
ON THE POTENTIAL OF SIMPLE FRAMEWISE APPROACHES TO
PIANO TRANSCRIPTION

Rainer Kelz, Matthias Dorfer, Filip Korzeniowski,
Sebastian Böck, Andreas Arzt, Gerhard Widmer

Department of Computational Perception, Johannes Kepler University Linz, Austria
rainer.kelz@jku.at

ABSTRACT

In an attempt at exploring the limitations of simple ap-
proaches to the task of piano transcription (as usually de-
fined in MIR), we conduct an in-depth analysis of neural
network-based framewise transcription. We systematically
compare different popular input representations for tran-
scription systems to determine the ones most suitable for
use with neural networks. Exploiting recent advances in
training techniques and new regularizers, and taking into
account hyper-parameter tuning, we show that it is possi-
ble, by simple bottom-up frame-wise processing, to obtain
a piano transcriber that outperforms the current published
state of the art on the publicly available MAPS dataset
– without any complex post-processing steps. Thus, we
propose this simple approach as a new baseline for this
dataset, for future transcription research to build on and
improve.

1. INTRODUCTION

Since their tremendous success in computer vision in re-
cent years, neural networks have been used for a large
variety of tasks in the audio, speech and music domain.
They often achieve higher performance than hand-crafted
feature extraction and classification pipelines [20]. Un-
fortunately, using this model class brings along con-
siderable computational baggage in the form of hyper-
parameter tuning. These hyper-parameters include archi-
tectural choices such as the number and width of layers and
their type (e.g. dense, convolutional, recurrent), learning
rate schedule, other parameters of the optimization scheme
and regularizing mechanisms. Whereas for computer vi-
sion these successes were possible using raw pixels as the
input representation, in the audio domain there seems to
be an additional complication. Here the choices for how to
best represent the input range from spectrograms, logarith-
mically filtered spectrograms over constant-Q transforms
to even the raw audio itself [10].
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This is a tedious problem, and there seem to be only two
solutions to it: manual hyper-parameter selection, where a
human expert tries to make decisions based on her past
experience, or automatic hyper-parameter optimization as
discussed in [4, 11, 28]. In this work we pursue a mixed
strategy. As a first step, we systematically find the most
suitable input representation, and progress from there with
human expert knowledge to find best performing architec-
tures for the task of framewise piano transcription.

A variety of neural network architectures has been
used specifically for framewise transcription of piano notes
from monaural sources. Some transcription systems are
separated into an acoustic model and a musical language
model, such as [7, 26, 27], whereas in others there is no
such distinction [2, 6, 23]. As shown in [26], models that
utilize musical language models perform better than those
without, albeit the differences seem to be small. We focus
on the acoustic model here, neglecting the complementary
language model for now.

2. INPUT, METHODS AND PARAMETERS

In what follows, we will describe the input representations
we compared, and give a brief overview of techniques for
training and regularizing neural networks.

2.1 Input Representation

Time-frequency representations in the form of spectro-
grams still seem to have a distinct advantage over the raw
audio input, as mentioned in [10]. The exact parame-
terization of spectrograms is not entirely clear however,
so we try to address this question in a systematic way.
We investigate the suitability of different types of spec-
trograms and constant-Q transforms as input representa-
tions for neural networks and compare four types of input
representations: spectrograms with linearly spaced bins S,
spectrograms with logarithmically spaced bins LS, spec-
trograms with logarithmically spaced bins and logarithmi-
cally scaled magnitude LM, as well as the constant-Q trans-
form CQT [8]. The filterbank for LS and LM has a linear
response (and lower resolution) for the lower frequencies,
and a logarithmic response for the higher frequencies. We
vary the sample rate sr ∈ {22050, 44100} [Hz], number
of bands per octave nb ∈ {12, 24, 36, 48}, whether or not
frames undergo circular shift cs ∈ {on, off}, the amount
of zero padding zp ∈ {×0,×1,×2}, and whether or not
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sr zp cs nb norm
CQT × ×

S × × ×
LS × × × × ×
LM × × × × ×

Table 1: For each spectrogram type, these are the parame-
ters that were varied. See text for a description of the value
ranges.

to use area normalized filters when filter banks are used
norm ∈ {yes,no}. Furthermore, we re-scale the mag-
nitudes of the spectrogram bins to be in the range [0, 1].
Table 1 specifies which parameters are varied for which
input type. For the computation of spectrograms we used
Madmom [5] and for the constant-Q transform we used the
Yaafe library [21].

2.2 Model Class and Suitability

Formally, neural networks are functions with the structure

netk(x) = Wkfk−1(x) + bk

fk(x) = σk(netk(x))

f0(x) = x

where x ∈ Rwin , fk : Rwk−1 → Rwk , σ is any element-
wise nonlinear function, Wk is a matrix in Rwk×wk−1

called the weight matrix, and bk ∈ Rwk is a vector called
bias. The subscript k ∈ {0, . . . , L} is the index of the
layer, with k = 0 denoting the input layer.

Choosing a very narrow definition on purpose, what we
mean by a model class F is a fixed number of layers L, a
fixed number of layer widths {w0, . . . wL} and fixed types
of nonlinearities {σ0, . . . σL}. A model means an instance
f from this class, defined by its weights alone. References
to the whole collection of weights will be made with Θ.

