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ABSTRACT

We explore frame-level audio feature learning for chord
recognition using artificial neural networks. We present
the argument that chroma vectors potentially hold enough
information to model harmonic content of audio for chord
recognition, but that standard chroma extractors compute
too noisy features. This leads us to propose a learned
chroma feature extractor based on artificial neural net-
works. It is trained to compute chroma features that en-
code harmonic information important for chord recogni-
tion, while being robust to irrelevant interferences. We
achieve this by feeding the network an audio spectrum with
context instead of a single frame as input. This way, the
network can learn to selectively compensate noise and re-
solve harmonic ambiguities.

We compare the resulting features to hand-crafted ones
by using a simple linear frame-wise classifier for chord
recognition on various data sets. The results show that the
learned feature extractor produces superior chroma vectors
for chord recognition.

1. INTRODUCTION

Chord Recognition (CR) has been an active research field
since its inception by Fujishima in 1999 [10]. Since
then, researchers have explored many aspects of this field,
and developed various systems to automatically extract
chords from audio recordings of music (see [20] for a re-
cent review). Chord recognition meets this great interest
in the MIR (music information research) community be-
cause harmonic content is a descriptive mid-level feature
of (Western) music that can be used directly (e.g. for creat-
ing lead sheets for musicians) and as basis for higher-level
tasks such as cover song identification, key detection or
harmonic analysis.

Most chord recognition systems follow a common
pipeline of feature extraction, pattern matching, and chord
sequence decoding (also called post-filtering) [7]. In this
paper, we focus on the first step in this pipeline: feature
extraction.
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Two observations lead us to explore better features for
chord recognition: (1) The capabilities of chord models for
pattern matching are limited. In [7], Cho and Bello con-
clude that appropriate features largely redeem the benefits
of complex chord models. (2) The capabilities of post-fil-
tering are limited. As shown in [6, 7], post-filtering meth-
ods are useful because they enforce continuity of individ-
ual chords rather than providing information about chord
transitions. Incorporating such information did not consid-
erably improve recognition results in both studies. Chen
et al. [6] also observed quantitatively that in popular mu-
sic “chord progressions are less predictable than it seems”,
and thus knowing chord history does not greatly narrow the
possibilities for the next chord. Given these apparent limi-
tations of the pattern matching and post-filtering stages, it
is not surprising that they only partly compensate the per-
formance gap between features [7]. We therefore have to
compute better features if we want to improve chord recog-
nition.

In this paper, we take a step towards better features for
chord recognition by introducing a data-driven approach
to extract chromagrams that specifically encode content
relevant to harmony. Our method learns to discard irrel-
evant information like percussive noise, overtones or tim-
bral variations automatically from data. We argue that it
is thus able to compensate a broader range of interferences
than hand-crafted approaches.

2. CHROMAGRAMS

The most popular feature used for chord recognition is the
Chromagram. A chromagram comprises a time-series of
chroma vectors, which represent harmonic content at a spe-
cific time in the audio as c ∈ R12. Each ci stands for a pitch
class, and its value indicates the current saliency of the cor-
responding pitch class. Chroma vectors are computed by
applying a filter bank to a time-frequency representation of
the audio. This representation results from either a short-
time Fourier transform (STFT) or a constant-q transform
(CQT), the latter being more popular due to a finer fre-
quency resolution in the lower frequency area.

Chromagrams are concise descriptors of harmony be-
cause they encode tone quality and neglect tone height.
In theory, this limits their representational power: with-
out octave information, one cannot distinguish e.g. chords
that comprise the same pitch classes, but have a different
bass note (like G vs. G/5, or A:sus2 vs. E:sus4). In prac-
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tice, we can show that given chromagrams derived from
ground truth annotations, using logistic regression we can
recognise 97% of chords (reduced to major/minor) in the
Beatles dataset. This result encourages us to create chroma
features that contain harmony information, but are robust
to spectral content that is harmonically irrelevant.

