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ABSTRACT

Computational expressive music performance studies
the analysis and characterisation of the deviations that a
musician introduces when performing a musical piece. It
has been studied in a classical context where timing and
dynamic deviations are modeled using machine learning
techniques. In jazz music, work has been done previously
on the study of ornament prediction in guitar performance,
as well as in saxophone expressive modeling. However,
little work has been done on expressive ensemble perfor-
mance. In this work, we analysed the musical expressivity
of jazz guitar and piano from two different perspectives:
solo and ensemble performance. The aim of this paper is to
study the influence of piano accompaniment into the per-
formance of a guitar melody and vice versa. Based on a
set of recordings made by professional musicians, we ex-
tracted descriptors from the score, we transcribed the gui-
tar and the piano performances and calculated performance
actions for both instruments. We applied machine learning
techniques to train models for each performance action,
taking into account both solo and ensemble descriptors.
Finally, we compared the accuracy of the induced models.
The accuracy of most models increased when ensemble in-
formation was considered, which can be explained by the
interaction between musicians.

1. INTRODUCTION

Music is a very important part in the life of milions of peo-
ple, whether they are musicians, they enjoy attending live
music concerts or simply like listening to musical record-
ings at home. The engaging part of music is the human
component added to the performance: instead of a ”dead”
score, musicians shape the music by changing parameters
such as intensity, velocity, volume and articulation. The
study of music expressive performance from a computa-
tional point of view consists of characterising the devia-
tions that a musician introduces in a score, often in order
to render human-like performances from inexpressive mu-
sic scores.

There are numerous works which study expressive per-
formance in classical music, and most of these studies have
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been done on piano performances (for an overview, see
Goebl [24]). Other works analyse expressivity in a jazz
context. For instance, Giraldo and Ramı́rez [8] study and
model the ornamentation introduced to a jazz melody by
using machine learning techniques. In an ensemble con-
text, the musicians’ performance is influenced by what
is being played by the other musicians. Although most
works are focused on soloist performances, some works
take into account ensemble performances in classical mu-
sic ( [26], [12], [15]). However, to our knowledge lit-
tle work addresses ensemble expressive performance in a
jazz context. In this work, we present a method to study
the interaction between jazz musicians from a computa-
tional perspective. Our data set consisted of 7 jazz pieces
recorded by a jazz quartet (guitar, piano, bass and drums),
in which each instrument was recorded on a separate track.
In this study we considered the interaction between guitar
melodies and the accompaniment of piano. We extracted
individual (soloist) score descriptors as well as ensemble
descriptors. We calculated performance actions for both
guitar (embellishments) and piano (chord density, range
and weight). We applied machine learning techniques to
predict these performance actions using Artificial Neural
Networks, Support Vector Machine and Decision Trees.
We generated individual models for each instrument and
measured the level of interaction between musicians by in-
troducing ensemble descriptors into each individual model
to create mixed models, and compared the individual mod-
els with the mixed models. Finally, we evaluated the per-
formance of the algorithms by computing statistical signif-
icance tests (Paired T-Test).

The rest of the paper is organised as follows. In Sec-
tion 2, we present related work in expressive music per-
formance. In section 3, we describe the materials we have
used. In Section 4, the proposed method is described and
the evaluation process is explained. In Section 5, the re-
sults of the evaluation are presented. Finally, in Section 6
we put forward conclusions and future improvements.

2. RELATED WORK

Many works study expressive performance actions in mu-
sic, defined as variations in timing (duration and onsets),
energy, articulation, and vibrato from different perspec-
tives, including psychology ( [6], [19]), neurology ( [13]),
musicology ( [22]) and at a computational level. Previous
work has been done in a classical context by Friberg [5],
who develops a set of rules using analysis by synthesis to
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generate the deviations to be applied to a score, obtaining
human-like performances. Widmer [25] analyses record-
ings of 13 complete Mozart piano sonatas and uses a ma-
chine learning approach to create predictive rules for note-
level timing, dynamics and articulation. In a jazz context,
previous work has focused on the saxophone: Lopez de
Mántaras et al. [1] use case-based reasoning to develop a
system capable of modeling expressive performances (on-
set, duration and energy) of jazz saxophone. Ramı́rez and
Hazan [20] apply classification and regression methods to
a set of acoustic features extracted from saxophone record-
ings and a set of descriptors which characterised the con-
text of the performed notes. In jazz guitar, Giraldo and
Ramı́rez ( [9], [10]) use machine learning techniques to
model and synthesise embellishments by training models
to classify score notes as embellished or not, according to
the characteristics of the notes’ context.

