
MIXTAPE: DIRECTION-BASED NAVIGATION IN LARGE MEDIA
COLLECTIONS

João Paulo V. Cardoso Luciana Fujii Pontello Pedro H. F. Holanda
Bruno Guilherme Olga Goussevskaia Ana Paula C. da Silva

Computer Science Department, Universidade Federal de Minas Gerais (UFMG), Brazil
jpcardoso@ufmg.br, lucianafujii@dcc.ufmg.br, holanda@dcc.ufmg.br,

brunoguilherme@dcc.ufmg.br, olga@dcc.ufmg.br, ana.coutosilva@dcc.ufmg.br

ABSTRACT

In this work we explore the increasing demand for novel
user interfaces to navigate large media collections. We im-
plement a scalable data structure to store and retrieve sim-
ilarity information and propose a novel navigation frame-
work that uses geometric vector operations and real-time
user feedback to direct the outcome. In particular, we im-
plement this framework in the domain of music. To eval-
uate the effectiveness of the navigation process, we pro-
pose an automatic evaluation framework, based on syn-
thetic user profiles, which allows to quickly simulate and
compare navigation paths using different algorithms and
datasets. Moreover, we perform a real user study. To do
that, we developed and launched Mixtape 1 , a simple web
application that allows users to create playlists by provid-
ing real-time feedback through liking and skipping pat-
terns.

1. INTRODUCTION

Internet cloud and streaming services have become the
state-of-the-art in terms of storage and access to media col-
lections. Even though the storage problem of media col-
lections seems to have been practically solved with cloud-
based applications, a challenge still remains in conceptu-
alizing and developing novel interfaces to explore them.
User interfaces are expected to be intuitive and easy, yet
flexible and powerful in understanding and delivering what
users expect to see.

In this work we propose a framework that uses real-
time user feedback to provide direction-based navigation
in large media collections. The navigation framework is
comprised of a data structure to store and retrieve similar-
ity information and a novel navigation interface that allows

1 www.projectmixtape.org

c© João Paulo V. Cardoso, Luciana Fujii Pontello, Pedro H.
F. Holanda, Bruno Guilherme, Olga Goussevskaia, Ana Paula Couto da
Silva. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: João Paulo V. Cardoso, Luciana Fu-
jii Pontello, Pedro H. F. Holanda, Bruno Guilherme, Olga Goussevskaia,
Ana Paula Couto da Silva. “Mixtape: Direction-based navigation in large
media collections”, 17th International Society for Music Information Re-
trieval Conference, 2016.

users to explore the content of the collection in a person-
alized way. We begin by focusing on the music domain,
because the intrinsic usage pattern behind listening to mu-
sic is favorable to the design and verification of a dynamic
real-time feedback based system.

We define media item-to-item similarity based on user-
generated data, assuming that two items are similar if they
frequently co-occur in a user’s profile history. Media co-
occurrence information is increasingly available through
many online social networks. For example, in the do-
main of music, such usage information can be collected
from Last.fm, a social music site. Collected co-occurrence
data is usually sparse (not all pairs of items will have co-
occurred at least once in the collected dataset) and never-
theless might occupy a lot of memory space (Ω(n2), where
n is the size of the collection). To guarantee O(n) space
complexity and O(1) query complexity of all-pairs sim-
ilarity information, we transform the collected pairwise
co-occurrence values into a multi-dimensional Euclidean
space, by using nonlinear dimensionality reduction [21].

Our main contribution is a novel randomized naviga-
tion algorithm, based on the geometry of the constructed
similarity space. Each navigation session is modeled as a
Monte Carlo simulation: given a starting item and a set of
close neighbors in the similarity space, each neighbor is
assigned a probability of being the next current item. If
the returned next item is not quite what the user wants to
see, they can skip it, so the previous item is used as the
seed again. To define these probabilities, we propose a
geometric vector-based approach, which explores the no-
tion of direction, using user feedback and the Euclidean
distances between items to establish a concept of “direc-
tion inertia”, which creates a tendency for users to “keep
going” in the direction of the items they enjoy and “turn
away” from items, or regions, they don’t like.