Chroma features are noisy in their basic formulation be-
cause they are affected by various interferences: musical
instruments produce overtones in addition to the funda-
mental frequency; percussive instruments pollute the spec-
trogram with broadband frequency activations (e.g. snare
drums) and/or pitch-like sounds (tom-toms, bass drums);
different combinations of instruments (and different, pos-
sibly genre-dependent mixing techniques) create different
timbres and thus increase variance [7, 20].

Researchers have developed and used an array of meth-
ods that mitigate these problems and extract cleaner chro-
magrams: Harmonic-percussive source separation can fil-
ter out broadband frequency responses of percussive in-
struments [22, 27], various methods tackle interferences
caused by overtones [7, 19], while [21, 27] attempt to
extract chromas robust to timbre. See [7] for a recent
overview and evaluation of different methods for chroma
extraction. Although these approaches improve the qual-
ity of extracted chromas, it is very difficult to hand-craft
methods for all conceivable disturbances, even if we could
name and quantify them.

The approaches mentioned above share a common limi-
tation: they mostly operate on single feature frames. Single
frames are often not enough to decide which frequencies
salient in the spectrum are relevant to harmony and which
are noise. This is usually countered by contextual aggrega-
tion such as moving mean/median filters or beat synchro-
nisation, which are supposed to smooth out noisy frames.
Since they operate only after computing the chromas, they
address the symptoms (noisy frames) but do not tackle the
cause (spectral content irrelevant to harmony). Also, [7]
found that they blur chord boundaries and details in a sig-
nal and can impair results when combined with more com-
plex chord models and post-filtering methods.

It is close to impossible to find the rules or formulas
that define harmonic relevance of spectral content manu-
ally. We thus resort to the data-driven approach of deep
learning. Deep learning was found to extract strong, hierar-
chical, discriminative features [1] in many domains. Deep
learning based systems established new state-of-the-art re-
sults in computer vision 1 , speech recognition, and MIR
tasks such as beat detection [3], tempo estimation [4] or
structural segmentation [28].

In this paper, we want to exploit the power of deep
neural networks to compute harmonically relevant chroma
features. The proposed chroma extractor learns to filter
harmonically irrelevant spectral content from a context of
audio frames. This way, we circumvent the necessity to
temporally smooth the features by allowing the chroma ex-
tractor to use context information directly. Our method

1 See https://rodrigob.github.io/are we there yet/build/classification
datasets results.html for results on computer vision.

computes cleaner chromagrams while retaining their ad-
vantages of low dimensionality and intuitive interpretation.

3. RELATED WORK

A number of works used neural networks in the context
of chord recognition. Humphrey and Bello [14] applied
Convolutional Neural Networks to classify major and mi-
nor chords end-to-end. Boulanger-Lewandowski et al. [5],
and Sigtia et al. [24] explored Recurrent Neural Networks
as a post-filtering method, where the former used a deep
belief net, the latter a deep neural network as underlying
feature extractor. All these approaches train their models
to directly predict major and minor chords, and follow-
ing [1], the hidden layers of these models learn a hier-
archical, discriminative feature representation. However,
since the models are trained to distinguish major/minor
chords only, they consider other chord types (such as sev-
enth, augmented, or suspended) mapped to major/minor as
intra-class variation to be robust against, which will be re-
flected by the extracted internal features. These features
might thus not be useful to recognise other chords.

We circumvent this by using chroma templates derived
from chords as distributed (albeit incomplete) representa-
tion of chords. Instead of directly classifying a chord label,
the network is required to compute the chroma representa-
tion of a chord given the corresponding spectrogram. We
expect the network to learn which saliency in the spectro-
gram is responsible for a certain pitch class to be harmon-
ically important, and compute higher values for the corre-
sponding elements of the output chroma vector.