2.1 Ensemble Performance

In ensemble performance, the expressivity of a soloist
might be influenced by what the other musicians are play-
ing. Most of the literature refers to classical context,
studying timing asynchrony among performers. Repp [21]
studies the synchronisation of the task of tapping by taking
into account phase and frequency correction mechanisms.
Wing et al. [26] develop a model for studying synchronisa-
tion in string quartets in different contexts (democratic or
dictatorial). Goebl and Palmer [12] investigate the effect of
the auditory and visual feedback so to study the synchro-
nisation among musicians. More recently, Marchini [15]
studies the interaction between musicians by generating
independent machine learning models of expressive per-
formance for each musician and taking into account the
influence of the other musicians.

3. MATERIALS

We recorded 7 jazz standards performed by a jazz quar-
tet both in wav and MIDI format, using the digital audio
workstation Logic Pro X [14]. The scores were written in
Music-XML format using Muse Score [18] to extract de-
scriptors. We developed code by using the computing envi-
ronment Matlab [17], concretely, the MidiToolBox Library
developed by Toiviainen and Eerola [4] to process the data
in MIDI format. We used the fundamental frequency esti-
mator YIN [3] to create an automatic guitar melody tran-
scriber. We performed beat tracking of the recordings us-
ing the beat tracker developed by Zapata [27]. Finally,
we used the Weka Data Mining Software [16] for machine
learning modeling.

4. METHODOLOGY

The methodology is divided into three stages, which are
depicted in Figure 1. Firstly, we acquired the data from
recordings and its respective scores (Section 4.1). Sec-
ondly, the data was analysed to extract the chords played
by the pianist, which were aligned with the score after-
wards so as to obtain piano performance actions. For gui-

tar, we transcribed the audio into MIDI, and aligned the
played notes with the score to obtain guitar performance
actions. From the score, descriptors for notes and chords
were extracted. We manually transcribed the audio of the
piano and guitar into a new score in order to also extract
descriptors from the performed score. The audio mix was
used for beat tracking, and to compute a mean tempo.
Thirdly, machine learning techniques were applied using
the different data sets created from the extracted data to
predict the calculated performance actions (Section 4.3).

Figure 1. Overall framework: the data related to the score
is shown inside ellipses while the data related to the record-
ings is placed inside rectangles.

4.1 Data acquisition and pre-processing

We recorded a jazz ensemble consisting of keyboard, elec-
tric guitar, electric bass and drums. We only used the gui-
tar data in wav format, the piano data in MIDI format and
an audio mix of the band in wav format for further tempo
computation. Improvisers usually play the main melody at
the beginning and end of a performance with improvisa-
tions in the central part and so both the recordings and the
scores were segmented in order to contain only the melody
part (no introductions or solos).

4.2 Data analysis

The aim of this part was to obtain a machine readable
representation from the input data (recordings and scores)
in the form of descriptors (data extracted from the score
which characterised both notes and chords by taking into
account their properties and the properties of their con-
texts) and performance actions (deviations from the score
introduced by the musician to add expressivity, extracted
from the recordings). In this stage, there were 4 types of
input data: piano recordings, guitar recordings, scores and
audio mix recordings. The following Sections explain the
processing of this data.

4.2.1 Piano Data

We detected chords in the piano data by grouping together
individual notes. The process consisted of identifying
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groups of notes played at the same time and so we cre-
ated heuristic rules based on the work done by Traube and
Bernays [23], who identify groups of notes which have
near-synchronous onsets by analysing onset differences
between two consecutive notes. Our approach consisted
of three rules: the first one searched for and grouped notes
which were played at the same time. The second one, was
in charge of merging chords with an inter onset difference
< 100ms. Finally, the third rule took into consideration
pedal notes (notes that remain while two or more chords
are played consequently).

Alignment was performed to link the detected chords
with the score chords. It was done at a beat level: since
the position of the beats was computed by the beat tracker
(see Section 4.2.4), we converted the onsets/offsets of each
performed chord from seconds to beats. Based on beat in-
formation, we aligned a chord written in the score with the
chord (or chords) that had been played.