The evaluation of the resulting system is twofold. First,
we propose an automatic evaluation framework, based on
synthetic user profiles, which allows to quickly simulate
and compare navigation paths using different algorithms
and datasets. We also propose two basic metrics: num-
ber of skips per like ratio and smoothness of consecutively
accepted items in a navigation session. Second, we eval-
uate real-user interaction with the system. To do that, we
developed and launched Mixtape, a simple web applica-
tion that allows users to create playlists by providing real-

454

time feedback through liking and skipping patterns. Over-
all, we analyzed over 2, 000 simulated and 2, 000 real-
user navigation sessions in a map comprised of more than
62, 000 songs. Besides analyzing quantitative parameters,
such as the proportion of skipped to accepted songs and
the smoothness of the generated trajectories, we gathered
feedback left by users and analyzed what they expect and
appreciate in a media navigation system.

2. RELATED WORK

A closely related line of research to this work is automatic
playlist generation. There are techniques that use statis-
tical analysis of radio streams [4, 5, 15, 22], are based on
multidimensional metric spaces [2,4,9,13,16,17], explore
audio content [3,8,14,23], and user skipping behavior [18].
In particular, Chen et al [4] model playlists as Markov
chains, which are generated through the Latent Markov
Embedding (LME) machine learning algorithm, using on-
line radio streams as a training set. We use this algorithm
as a baseline in our experiments. The idea to embed co-
occurrence information into a multi-dimensional space has
been explored before, e.g., in [1,2,9,13], where the authors
focus mostly on visual exploration of a collection. The idea
to use skipping behavior to generate playlists has been ex-
plored in [18], however, the presented algorithms do not
scale to large collections. Our work goes beyond playlist
generation, providing a real-time flexible navigation inter-
face that receives immediate user feedback through skip-
ping behavior to guide the user within the music collection
towards directions chosen on-the-fly.

3. NAVIGATION FRAMEWORK

Our goal is to design a media navigation framework com-
prised of two main components: (1) A scalable data struc-
ture to store and retrieve item-to-item similarity informa-
tion; (2) Directed-based navigation functions, that take the
current item and user feedback in real time and return the
next item; moreover, we want the navigation output to be
computationally efficient and nondeterministic, so the user
can be surprised with new items in each navigation se-
quence.

3.1 Item-to-item similarity representation

In this work, we use the assumption that similarity between
two items can be deduced by analyzing usage habits of a
large number of media users. More specifically, we assume
that the more often two items co-occur in the same user’s
profile, the more similar they are. So we define pairwise
similarity between two items by using cosine similarity:
cos(i, j) = coocc(i, j)/

√
occ(i)occ(j), where coocc(i, j)

is the number of co-occurrences between two items and
occ(i) the individual occurrences in the users’ profiles.

Since co-occurrence data is typically sparse, i.e., only a
few pairwise similarities are known, we applied the Isomap
method [21], which extends classical multidimensional
scaling (MDS) [6] by incorporating the geodesic distances
imposed by an (intermediate) weighted graph. We defined

the weight of an edge as the complement of the cosine sim-
ilarity, (w(i, j) = 1 − cos(i, j)) and built a graph G with
these weights.

To generate the map we calculated the complete nXn
distance matrix fromG and then applied the classical MDS
algorithm in this matrix. Building a new d-dimensional
Euclidean space such that d << n. The final space is a
nXd matrix. Note that, for larger datasets one can use
approximate algorithms, such as LMDS or LINE [7, 20].

3.2 Navigation functions

In order to guide the navigation process, a navigation ses-
sion is treated as a run of a Monte Carlo simulation, in
which the choice of the next item depends on the current
item and a probability function that assigns different prob-
abilities to each of its neighboring nodes. Given a starting
item, the navigation system retrieves the set K of its near-
est neighbors in the Euclidean space, and uses them as can-
didates to be the next item. Once an item ki ∈ K is chosen
to be next, users can provide immediate feedback to the
system by accepting or skipping it explicitly, through user
interface feedback, or implicitly by skipping it. In case the
new item is accepted, it becomes the current item, and the
process starts again. The probability function should have
a strong influence on the overall outcome of the navigation.