Approaches to directly learn a mapping from spectro-
gram to chroma include those by İzmirli and Dannen-
berg [29] and Chen et al. [6]. However, both learn only
a linear transformation of the time-frequency representa-
tion, which limits the mapping’s expressivity. Addition-
ally, both base their mapping on a single frame, which
comes with the disadvantages we outlined in the previous
section.

In an alternative approach, Humphrey et al. apply deep
learning methods to produce Tonnetz features from a spec-
trogram [15]. Using other features than the chromagram
is a promising direction, and was also explored in [6] for
bass notes. Most chord recognition systems however still
use chromas, and more research is necessary to explore to
which degree and under which circumstances Tonnetz fea-
tures are favourable.

4. METHOD

To construct a robust chroma feature extractor, we use a
deep neural network (DNN). DNNs consist of L hidden
layers hl of Ul computing units. These units compute val-
ues based on the results of the previous layer, such that

hl(x) = σl (Wl · hl−1(x) + bl) , (1)

where x is the input to the net, Wl ∈ RUl×Ul−1 and
bl ∈ RUl are the weights and the bias of the lth layer re-
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spectively, and σl is a (usually non-linear) activation func-
tion applied point-wise.

We define two additional special layers: an input layer
that is feeding values to h1 as h0(x) = x, with U0 being
the input’s dimensionality; and an output layer hL+1 that
takes the same form as shown in Eq. 1, but has a specific
semantic purpose: it represents the output of the network,
and thus its dimensionality UL+1 and activation function
σL+1 have to be set accordingly. 2

The weights and biases constitute the model’s parame-
ters. They are trained in a supervised manner by gradient
methods and error back-propagation in order to minimise
the loss of the network’s output. The loss function de-
pends on the domain, but is generally some measure of dif-
ference between the current output and the desired output
(e.g. mean squared error, categorical cross-entropy, etc.)

In the following, we describe how we compute the input
to the DNN, the concrete DNN architecture and how it was
trained.

4.1 Input Processing

We compute the time-frequency representation of the sig-
nal based on the magnitude of its STFT X . The STFT
gives significantly worse results than the constant-q trans-
form if used as basis for traditional chroma extractors, but
we found in preliminary experiments that our model is not
sensitive to this phenomenon. We use a frame size of 8192
with a hop size of 4410 at a sample rate of 44100 Hz. Then,
we apply triangular filters to convert the linear frequency
scale of the magnitude spectrogram to a logarithmic one in
what we call the quarter-tone spectrogram S = F4Log · |X|,
where F4Log is the filter bank. The quarter-tone spectro-
gram contains only bins corresponding to frequencies be-
tween 30 Hz and 5500 Hz and has 24 bins per octave. This
results in a dimensionality of 178 bins. Finally, we apply
a logarithmic compression such that Slog = log (1 + S),
which we will call the logarithmic quarter-tone spectro-
gram. To be concise, we will refer to SLog as “spectro-
gram” in rest of this paper.

Our model uses a context window around a target frame
as input. Through systematic experiments on the validation
folds (see Sec.5.1) we found a context window of±0.7 s to
work best. Since we operate at 10 fps, we feed our network
at each time 15 consecutive frames, which we will denote
as super-frame.

4.2 Model

We define the model architecture and set the model’s
hyper-parameters based on validation performance in sev-
eral preliminary experiments. Although a more systematic
approach might reveal better configurations, we found that
results do not vary by much once we reach a certain model
complexity.

2 For example, for a 3-class classification problem one would use 3
units in the output layer and a softmax activation function such that the
network’s output can be interpreted as probability distribution of classes
given the data.

Figure 1. Model overview. At each time 15 consecutive
frames of the input quarter-tone spectrogram SLog are fed
to a series of 3 dense layers of 512 rectifier units, and fi-
nally to a sigmoid output layer of 12 units (one per pitch
class), which represents the chroma vector for the centre
input frame.

