. This is consistent with the fact that chords always
change on a beat or multiples of a beat. Therefore, such in-
formation is crucial to the timing of chord changes in the
network. Note-Begin, on the other hand, does not seem to
improve the accuracy, which is due to the fact that whether
the note is held from the previous time or it is newly started
does not affect chord choices.

3.1.3 Choice of Data Representations

To see how different resolutions of the melody affects the
chord prediction result, we evaluated the performance of
the system using different frame lengths. “8th Note” or
“l6th Note” indicates the melodies and accompaniments
were sampled every eighth note or sixteenth note. We
represented the input to the network using only the ac-
tual pitch range that melody notes are played in, which is
MIDI note 50 (D3) to 95 (B6) (Groups i and iii, “Melody
Range”), and using pitch class representation (Groups ii
and iv, “Pitch Class”).

Since the network learns the input melody as a se-
quence in time and have no access to information other
than pitches, we added Beat-On flags to a frame when
it is on a beat according to the time signature meta-data
in MIDI files. We also added Note-Begin flags. Repre-
senting the melodies with their pitch-class number at ev-
ery 8th note (Group ii) could correctly predict the missing
chords approximately 72% of the time when both Note-
Begin and Beat-On information are available. With a 95%
confidence interval at 0.76%, it also significantly outper-
forms the other representation. Table 2 shows the result.

3.1.4 Comparison with Other Approaches

We compared the architecture used in this paper with four
other neural network architectures: Unidirectional LSTM,
Bidirectional recurrent neural network (BRNN), Unidirec-
tional recurrent neural network (RNN), and Multi-layer

Network | Training Set | Test Set | Epochs
BLSTM 75.76 % 71.13 % 103
LSTM 71.51% 67.57 % 130
BRNN 68.77% 68.86 % 136
RNN 68.33% 66.58 % 158
MLP 55.16% 54.66 % 120

Table 3. Classification accuracy of the dataset using dif-
ferent neural network architectures.

perceptron network (MLP). Given the variety of differ-
ent datasets and accessibility to code, our comparison is
based on the BLSTM methods described above. Neurons
in BRNN, RNN and MLP networks were sigmoid neurons.
The size of the hidden layers were selected so that the num-
ber of weights are approximately the same (around 32,000)
for all of the networks as in [15]

Table 3 shows the classification accuracy and the num-
ber of epochs required to converge. All groups were sam-
pled at every eighth note, and were provided with both met-
ric information, (Note On and Beat On), during training
and testing. The 95% confidence interval for BLSTM and
LSTM are 0.80% and 0.76%. Using approximately same
number of weights, BLSTM performs significantly better
than other neural networks and also converges the fastest.

3.2 Finding the Missing Part in Four-Part SATB
Textures

3.2.1 Dataset

We evaluated our approach using 378 of J. S. Bach’s four-
part chorales acquired from [16]. MIDI files were all
multi-tracked, one voice on each track. The average length
of the pieces is approximate 45 seconds, the maximum and
minimum being 6 minutes and 17 seconds. Among all
chorales, 102 pieces are in minor mode. All of the chorales
were transposed to C major/A minor using Krumhansl-
Schmuckler key-finding algorithm. As in section 3.1, 60%
of the files were used as training set, 20% as test set, and
20% as validation set, resulting in 226, 76, 76 pieces re-
spectively.

3.2.2 Predicting Missing Voice Given the Other Three
Voices

Table 3.2.2 shows the frame-wise classification accuracy
of the predicted missing voices (Soprano, Alto, Tenor, or
Bass) when the three other voices are given on training and
test sets. The accuracy of predicting missing voices on the
original non-transposed set is also listed for comparison.
All songs were sampled at every eighth note. From the ta-
ble, we can observe a few interesting phenomena. First,
transposing the songs remarkably improves prediction ac-
curacy in both training and test set. This is not surpris-
ing since transposing songs in advance reduces complex-
ity. The same pre-processing is also used by [3] [4] [27].
Second, we see that the network could correctly predict
Soprano, Alto, and Tenor approximately 70% of the time
when the songs were transposed. Specifically, Alto seems

229

230

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

Soprano Alto

Training | Test Training | Test
Not Transposed | 69.15% | 46.82% | 63.61% | 47.61%
Transposed 77.90% | 71.52% | 82.65% | 73.90%

Tenor Bass

Training | Test Training | Test
Not Transposed | 47.25% | 39.85% | 45.40% | 36.93%
Transposed 7847% | 69.76% | 70.09% | 61.22%

Table 4. Classification accuracy of the predicted missing
voices, either Soprano, Alto, Tenor, or Bass, when the three
other voices are given on training and testing sets.