Parameter |K| is used to vary the size of each “step” of
the navigation process. It can be configured as a constant,
or to be variable. In our experiments, good results were
achieved using exponentially growing step size:

|K| =
{

2|K|, if the previous item was skipped
|K0|, otherwise,

where |K0| is configurable minimum neighborhood size.
In our experiments we used |K0| = 10 and |K| ≤ 640.
Map navigation: We start with the following basic ap-
proach, to which we refer as Map, that explores the idea
that users prefer to navigate through items that are close to
each other in the Euclidean space. We define the probabil-
ity of node ki ∈ K to be next as:

PnextMap
i =

{
1/|K|, if ki ∈ K;
0, otherwise,

Vector navigation: Vector navigation explores the notion
of direction of navigation, assuming users would like to
travel through different regions in the space. To do so, it
treats the possible steps in the space as vectors. The hop
vector ~ab of any given hop from item A to item B can
be derived from the straight line between them (see Fig-
ure 1.1).

As the navigation progresses, the system keeps a direc-
tion vector ~V , which is recalculated after every hop. This
vector represents the directions in which the system has
recently moved. As a simplified example, consider the fol-
lowing sequence from item A to item D (see Figure 1.2).
~V0 was derived from the first hop, ~ab. ~V1 is half the sum of
~V0 and ~bc, which was the second hop. ~V2 is half the sum
of ~V1 and ~cd, and the process goes on.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 455

B
ab

ab

A
Tv1

v0 v0

bt
A B

ab

A

B
ab

-ab

v0

v1
A

B
C

θcθb

ab ac

v0
A

B

C

D

ab bc
cd

v0

v1

v2

1

2

43 5

Figure 1. Direction-based navigation (Vector algorithm)

In each step, the system calculates the probabilities of
suggesting each neighbor by comparing the current direc-
tion vector ~V to each of the vectors towards the |K| consid-
ered candidates (i.e., to vectors from the current to neigh-
bor nodes). For example, consider the decision to move
from item A with current direction vector ~V0 to two neigh-
bors, B and C (see Figure 1.3).

The more aligned the direction and the candidate vec-
tors are, the smaller the angle θ will be, and the higher
the probability of suggesting that neighbor. In Figure 1.3,
since θc < θb, node C will have a higher probability to be
the next item.

It is also possible to set a target destination T , which is
an arbitrary point on the map, where the navigation should
try to go to. This adds a third element to the direction
vector update procedure, by creating vector ~bt in each up-
date and also adding it to ~V . Let’s consider the situation
in which a hop was accepted from item A to item B, and
the target destination T was configured (see Figure 1.4).
Note that ~V1 is made by adding vectors ~V0, ~ab and ~bt and
dividing the module of the resulting vector by three.

Last but not least, feedback is incorporated by consid-
ering that, when a user skips a suggestion, it would be in-
teresting to increase the probability of suggesting some-
thing different from the skipped item. So, when an item is
skipped, the system does not change the current node, and
the opposite vector is added to ~V . Consider the example
in Figure 1.5, where item B was skipped, and so ~V1 was
calculated by adding ~V0 to − ~ab to reflect the user’s prefer-
ence.

Defining the method formally: Consider a setK of clos-
est neighbors of current node A and the current direction
vector ~V with the respective angles θi between ~V and each
hop vector ~aki, ki ∈ K. Also, consider the optional pa-
rameter with the location of a target destination T . We de-
fine the direction-based navigation function using the fol-
lowing weight variables:

wi = 1 + cos(θi) = 1 +
~aki • ~V
| ~aki||~V |

.

Note that the weight is proportional to the cosine of the
angle between the current direction vector ~V and the di-
rection of each neighbor ki relative to the current node A.
We add 1 to avoid negative values. Finally, we define the
probability of node ki ∈ K to be next as:

PnextV ec
i =

wi∑|K|
j=1 wj

.

Note that we have a proper probability distribution,
since the sum over probabilities PnextV ec

i , i ∈ K is 1.
After the next item has been returned, say ki, and the

user has provided feedback by accepting or skipping it, we
update the direction vector ~V of node A as follows:

~V =

{
(~aki + ~V)/2, if ki was accepted
(− ~aki + ~V)/2, if ki was skipped.