Our model is a deep neural network with 3 hidden layers
of 512 rectifier units [11] each. Thus, σl(x) = max(0, x)
for 1 ≤ l ≤ L. The output layer, representing the chroma
vector, consists of 12 units (one unit per pitch class) with a
sigmoid activation function σL+1(x) = 1/1+exp(−x). The
input layer represents the input super-frame and thus has a
dimensionality of 2670. Fig. 1 shows an overview of our
model.

4.3 Training

To train the network, we propagate back through the net-
work the gradient of the loss L with relation to the net-
work parameters. Our loss is the binary cross-entropy
between each pitch class in the predicted chroma vector
p = hL+1(Slog) and the target chroma vector t, which is
derived from the ground truth chord label. For a single data
instance,

L =
1

12

12∑

i=1

−ti log(pi)− (1− ti) log(1− pi). (2)

We learn the parameters with mini-batch training (batch
size 512) using the ADAM update rule [16]. We also tried
simple stochastic gradient descent with Nesterov momen-
tum and a number of manual learn rate schedules, but could
not achieve better results (to the contrary, using ADAM
training usually converged earlier). To prevent over-fitting,
we apply dropout [26] with probability 0.5 after each hid-
den layer and early stopping if validation accuracy does
not increase after 20 epochs.

5. EXPERIMENTS

To evaluate the chroma features our method produces, we
set up a simple chord recognition task. We ignore any post-
filtering methods and use a simple, linear classifier (logis-
tic regression) to match features to chords. This way we
want to isolate the effect of the feature on recognition ac-
curacy. As it is common, we restrict ourselves to distinct
only major/minor chords, resulting in 24 chord classes and
a ’no chord’ class.
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Figure 2. Validation WCSR for Major/minor chord recog-
nition of different methods given different audio context
sizes. Whiskers represent 0.95 confidence intervals.

Our compound evaluation dataset comprises the Beat-
les [13], Queen and Zweieck [18] datasets (which form the
“Isophonics” dataset used in the MIREX 3 competition),
the RWC pop dataset 4 [12], and the Robbie Williams
dataset [8]. The datasets total 383 songs or approx. 21
hours and 39 minutes of music.

We perform 8-fold cross validation with random splits.
For the Beatles dataset, we ensure that each fold has the
same album distribution. For each test fold, we use six of
the remaining folds for training and one for validation.

As evaluation measure, we compute the Weighted
Chord Symbol Recall (WCSR), often called Weighted Av-
erage Overlap Ratio (WAOR) of major and minor chords
using the mir eval library [23].

5.1 Compared Features

We evaluate our extracted features CD against three
baselines: a standard chromagram C computed from
a constant-q transform, a chromagram with frequency
weighting and logarithmic compression of the underlying
constant-q transform CW

Log , and the quarter-tone spectro-
gram SLog . The chromagrams are computed using the li-
brosa library 5 . Their parametrisation follows closely the
suggestions in [7], where CW

Log was found to be the best
chroma feature for chord recognition.

Each baseline can take advantage of context informa-
tion. Instead of computing a running mean or median,
we allow logistic regression to consider multiple frames of
each feature 6 . This is a more general way to incorporate
context, because running mean is a subset of the context
aggregation functions possible in our setup. Since training
logistic regression is a convex problem, the result is at least
as good as if we used a running mean.

3 http://www.music-ir.org/mirex
4 Chord annotations available at https://github.com/tmc323/

Chord-Annotations
5 https://github.com/bmcfee/librosa
6 Note that this description applies only to the baseline methods. For

our DNN feature extractor, “context” means the amount of context the
DNN sees. The logistic regression always sees only one frame of the
feature the DNN computed.