Soprano Alto
Training Test Training Test
BLSTM | 84.88% | 73.86 % | 82.65% | 73.90 %
BRNN 90.25% | 74.37% | 85.37% | 74.30 %
LSTM 8527% | 70.39% | 77.14% | 70.45%
RNN 81.90% | 72.29% | 80.31% | 71.73%
MLP 68.74% | 66.54% | 73.51% | 70.03%
Tenor Bass
Training Test Training Test
BLSTM | 7847% | 69.76% | 70.09% | 61.22 %
BRNN 80.95% | 70.13% | 74.58% | 63.74%
LSTM 73.84% | 64.89% | 65.86% | 57.69%
RNN 75.48% | 67.20% | 69.68% | 59.69%
MLP 68.85% | 65.68% | 58.58% | 56.14%

Table 5. Classification accuracy of the predicted missing
voices when three other voices are given using different
network architecture.

to be the easiest to predict (in bold), while Bass is the most
difficult.

3.2.3 Comparison with Other Approaches

Similar to our approach in Section 3.1.4, the size of the hid-
den layers were selected so that the number of weights are
approximately the same (around 63,000) for all of the net-
works. Table 3.2.3 shows the classification accuracy of the
missing voices (either Soprano, Alto, Tenor, or Bass) when
all of the three other voices are present. From the result,
we can see that BLSTM does not have a statistically sig-
nificant performance from BRNN on Soprano, Alto, and
Tenor parts (in bold) and outperforms other neural-network
based methods on all parts. It also shows that including fu-
ture information by using bidirectional connection effec-
tively improves accuracy by 3% on average no matter us-
ing LSTM cells (in BLSTM and LSTM) or logistic cells
(in BRNN and RNN). Note that LSTM, while powerful,
is really hard to train since it requires parameter tuning
and a large dataset. We will need to conduct more experi-
ments in larger scale to explain what properties of LSTM
and BRNN favor which tasks.

4. CONCLUSION

This paper has presented an approach to predicting missing
music components for complex multipart musical textures

using Bidirectional Long-Short Term Memory (BLSTM)
neural networks. We demonstrated the flexibility and ro-
bustness of the system by applying the method to two dis-
tinctive but popular tasks in the computer-music field: gen-
erating chord accompaniment for given melodies in two-
part MA textures and filling the missing voice in four-part
SATB textures. The proposed approach is capable of han-
dling music pieces of arbitrary length as well as various
styles. In addition, the network could be used to generate
missing music components of different forms, i.e. single
notes for four-part SATB textures or chords for two-part
MA textures, by simply altering the number of input and
output neurons.

Two sets of experiments were conducted regarding the
two tasks on two datasets of completely different styles,
and issues that influence prediction accuracies were dis-
cussed. For the task of predicting chord accompaniment in
two-part MA texture, the experimental results showed that
BLSTM network could correctly generate chords for given
melodies 72% of the time, which is significantly higher
than 68 %, the best accuracy achieved by using other neural
network based approaches. We also discovered that repre-
senting the melodies using their pitch class profile yielded
the best result.

As for the problem of finding the missing voice in
four-part SATB texture, the experiment demonstrated that
BLSTM network could correctly predict the missing voice
approximately 70% of the time on average when three
other voices are present. Putting the experimental results
on two datasets together, the fact that BLSM outperforms
other neural-network based networks for two-part MA tex-
tures and performs as well as BRNN for four-part SATB
textures showed that the BLSTM network is the optimal
structure for predicting missing components from multi-
part musical textures.

5. REFERENCES

[1] Moray Allan and Christopher KI Williams. Harmon-
ising chorales by probabilistic inference. Advances
in neural information processing systems, 17:25-32,
2005.

[2] Matthew I Bellgard and Chi-Ping Tsang. Harmonizing
music the Boltzmann way. Connection Science, 6(2-
3):281-297, 1994.

[3] Kaan M Biyikoglu. A Markov model for chorale har-
monization. In Preceedings of the 5 th Triennial ES-
COM Conference, pages 81-84, 2003.

[4] Nicolas Boulanger-Lewandowski, Yoshua Bengio, and
Pascal Vincent. Modeling temporal dependencies in
high-dimensional sequences: Application to poly-
phonic music generation and transcription. arXiv
preprint arXiv:1206.6392, 2012.

[5] Ching-Hua Chuan and Elaine Chew. A hybrid system
for automatic generation of style-specific accompani-
ment. In 4th Intl Joint Workshop on Computational
Creativity, 2007.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

(6]

(71

(8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(18]

[19]

Uraquitan Sidney Cunha and Geber Ramalho. An in-
telligent hybrid model for chord prediction. Organised
Sound, 4(02):115-119, 1999.