Based on the alignment of the played chords to the
score, the performance actions for every chord in the score
were calculated according to what had been played. We
computed three performance actions: density (Equation
1), defined as low or high depending on the number of
chords used to perform a score chord (i.e. chords played
with a duration of half-note or more were labelled as low
while a duration of less than a half note corresponded to a
”high” label); weight (Equation 2), defined as low or high
according to the total number of notes which were utilised
to perform a score chord; and range (Equation 3), defined
as low or high if the distance in semitones from the high-
est to the lowest performed note per chord in the score was
larger than 18 (an octave and a half) .

den(chordS) =





low if
∑

chordsP

dur(chordS)
< 1/2

high if
∑

chordsP

dur(chordS)
≥ 1/2

(1)

Where:

chordS : is the corresponding chord on the score

∑
chordsP : is the amount of performed chords for a chord on

the score

dur(chordS): is the duration of the corresponding chord on the
score

wei(chordS) =





low if
∑

notesP∑
chordsP

< 4

high if
∑

notesP∑
chordsP

≥ 4

(2)

Where:

chordS : is the corresponding chord on the score

∑
notesP : is the total number of performed notes for a chord

on the score

∑
chordsP : is the amount of performed chords for a chord on

the score

ran(chordS) =





low if max(pitchPN )−min(pitchPN ) < 18

high if max(pitchPN )−min(pitchPN ) ≥ 18
(3)

Where:

chordS : is the corresponding chord on the score

pitchPN : is the vector of pitch of the performed notes (PN ) for
a chord on the score

4.2.2 Guitar Data

We automatically converted the guitar recording in wav
format into a MIDI format in order to obtain a note repre-
sentation based on pitch, onset (in seconds) and offset (in
seconds) by following the framework presented in Bantula
et al. work [2].

Alignment was then performed at two levels. Firstly,
the onsets and offsets of the MIDI notes were converted
from seconds to beats using the beats’ information com-
puted by the beat tracker (see Section 4.2.4). Secondly, we
performed manual alignment between the performed notes
and the score notes by using a graphical interface that al-
lowed to link the performed notes and the score notes in
two pianoroll representations [11]. Embellishments were
computed by following the same approach by Giraldo and
Ramı́rez [11]: a note was considered to be embellished if
two or more notes were played in its place. Then, each
score note was labelled as embellished or not (y/n) accord-
ing to the previous alignment.

4.2.3 Score Data

In this stage, we extracted horizontal and vertical descrip-
tors from the score to characterise both chords and notes.

• Chord Descriptors (Figure 2) For chords, the hori-
zontal context concerned harmonic information and
the vertical context considered melodic, ensemble
information. In Table 1, the intrinsic descriptors of
the reference chords are listed. In Table 3, the har-
monic horizontal descriptors, computed according to
the neighbours of the reference chord are shown. Ta-
ble 2 includes the vertical descriptors computed by
averaging or weighting the single note descriptors of
the notes below the region defined by the reference
chord.

Figure 2. Excerpt of Autumn Leaves: horizontal and verti-
cal contexts for the reference chord F7
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descriptor units computation range
id num root→ number [0,11]

type label type
{M, m, +,7,

dim, half dim}
tens label tension based on

musical criteria {++, +, -, - -}
chord dur beats chord dur [1,∞)

on b beats on b [1,∞)

Table 1. Individual descriptors for a reference chord (no
context).

descriptor units computation range
onset b beats min(onsetnotes) [1,∞)

dur b beats
max(onsetnotes)
+max(durnotes)
−min(onsetnotes)

[1,∞)

meanPitch
(mP) MIDI note mean(pitchnotes) [36,96]

onset s seconds 60 ∗ onset b
tempo

[1,∞)
dur s seconds 60 ∗ dur b

tempo
[1,∞)

chroma half
tones mod12(mP ) [0,11]

measure num measure [1,∞)
pre dur b beats pre dur b [1,∞)
pre dur s seconds 60 ∗ pre dur b

tempo
[1,∞)

nxt dur b beats nxt dur b [1,∞)
nxt dur s seconds 60 ∗ nxt dur b

tempo
[1,∞)

prev int half
tones prevmP −mP [1,∞)

next int half
tones mP − nextmP [1,∞)

note2key half
tones chroma− key [0,11]

note2chord half
tones chroma− id [0,11]

isChordN* label - {y,n}
mtr* label mean(metpos(notes))