Btls Iso RWC RW Total

C 71.0±0.1 69.5 ±0.1 67.4±0.2 71.1±0.1 69.2±0.1

CW
Log 76.0±0.1 74.2 ±0.1 70.3±0.3 74.4±0.2 73.0±0.1

SLog 78.0±0.2 76.5 ±0.2 74.4±0.4 77.8±0.4 76.1±0.2

CD 80.2±0.1 79.3±0.1 77.3±0.1 80.1±0.1 78.8±0.1

Table 1. Cross-validated WCSR on the Maj/min task of
compared methods on various datasets. Best results are
bold-faced (p < 10−9). Small numbers indicate stan-
dard deviation over 10 experiments. “Btls” stands for the
Beatles, “Iso” for Isophonics, and “RW” for the Robbie
Williams datasets. Note that the Isophonics dataset com-
prises the Beatles, Queen and Zweieck datasets.

We determined the optimal amount of context for
each baseline experimentally using the validation folds, as
shown in Fig. 2. The best results achieved were 79.0% with
1.5 s context for CD, 76.8% with 1.1 s context for SLog ,
73.3% with 3.1 s context for CW

Log , and 69.5% with 2.7 s
context for C. We fix these context lengths for testing.

6. RESULTS

Table 1 presents the results of our method compared to the
baselines on several datasets. The chroma features C and
CW

Log achieve results comparable to those [7] reported on
a slightly different compound dataset. Our proposed fea-
ture extractor CD clearly performs best, with p < 10−9

according to a paired t-test. The results indicate that the
chroma vectors extracted by the proposed method are bet-
ter suited for chord recognition than those computed by the
baselines.

To our surprise, the raw quarter-tone spectrogram SLog

performed better than the chroma features. This indicates
that computing chroma vectors in the traditional way mixes
harmonically relevant features found in the time-frequency
representation with irrelevant ones, and the final classifier
cannot disentangle them. This raises the question of why
chroma features are preferred to spectrograms in the first
place. We speculate that the main reason is their much
lower dimensionality and thus ease of modelling (e.g. us-
ing Gaussian mixtures).

Artificial neural networks often give good results, but
it is difficult to understand what they learned, or on which
basis they generate their output. In the following, we will
try to dissect the proposed model, understand its workings,
and see what it pays attention to. To this end, we com-
pute saliency maps using guided back-propagation [25],
adapting code freely available 7 for the Lasagne library [9].
Leaving out the technical details, a saliency map can be in-
terpreted as an attention map of the same size as the input.
The higher the absolute saliency at a specific input dimen-
sion, the stronger its influence on the output, where pos-
itive values indicate a direct relationship, negative values
an indirect one.

Fig. 3 shows a saliency map and its corresponding
super-frame, representing a C major chord. As expected,

7 https://github.com/Lasagne/Recipes/
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Figure 3. Input example (C major chord) with correspond-
ing saliency map. The left image shows the spectrogram
frames fed into the network. The centre image shows the
corresponding saliency map, where red pixels represent
positive, blue pixels negative values. The stronger the sat-
uration, the higher the absolute value. The right plot shows
the saliency summed over the time axis, and thus how each
frequency bin influences the output. Note the strong posi-
tive influences of frequency bins corresponding to c, e, and
g notes that form a C major chord.

the saliency map shows that the most relevant parts of the
input are close to the target frame and in the mid frequen-
cies. Here, frequency bins corresponding to notes con-
tained in a C major chord (c, e, and g) showing posi-
tive saliency peeks, with the third, e, standing out as the
strongest. Conversely, its neighbouring semitone, f, ex-
hibits strong negative saliency values. Fig. 4 depicts av-
erage saliencies for two chords computed over the whole
Beatles corpus.

Fig. 5 shows the average saliency map over all super-
frames of the Beatles dataset summed over the frequency
axis. It thus shows the magnitude with which individ-
ual frames in the super-frame contribute to the output of
the neural network. We observe that most information is
drawn from a±0.3 s window around the centre frame. This
is in line with the results shown in Fig. 2, where the pro-
posed method already performed well with 0.7 s of audio
context.