If target destination T has been defined, then the calcu-
lation also includes the new target vector ~at between the
chosen item and the target destination:

~V =

{
(~aki + ~V + ~at)/3, if ki was accepted
(− ~aki + ~V + ~at)/3, if ki was skipped.

If the item was accepted, node ki becomes the next cur-
rent node. Otherwise, the current node does not change,
and only the direction vector is updated. Note that this
approach is domain-independent and uses nothing but the
coordinates of the embedding itself. It also carries an ex-
plicit dependency on user feedback, since ~V is determined
by the user’s skipping behavior.

4. MUSIC DOMAIN

The navigation framework described in Section 3 can be
applied to different media domains. In this work, we focus
on the domain of music.

4.1 Last.fm Dataset

In order to define music similarity, we assume that the
more frequently two songs co-occur in a user’s listen-
ing history, the more similar they are. We collected co-
occurrence data from Last.fm, a social music site that
tracks user musical tastes, from November, 2014 to March,
2015. More specifically, we collected the top-25 most lis-
tened songs of each user, reaching a total of 372,899 users,
2,060,173 tracks, and 374,402 artists. Moreover, we also
collected a total of 1,006,236 user-generated tags, asso-
ciated with songs. In particular, 75% of songs have had
at least one associated tag in our dataset. We considered
a subset of 983,010 tracks in our dataset with a known
MBID 2 , from which we selected another subset of 83,180
tracks that co-occurred 5 or more times, forming a con-
nected component of 62,352 songs. A detailed characteri-
zation of the dataset can be found in [19].

2 MusicBrainz Identifier (MBID) is a reliable and unambiguous form
of music identification (musicbrainz.org).

456 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

The connected graph with 62,352 vertices enabled us to
run IsoMap [21] and Multidimensional Scaling (MDS) [6]
without any approximations. By parallelizing parts of the
algorithm, we computed the all-pairs shortest path matrix
of size 62, 352 × 62, 352, in 7 minutes on a server with
50 GB of RAM and 16 CPU cores, and computed the em-
bedding into 100 dimensions in approximately 2 hours on
the same server. Note that a larger collection could have
been embedded using a less computationally intensive ap-
proximate algorithm, such as LMDS or LINE [7, 20]. An
evaluation of the embedding process can be found in [12].

4.2 Mixtape

We wanted to collect real user feedback in order to evalu-
ate the navigation framework in the music domain. For this
purpose, we developed Mixtape, a web-based application
with a simple user interface (see Figure 2). On the server
side, a k-d tree was loaded with a 100-dimensional space
of 62, 352 tracks. On the client side, the design goal was
to provide a minimalist user interface that fully explored
the navigation functions defined in Section 3.2. Each user
would choose the starting song and then be presented with
one suggestion at a time, with explicit feedback-generating
actions. The user interface is comprised of a playlist, on
the left, which shows the songs the user has accepted or
skipped, and a Youtube video window, which finds and
plays the current suggested item. Users can then decide
whether they like the song or not, using the like and dis-
like buttons, one of which the user must press in order to
receive the next suggestion. In case the user does not press
anything and listens to the entire song, we assume they
liked it, and consider the song as accepted. There is also
a settings button, which allows the user to switch between
different navigation functions.

5. EXPERIMENTS

The evaluation of the proposed navigation framework in
the domain of music is twofold: Firstly, we propose an
automatic evaluation framework and perform an extensive
analysis based on simulated user profiles. Furthermore,
since real users might behave differently, and the percep-
tion of a song is subjective, we observed how real users
interacted with our Mixtape application. As a result, we
were able to evaluate not only how effective and engaging
the proposed navigation system is, but also how well the
simulated user profiles approximated real user behavior.

5.1 Simulated user profiles

To test the navigation framework, we simulated synthetic
user profiles, in which hypothetical users intend to listen
to 20 songs (about one hour of music), and count the num-
ber of skips (songs that are skipped by the simulated user
profile following the algorithm described below) until 20
songs are accepted. A similar evaluation approach was
used in [18]. We simulated two types of users:
Tag-based user profile: This user profile is based on tag
information and the notion of transition between two re-

gions on the map. Recall from Section 4.1 that we col-
lected over 1,006,236 user-generated tags, associated with
songs. We assume this user wishes to listen to a sequence
of songs that transitions from initial tag Ti to final tag Tf .