Roberto De Prisco, Antonio Eletto, Antonio Torre, and
Rocco Zaccagnino. A neural network for bass func-
tional harmonization. In Applications of Evolutionary
Computation, pages 351-360. Springer, 2010.

Kemal Ebcioglu. An expert system for harmonizing
four-part chorales. Computer Music Journal, pages 43—
51, 1988.

Johannes Feulner. Neural networks that learn and re-
produce various styles of harmonization. In Proceed-
ings of the International Computer Music Conference,
pages 236-236. International Computer Music Associ-
ation, 1993.

Eric Foxley. Nottingham dataset. http://ifdo.ca/ sey-
mour/nottingham/nottingham.html, 2011. Accessed:
04-19-2015.

Alan Freitas and Frederico Guimaraes. Melody harmo-
nization in evolutionary music using multiobjective ge-
netic algorithms. In Proceedings of the Sound and Mu-
sic Computing Conference, 2011.

Dan Gang, D Lehman, and Naftali Wagner. Tuning a
neural network for harmonizing melodies in real-time.
In Proceedings of the International Computer Music
Conference, Ann Arbor, Michigan, 1998.

Dan Gang and Daniel Lehmann. An artificial neural net
for harmonizing melodies. Proceedings of the Interna-
tional Computer Music Association, 1995.

Dan Gang, Daniel Lehmann, and Naftali Wagner. Har-
monizing melodies in real-time: the connectionist ap-
proach. In Proceedings of the International Computer
Music Association, Thessaloniki, Greece, 1997.

Alex Graves and Jiirgen Schmidhuber. Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Networks,
18(5):602-610, 2005.

Margaret Greentree. www.jsbchorales.net/index.shtml,
1996. Accessed: 04-19-2015.

Mark A Hall. Selection of attributes for modeling Bach
chorales by a genetic algorithm. In Artificial Neu-
ral Networks and Expert Systems, 1995. Proceedings.,
Second New Zealand International Two-Stream Con-
ference on, pages 182—185. IEEE, 1995.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735-1780,
1997.

Amy K Hoover, Paul A Szerlip, Marie E Norton,
Trevor A Brindle, Zachary Merritt, and Kenneth O

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

Stanley. Generating a complete multipart musical com-
position from a single monophonic melody with func-
tional scaffolding. In International Conference on
Computational Creativity, page 111, 2012.

Amy K Hoover, Paul A Szerlip, and Kenneth O Stan-
ley. Generating musical accompaniment through func-
tional scaffolding. In Proceedings of the Eighth Sound
and Music Computing Conference (SMC 2011),2011.

Ryan A MclIntyre. Bach in a box: The evolution
of four part baroque harmony using the genetic al-
gorithm. In Evolutionary Computation, 1994. IEEE
World Congress on Computational Intelligence., Pro-
ceedings of the First IEEE Conference on, pages 852—
857. IEEE, 1994.

Francois Pachet and Pierre Roy. Mixing constraints and
objects: A case study in automatic harmonization. In
Proceedings of TOOLS Europe, volume 95, pages 119-
126. Citeseer, 1995.

Jean-Francois Paiement, Douglas Eck, and Samy Ben-
gio. Probabilistic melodic harmonization. In Advances
in Artificial Intelligence, pages 218-229. Springer,
2006.

Stanistaw A Raczynski, Satoru Fukayama, and Em-
manuel Vincent. Melody harmonization with interpo-
lated probabilistic models. Journal of New Music Re-
search, 42(3):223-235, 2013.

Rafael Ramirez and Julio Peralta. A constraint-based
melody harmonizer. In Proceedings of the Workshop on
Constraints for Artistic Applications (ECAI’98), 1998.

AJ Robinson and Frank Fallside. The utility driven dy-
namic error propagation network. University of Cam-
bridge Department of Engineering, 1987.

Tan Simon, Dan Morris, and Sumit Basu. Mysong: au-
tomatic accompaniment generation for vocal melodies.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 725-734. ACM,
2008.

Luc Steels. Learning the craft of musical composition.
Ann Arbor, MI: MPublishing, University of Michigan
Library, 1986.

Syunpei Suzuki, Tetsuro Kitahara, and Nihon Uni-
vercity. Four-part harmonization using probabilistic
models: Comparison of models with and without chord
nodes. Stockholm, Sweden, pages 628—633, 2013.

Peter M Todd. A connectionist approach to algorithmic
composition. Computer Music Journal, pages 27-43,
1989.

Paul J Werbos. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE,
78(10):1550-1560, 1990.

231