Fig. 6 shows the average saliency map over all super-
frames of the Beatles dataset, and its sum over the time
axis. We observe that frequency bins below 110 Hz and
above 3136 Hz (wide limits) are almost irrelevant, and that
the net focuses mostly on the frequency range between
196 Hz and 1319 Hz (narrow limits). In informal exper-
iments, we could confirm that recognition accuracy drops
only marginally if we restrict the frequency range to the
wide limits, but significantly if we restrict it to the narrow

C D EF G A BC D EF G A BC D EF G A BC D EF G A BC D EF G A BC D EF G A BC D EF G A BC D E

-

0

+
A:min7

C D EF G A BC D EF G A BC D EF G A BC D EF G A BC D EF G A BC D EF G A BC D EF G A BC D E

-

0

+
F]:min

Figure 4. Average saliency map summed over the time
axis for A:min7 and F]:min chords computed on the Beat-
les dataset. As expected, we observe mostly positive peaks
for frequency bins corresponding to notes present in the
chords (a, c, e, g for A:min7; f], a, c] for F]:min).
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Figure 5. Average positive and negative saliencies of all
input frames of the Beatles dataset, summed over the fre-
quency axis. Most of the important information is within
±0.3 s around the centre frame, and past data seems to be
more important than future data. Around the centre frame,
the network pays relatively more attention to what should
be missing than present in a given chroma vector, and vice
versa in areas further away from the centre. The differ-
ences are statistically significant due to the large number
of samples.

limits. This means that the secondary information captured
by the additional frequency bins of the wide limits is also
crucial.

To allow for a visual comparison of the computed fea-
tures, we depict different chromagrams for the song “Yes-
terday” by the Beatles in Fig. 7. The images show that
the chroma vectors extracted by the proposed method are
less noisy and chord transitions are crisper compared to the
baseline methods.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a data-driven approach to
learning a neural-network-based chroma extractor for
chord recognition. The proposed extractor computes
cleaner chromagrams than state-of-the-art baseline meth-
ods, which we showed quantitatively in a simple chord
recognition experiment and examined qualitatively by vi-
sually comparing extracted chromagrams.

We inspected the learned model using saliency maps
and found that a frequency range of 110 Hz to 3136 Hz
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Figure 7. Excerpts of chromagrams extracted from the
song “Yesterday” by the Beatles. The lower image shows
chroma computed by the CW

Log without smoothing. We see
a good temporal resolution, but also noise. The centre im-
age shows the same chromas after a moving average filter
of 1.5 seconds. The filter reduced noise considerably, at
the cost blurring chord transitions. The upper plot shows
the chromagram extracted by our proposed method. It dis-
plays precise pitch activations and low noise, while keep-
ing chord boundaries crisp. Pixel values are scaled such
that for each image, the lowest value in the respective chro-
magram is mapped to white, the highest to black.

seems to suffice as input to chord recognition methods. Us-
ing saliency maps and preliminary experiments on valida-
tion folds we also found that a context of 1.5 seconds is
adequate for local harmony estimation.

There are plenty possibilities for future work to extend
and/or improve our method. To achieve better results, we
could use DNN ensembles instead of a single DNN. We
could ensure that the network sees data for which its pre-
dictions are wrong more often during training, or similarly,
we could simulate a more balanced dataset by showing
the net super-frames of rare chords more often. To fur-
ther assess how useful the extracted features are for chord
recognition, we shall investigate how well they interact
with post-filtering methods; since the feature extractor is
trained discriminatively, Conditional Random Fields [17]
would be a natural choice.

Finally, we believe that the proposed method extracts
features that are useful in any other MIR applications that
use chroma features (e.g. structural segmentation, key esti-
mation, cover song detection). To facilitate respective ex-
periments, we provide source code for our method as part
of the madmom audio processing framework [2]. Informa-
tion and source code to reproduce our experiments can be
found at http://www.cp.jku.at/people/korzeniowski/dc.
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