To do that, the simulated user accepts all songs asso-
ciated with tag Ti in the first 1/3 of the navigation path
(skips otherwise), accepts songs with tags Ti or Tf in the
second 1/3, and accepts only songs with tag Tf in the last
1/3 of the path, comprised of a total of 20 items. Note that
real users do not necessarily know what tags are associated
to particular tracks. Since these users are hypothetical, we
can use the collected tag information for simulation pur-
poses.

We manually selected tag transitions among the top 200
most popular tags in our dataset. We noticed these tags
could be divided in three categories: Mood tags, such as
Chill, Upbeat, Relaxing, Genre tags, such as such as Rock,
Hip Hop, Folk, and Age tags, such as 60’s, 90’s, 2000’s.
We then paired them up manually, selecting 14 transitions
to experiment with. For each tag transition (Ti ⇒ Tf), we
considered a navigation path starting at the most popular
song associated to tag Ti, and applying the skipping rule
until a path of 20 accepted songs was achieved.
Artist-based user profile: This user profile is based on
artist information and the notion that certain users wish to
listen to songs by artists they already know. Since this user
wishes to listen to preferred artists, whenever the suggested
song is by an artist contained in the user’s history, it is ac-
cepted. Otherwise, it is skipped. We collected the com-
plete listening histories of 20 users to simulate this user
profile, and started the playlist at a random song within
each user’s profile. Moreover, for this experiment only
users whose profiles were not used to construct the em-
bedding were simulated.

5.2 Baselines

As baselines, we tested the following approaches:
LME: Logistic Markov Embedding [4,16], a probabilistic
approach that models sequences in a Euclidean space using
radio streams as a training set. We used the implementation
available at the authors’ homepage, with all parameters set
to default values, except for α = 5 (this value resulted in
superior overall performance), as our dataset did not have
music sequences, only music occurrences in a user profile,
we used the “yes-complete” dataset (also made available
by the authors) in a combination with our dataset, since
LME needs a sequence of items as input, which resulted
in an intersection set of 31,544 items with our dataset. We
made one modification to the LME algorithm by incorpo-
rating user feedback when computing the next item. More
specifically, whenever an item nj has been skipped after a
previously accepted item ni, we recompute the probabili-
ties at ni setting Pr(nj |ni) = 0, and maintaining ni as the
current item.
Random: A random song is returned, considering all
songs in the dataset.
Random Tag: A random song with tag T is returned. This
baseline was used for the tag-based navigation evaluation.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 457

Figure 2. Mixtape screenshot

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000

C
D

F

Playlist Size

Figure 3. Mixtape user study: playlist
length distribution

1
 0

 2

 4

 6

 8

 10

 12

Tag-based Artist-based Mixtape

sk
ip

s/
lik

e

navigation setup

Random
LME
Map

Vector

Figure 4. Total number of skips per like
ratio: simulated versus real-user profiles

5.3 Mixtape user study setup

We collected all user actions on Mixtape over a course of
2 weeks, resulting in the participation of over 800 users,
generating a total of over 2000 navigation sessions. In or-
der to compare the performance of different navigation al-
gorithms, each navigation session was randomly assigned
either Map, Vector or LME algorithms (with undefined tag
parameters), but the user could explicitly change the algo-
rithm in the settings menu as well. Users could also choose
the Random approach, however, since the engagement in
this setting was very low, we did not include it in the plots.

5.4 Results

In our experiments, we measure the effectiveness of the
two navigation approaches proposed in this work (Map and
Vector) and the two baselines (Random and LME) in three
navigation setups: simulated tag-based user profiles, simu-
lated artist-based user profiles, and real users on Mixtape.
We use two main metrics: skipping behavior and playlist
smoothness, defined below. Each scenario was executed
20 times, and all figures show the 95% confidence interval.
Skipping behavior: Figure 3 shows the CDF of playlist
length generated on Mixtape. It can be seen that almost
30% of the playlists 3 contain 10 tracks or more, and al-
most 15% have size 20 or longer, which shows that many
people really engaged with the application.