{strong,
weak}

intHop* num mean(intervals) [0,96]
melody* num #notes

chord dur
-

Table 2. Chord melodic descriptors (vertical)

descriptor units computation range
tempo bpm tempo [1,300]

keyMode label keyMode
{major,
minor}

numKey num key position in
the Fifths Circle [0,11]

keyDistance half
tones id− numKey [0,11]

metP* label metrical position

{strongest,
strong,
weak,

weakest}

function label
harmonic

analysis from
keyDistance

{tonic,
subdom,

dom,
no func}

next root int half
tones id− nextid [0,11]

prev root int half
tones previd − id [0,11]

Table 3. Chord harmonic descriptors (horizontal)

• Note descriptors (Figure 3) For note descriptors,
the horizontal context included melodic information
while the vertical context included harmonic, en-
semble information. Following the approach made
by Giraldo [7], we computed horizontal note de-
scriptors using the information of the reference
notes’ neighbours whereas we computed vertical
note descriptors by using the chords’ information.
Since every note belonged to a chord, the features
of the note were merged with the descriptors of the
corresponding chord by concatenating both lists and
eliminating repeated items.

Figure 3. Excerpt of All Of Me: Horizontal and Vertical
contexts for a reference note

4.2.4 Audio mix Data

For every recording, we performed a semi-automatic align-
ment between the performance and the score.The tempo
varied during the performance because no metronome was
used. Hence, beat positions were not equidistant and beat-
tracking was performed to create a beat grid which allowed
to link the performed information to the score informa-
tion. We used the algorithm developed by Zapata et al. [27]
to track the beats, followed by manual correction. After-
wards, the mean tempo of each song was computed using
Equation 4, where beats was the vector of beats computed
in the previous step.

tempo = round

(
60

mean(diff(beats))

)
(4)

4.3 Machine learning

4.3.1 Datasets

As it can be seen in Figure 1, the inputs of the Machine
Learning stage were the performance actions for both pi-
ano and guitar as well as the score descriptors (for chords
and notes). Hence, we constructed three types of datasets,
shown in Figure 4.

• Simple Datasets (D1): Horizontal score context. It
only contained individual descriptors of the chords
or notes.

• Score Mixed Datasets (D2): D1 plus vertical
score context, which contained merged descriptors
of chords and notes.

• Performance Mixed Datasets (D3): D1 plus verti-
cal performance context (extracted from the manual
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transcriptions of the performances), which contained
merged features of chords and notes, taking into ac-
count the real interaction between musicians.

Figure 4. Three different datasets depending on the in-
cluded descriptors

Therefore, for piano we trained models to learn the
function shown in Equation 5 while for guitar, the func-
tion to learn is presented in Equation 6.

f(Chord)→ (Den,Wei,Ran) (5)

Where:

Chord: is a chord only characterised by harmonic descriptors
plus melodic descriptors (depending on the dataset)

Den, Wei, Ran: are the predicted density, weight and range
labels (high/low), respectively.

f(Note)→ (Emb) (6)

Where:

Note: is a note characterised by the set of melodic descriptors
plus harmonic descriptors (depending on the dataset)

Emb: corresponds to the predicted embellishment label (yes/no).

4.3.2 Feature Selection

The aim of this part was to identify specific score descrip-
tors that best described the previously defined performance
actions, so as to train models with the most representative
ones. Therefore, for every dataset we evaluated the de-
scriptors by their information gain. Tables 4, 5, 6 and 7
show the best ranked descriptors for density, weight, range
and embellishments, respectively.

D1 D2 D3
metP mtr metP

chord dur metP chord dur
function chord dur intHop

type isChordN isChordN
tens type function
metP tens type

tens

Table 4. Selected features for density

D1 D2 D3
tens tens tens

function function function
chord dur type type

metP metP metP
isChordN keyMode
keyMode isChordN

mtr tens

Table 5. Selected features for weight

D1 D2 D3
numKey numKey numKey
function dur s pre dur s

type duration b prev int
tens pre dur b function

keyMode nxt dur b type
metP isChordN mtr

function isChordN
mtr tens
type keyMode
tens metP

keyMode
metP

Table 6. Selected features for range

D1 D2 D3
phrase phrase phrase
dur b dur b dur b
dur s dur s dur s

pre dur b pre dur b pre dur b
pre dur s pre dur s pre dur s

onset onset onset
tens tens
type type

function function
isChordN isChordN
keyMode keyMode

metP

Table 7. Selected features for embellishments

4.3.3 Algorithms

The aim of this stage was to compare the results of the
widely used algorithms Decision Trees, Support Vector
Machine (SVM) (with a linear kernel) and Neural Networks
(NN) (with one hidden layer). We used the implementa-
tion of these algorithms in the Weka Data Mining Soft-
ware [16], utilising the default parameters.