In Figure 4 we compare the ratio of the total number
of skips (dislikes) and the total number of accepted songs
(likes) in playlists generated by all navigation algorithms
for simulated and real user profiles. Analyzing the sim-
ulated user profiles, we can see that the baseline algo-
rithms present several times more skips per like (LME:
skips/like > 7.5, Random: skips/like > 8) than Map
and Vector (skips/like < 2). Map and Vector have sim-
ilar results and perform especially well in the artist-based
simulated setup (skips/like < 0.5), which shows they are
more effective not only in directing the user between dif-
ferent regions in the space, but also in presenting the user
with music by preferred artists.

Looking at Mixtape results on Figure 4, we can
see that all three approaches perform well on average

3 We refer to the sequence of tracks accepted, or liked, by a user in one
navigation session as a playlist.

(skips/like < 2). LME has still more skips than likes
(skips/like > 1), whereas Map and Vector have signifi-
cantly more likes than skips (Map: skips/like < 0.8, Vec-
tor: skips/like < 0.4), indicating that users enjoyed the
vast majority of the suggested songs, especially by the Vec-
tor algorithm. Note that Vector outperforms Map for real
users, indicating that the direction in the map, provided by
the real-time feedback, does matter for real users.

Comparing real and synthetic user profiles, we note that
LME performed much better with real rather than simu-
lated users. That might be because real users are more
open-minded and accept more diversity in their playlists.
Nevertheless, the number of skips per like for Vector and
Map on Mixtape was similar to the simulated artist-based
user profiles, indicating that in some aspects the simulation
was accurate in portraying a real user.

In Figures 5 through 7 we analyze the number of skips
along each step of the navigation process. In Figure 5
the number of skips per step decreases in the second third
and then reaches a maximum in the beginning of the third
part of the playlist for all algorithms. This illustrates how
the algorithms react to the simulated tag-based navigation
setup. Afterwards, however, we can see that Map and Vec-
tor quickly decrease the number of skips, as opposed to
LME and Random, showing that the former algorithms
succeed in adjusting the direction of the navigation towards
the destination tag.
Playlist smoothness: In Figures 8 through 10 we analyze
how similar consecutive songs are on a navigation path, by
measuring the cosine similarity of the artists of consecu-
tive (accepted) songs. 4 Note that in Figure 8 we plot the
RandomTag baseline instead of Random, to shed light on
the following question: if the objective of tag-based sim-
ulations is to recommend songs with a given tag, why not
simply choose songs from the database that have that tag?
That method might work when we ignore the relationship
between songs in a playlist. However, we argue that a
playlist should be more than a group of songs with a given
tag–it should present a relationship between the songs. We
can see that RandomTag and LME baselines provide al-
most zero similarity along the navigation path, even though
RandomTag only returns songs with accepted tags, i.e.,

4 We define artist similarity as the cosine similarity computed from
artist co-occurrence in our dataset.

458 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20

nu
m

be
r o

f s
ki

ps

accepted song number

Map
Random

Vector
LME

Figure 5. Skips along playlists: simu-
lated tag-based navigation

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12 14 16 18 20

nu
m

be
r o

f s
ki

ps

accepted song number

Map
Vector

Random
LME

Figure 6. Skips along playlists: simu-
lated artist-based navigation

-2
-1
 0
 1
 2
 3
 4
 5
 6
 7

 5 10 15 20 25

nu
m

be
r o

f s
ki

ps

accepted song number

Map
Vector

LME

Figure 7. Skips along playlists: real-
user navigation (Mixtape)

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0 2 4 6 8 10 12 14 16 18

ar
tis

t c
os

in
e

accepted song number

Map
RandomTag

Vector
LME

Figure 8. Playlist smoothness: simu-
lated tag-based navigation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 2 4 6 8 10 12 14 16 18

ar
tis

t c
os

in
e

accepted song number

Map
Random

Vector
LME

Figure 9. Playlist smoothness: simu-
lated artist-based navigation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

ar
tis

t c
os

in
e

accepted song number

Map
Vector

LME

Figure 10. Playlist smoothness: real-
user navigation (Mixtape)

makes zero skips in the tag-based simulation setup. Map
and Vector, on the other hand, trace highly smooth nav-
igation paths, offering the user songs with high similar-
ity to the previously chosen songs, especially in the artist-
based simulation setup (Figure 9, artist cosine > 0.4). Fig-
ure 10 5 shows that Map and, especially, Vector playlists
on Mixtape also present high similarity between consecu-
tive items, indicating that people prefer smooth, rather than
abrupt, transitions in their navigation paths.
User feedback: To enhance our perception about how
users perceive our Mixtape application, we created a short
online survey, linked from the Mixtape application, which
was answered by 44 unidentified subjects. The users were
not provided with any information about the navigation al-
gorithms. They were asked to provide feedback on the ex-
perience of using Mixtape, leading to the following num-
bers: 95% enjoyed the songs suggested by Mixtape, and
only 11% of the users were not able to find most of the
songs they were searching for (recall from Section 4.1 that
we used a reduced sample of the map in our experiments:
62,352 songs with co-occurrence at least 5.).

Interestingly, 70% of the participants said they discov-
ered new artists or songs. Most people said they didn’t
change the navigation policy and they didn’t know which
policy they used during their navigation. From those who
did experiment with different policies, they equally en-
joyed Map and Vector approaches (even though, on aver-
age, users skipped less songs when using direction-based
navigation).

5 The CIs in Figures 7 and 10 are high, due to insufficient data for
certain song numbers.

To sum up this first user study, we can conclude that
users enjoyed navigating music collections by giving their
real-time feedback and that the navigation allowed them to
discover previously unknown songs they enjoyed.

6. CONCLUSION

In this work we proposed a navigation framework for large
media collections and evaluated an implementation of the
framework in the domain of music. Potentially, the same
ideas could be applied to other kinds of media, e.g. movies
or TV shows [10, 11]. Rather than creating fixed playlists,
our approach allows users to provide feedback through
skipping behavior and direct the navigation process in real-
time. We evaluated the framework through simulation of
more that 2,000 synthetic navigation paths and performed
a real user study by launching Mixtape, a web application
with a minimalist user interface that allows people to navi-
gate a collection of over 60,000 music tracks. We analyzed
over 2,000 playlists generated by over 800 real users and
received positive feedback about the application. When
comparing playlists generated by Mixtape and simulated
hypothetical users, we could observe several similarities,
indicating that in some aspects the simulation was accu-
rate in portraying a real user. Moreover, not only did this
user study serve as validation of the proposed framework,
but it also provided insights into what users look for and
appreciate in a media navigation system. 6

6 Acknowledgments: This work is supported in part by CNPq,
FAPEMIG and LG Electronics in cooperation with Brazilian Federal
Government through Brazilian Informatics Law (n. 8.2.48/1991).

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 459

7. REFERENCES

[1] E. Bernhardsson. Systems and methods of selecting
content items using latent vectors, August 18 2015. US
Patent 9,110,955.

[2] Lukas Bossard, Michael Kuhn, and Roger Watten-
hofer. Visually and Acoustically Exploring the High-
Dimensional Space of Music. In IEEE International
Conference on Social Computing (SocialCom), Van-
couver, Canada, August 2009.

[3] Pedro Cano, Markus Koppenberger, and Nicolas Wack.
Content-based music audio recommendation. In Pro-
ceedings of the 13th annual ACM international confer-
ence on Multimedia, pages 211–212. ACM, 2005.

[4] Shuo Chen, Josh L Moore, Douglas Turnbull, and
Thorsten Joachims. Playlist prediction via metric em-
bedding. In 18th ACM SIGKDD, 2012.

[5] Shuo Chen, Jiexun Xu, and Thorsten Joachims. Multi-
space probabilistic sequence modeling. In 19th ACM
SIGKDD, 2013.

[6] Trevor F. Cox and M.A.A. Cox. Multidimensional
Scaling. Chapman and Hall/CRC, 2000.