5. RESULTS

Since every performance action contained 3 datasets, we
generated a model for each of them. Thus, the results we
present include a comparison between the datasets as well
as the algorithms.

5.1 Piano data: density, weight and range

We evaluated the accuracy (percentage of correct classifi-
cations) using 10-cross fold validation with 10 iterations.
We performed statistical testing by using the t-test with a
significance value of 0.05 to compare the methods with the
baseline (Zero Rule Classifier) and decide if one produced
measurably better results than the other.
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Table 8 shows the results for density. It can be seen
that the accuracy increased when ensemble information
was considered (datasets D2 and D3). The significant
improvements were achieved by the algorithms NN and
SVM, being 65.13 the highest accuracy reached with the
dataset D2 which consisted in both harmonic and melodic
score descriptors. For weight (Table 9), none of the re-
sults was statistically significant and the performance of
the three models can be interpreted as random. The high-
est results were achieved when only piano information was
considered (D1), showing no interaction between this per-
formance action and the guitar melody. Table 10 presents
the results for range. In that case, the three algorithms
reached their maximum accuracy when information of the
ensemble performance (D3) was considered, which can be
explained as a presence of correlation between the range of
the chords performed and the melody the piano player was
hearing. Moreover, the results for the algorithms Decision
Trees and SVM were statistically significant.

Dataset Baseline NN SVM Decision Tree
D1 51.82 61.19 ◦ 62.13 ◦ 53.75
D2 51.82 61.72 65.13 ◦ 55.34
D3 51.82 55.75 61.75 57.65
◦, • statistically significant improvement or degradation

Table 8. Accuracy for the models of density in comparison
to the baseline using NN, SVM and Decision Trees

Dataset Baseline NN SVM Decision Tree
D1 53.73 63.52 52.96 54.48
D2 53.73 50.62 49.64 51.85
D3 53.73 57.70 50.90 51.36
◦, • statistically significant improvement or degradation

Table 9. Accuracy for the models of weight in comparison
to the baseline using NN, SVM and Decision Trees

Dataset Baseline NN SVM Decision Tree
D1 56.73 54.51 62.06 63.72
D2 56.73 57.11 60.90 60.93
D3 56.73 58.83 67.85 ◦ 67.98 ◦
◦, • statistically significant improvement or degradation

Table 10. Accuracy for the models of range in comparison
to the baseline using NN, SVM and Decision Trees

5.2 Guitar data: embellishments

In that case, there was a skewed classes distribution, which
led us to evaluate the sensitivity (true positive rate) rather
than the accuracy of the model. Table 11 presents the re-
sults obtained. It can be seen that, despite the low percent-
age of sensitivity, the results for the three algorithms in-
creased when considering ensemble information (D2, D3).

6. CONCLUSIONS

In this work we have developed a system which studies
the interaction between musicians by using techniques re-

Dataset NN SVM Decision Tree
D1 26 20 12
D2 30 38 26
D3 30 32 24

Table 11. Sensitivity percentage for embellishments

lated to computational analysis of expressive music perfor-
mance and machine learning. We have created a database
consisting of recordings of 7 jazz standards played by a
quartet (piano, guitar, bass and drums) and their corre-
sponding scores. For processing both the recordings and
the scores, we have developed code libraries consisting
of specific functions for every stage of the process: se-
lect chords, extract vertical and horizontal descriptors for
both notes and chords, align and compare the recordings
with the score and extract performance actions. Finally,
we have generated models for different datasets consisting
of information from individual performances and ensem-
ble performances. Based on the accuracy and sensitivity of
the models, we have obtained numerical results which have
allowed us to estimate the level of interaction between mu-
sicians. The data analysis indicated that, in general terms,
the performance actions of the accompaniment are influ-
enced by the soloist and vice versa, since both written and
performed descriptors contributed to a better performance
of the models.

In a future work, it would be interesting to extract other
performance actions such as energy or duration for both
chords and notes and to study the extent to which the
measures are sensitive to the incorporation of other instru-
ments. Moreover, since we have at our disposal a database
which contains the recordings of bass and drums, it would
be interesting to incorporate both instruments into the anal-
ysis. We have observed that the majority of the models got
better results with ensemble information but the accura-
cies of the models could still improve by collecting more
data (making new recordings) or extracting more descrip-
tors. Finally, the parameters of the used algorithms could
be further investigated so as to improve the results.
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