[7] Vin De Silva and Joshua B Tenenbaum. Sparse multi-
dimensional scaling using landmark points. Technical
report, Technical report, Stanford University, 2004.

[8] Arthur Flexer, Dominik Schnitzer, Martin Gasser, and
Gerhard Widmer. Playlist generation using start and
end songs. In Juan Pablo Bello, Elaine Chew, and Dou-
glas Turnbull, editors, ISMIR, pages 173–178, 2008.

[9] Olga Goussevskaia, Michael Kuhn, Michael Lorenzi,
and Roger Wattenhofer. From web to map: Exploring
the world of music. In Web Intelligence and Intelligent
Agent Technology, 2008. WI-IAT’08, volume 1, 2008.

[10] Pedro Holanda, Bruno Guilherme, Joao Paulo V. Car-
doso, Ana Paula Couto da Silva, and Olga Gous-
sevskaia. Mapeando o universo da midia usando dados
gerados por usuarios em redes sociais online. In The
33rd Brazilian Symposium on Computer Networks and
Distributed Systems (SBRC), 2015.

[11] Pedro Holanda, Bruno Guilherme, Ana Paula Couto
da Silva, and Olga Goussevskaia. TV goes social:
Characterizing user interaction in an online social net-
work for TV fans. In Engineering the Web in the Big
Data Era - 15th International Conference, ICWE 2015,
Rotterdam, The Netherlands, June 23-26, 2015, Pro-
ceedings, pages 182–199, 2015.

[12] Pedro Holanda, Bruno Guilherme, Luciana Fujii Pon-
tello, Ana Paula Couto da Silva, and Olga Gous-
sevskaia. Mixtape application: Music map method-
ology and evaluation. Technical report, Department
of Computer Science, Universidade Federal de Minas
Gerais, Belo Horizonte, MG, Brazil, May 2016.

[13] Michael Kuhn, Roger Wattenhofer, and Samuel Wel-
ten. Social audio features for advanced music retrieval
interfaces. In Proceedings of the international confer-
ence on Multimedia, pages 411–420. ACM, 2010.

[14] Beth Logan. Content-based playlist generation: Ex-
ploratory experiments. In ISMIR, 2002.

[15] François Maillet, Douglas Eck, Guillaume Desjardins,
and Paul Lamere. Steerable playlist generation by
learning song similarity from radio station playlists. In
ISMIR, 2009.

[16] Joshua L Moore, Shuo Chen, Thorsten Joachims, and
Douglas Turnbull. Learning to embed songs and tags
for playlist prediction. In ISMIR, pages 349–354, 2012.

[17] Joshua L Moore, Shuo Chen, Douglas Turnbull, and
Thorsten Joachims. Taste over time: The temporal dy-
namics of user preferences. In ISMIR, 2013.

[18] Elias Pampalk, Tim Pohle, and Gerhard Widmer. Dy-
namic playlist generation based on skipping behavior.
In ISMIR, 2005.

[19] Luciana Fujii Pontello, Pedro Holanda, Bruno Guil-
herme, Joao Paulo V. Cardoso, Olga Goussevskaia,
and Ana Paula Couto da Silva. Mixtape application:
Last.fm data characterization. Technical report, De-
partment of Computer Science, Universidade Federal
de Minas Gerais, Belo Horizonte, MG, Brazil, May
2016.

[20] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In 24th International Conference
on World Wide Web, pages 1067–1077, 2015.

[21] J. B. Tenenbaum, V. Silva, and J. C. Langford. A
Global Geometric Framework for Nonlinear Dimen-
sionality Reduction. Science, 290(5500):2319–2323,
2000.

[22] Douglas R Turnbull, Justin A Zupnick, Kristofer B
Stensland, Andrew R Horwitz, Alexander J Wolf,
Alexander E Spirgel, Stephen P Meyerhofer, and
Thorsten Joachims. Using personalized radio to en-
hance local music discovery. In CHI’14, 2014.

[23] Aaron Van den Oord, Sander Dieleman, and Benjamin
Schrauwen. Deep content-based music recommenda-
tion. In Advances in Neural Information Processing
Systems, 2013.

460 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