For the task of framewise piano transcription we define
the suitability of an input representation in terms of the
performance of a simple classifier on this task, when given
exactly this input representation.

Assuming we can reliably mitigate the risk of overfit-
ting, we would like to argue that this method of determin-
ing suitable input representations, and using them for mod-
els with higher capacity, is the best we can do, given a lim-
ited computational budget.

Using a low-variance, high-bias model class, the per-
ceptron, also called logistic regression or single-layer neu-
ral network, we learn a spectral template per note. To test
whether the results stemming from this analysis are really
relevant for higher-variance, lower-bias model classes, we
run the same set of experiments again, employing a multi
layer perceptron with exactly one hidden layer, colloqui-
ally called a shallow net. This small extension already
gives the network the possibility to learn a shared, dis-
tributed representation of the input. As we will see, this
has a considerable effect on how suitability is judged.

2.3 Nonlinearities and Initialization

Common choices for nonlinearities include the logistic
function σ(a) = 1

1+e−a , hyperbolic tangent σ(a) =
tanh a, and rectified linear units (ReLU) σ(a) =
max(0, a) . Nonlinearities are necessary to make neural
networks universal function approximators [16]. Accord-
ing to [13,15], using ReLUs as the nonlinearities in neural
networks leads to better behaved gradients and faster con-
vergence because they do not saturate.

Before training, the weight matrices are initialized ran-
domly. The scale of this initialization is crucial and de-
pends on the used nonlinearity as well as the number of
weights contributing to the activation [13, 15]. Proper ini-
tialization plays an even bigger role when networks with
more than one hidden layer are trained [31]. This is also
important for the transcription setting we use, as the out-
put layer of our networks uses the logistic function, which
is prone to saturation effects. Thus we decided on using
ReLUs throughout, initialized with a uniform distribution
having a scale of±

√
2 ·
√

2
wk−1+wk

. For the last layer with

the logistic nonlinearity, we omit the gain factor of
√

2, as
advised in [13].

2.4 Weight Decay

To reduce overfitting and regularizing the network, differ-
ent priors can be imposed on the network weights. Usually
a Gaussian or Laplacian prior is chosen, corresponding to
an L2 or L1 penalty term on connection weights, added to
the cost functionLreg = L+λ

∑
k ‖vec(Wk)‖1|2 [25,32],

where L is an arbitrary, unregularized cost function and λ
governs the extent of regularization. Adding both of these
penalty terms corresponds to a technique called Elastic
Net [33]. It is pointed out in [1] that using L2 regulariza-
tion plays a similar role as early stopping and thus might be
omitted. An L1 penalty on the other hand leads to sparser
weights, as it has a tendency to drive weights with irrele-
vant contributions to zero.

2.5 Dropout

Applying dropout to a layer zeroes out a fraction of the ac-
tivations of a hidden layer of the network. For each train-
ing case, a different random fraction is dropped. This pre-
vents units from co-adapting, and relying too much on each
other’s presence, as reasoned in [30]. Dropout increases
robustness to noise, improves the generalization ability of
networks and mitigates the risk of overfitting. Additionally
dropout can be interpreted as model-averaging of exponen-
tially many models [30].

2.6 Batch Normalization

Batch normalization [18] seeks to produce networks whose
individual activations per layer are zero-mean and unit-
variance. This is ensured by normalizing the activations
for each mini-batch at each training step. This effectively
limits how far the activation distribution can drift away
from zero-mean, unit-variance during training. Not only
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does this alleviate the need of the weights of the subse-
quent layer to adapt to a changing input distribution dur-
ing training, it also keeps the nonlinearities from saturating
and in turn speeds up training. It has additional regulariz-
ing effects, which become more apparent the more layers
a network has. After training is stopped, the normalization
is performed for each layer and for the whole training set.

2.7 Layer Types

We employ three different types of layer. Their respec-
tive functions can all be viewed as matrix expressions in
the end, and thus can be made to fit into the framework
described in Section 2.2. For the sake of readability, we
simply describe their function in a procedural way.

A dense layer consists of a dense matrix - vector pair
(W,b) together with a nonlinearity. The input is trans-
formed via this affine map, and then passed through a non-
linearity.

A convolutional layer consists of a number Ck of con-
volution kernels of a certain size {(Wc,bc)}Ck

c=0 together
with a non-linearity. The input is convolved with each con-
volution kernel, leading to Ck different feature maps to
which the same nonlinearity is applied.

Max pooling layers are used in convolutional networks
to provide a small amount of translational invariance. They
select the units with maximal activation in a local neigh-
borhood (wt, wf ) in time and frequency in a feature map.
This has beneficial effects, as it makes the transcriber in-
variant to small changes in tuning.

Global average pooling layers are used in all-
convolutional networks to compute the mean value of fea-
ture maps.

2.8 Architectures

There is a fundamental choice between a network with all
dense layers, a network with all convolutional layers, and
a mixed approach, where usually the convolutional layers
are the first ones after the input layer followed by dense
layers. Pooling layers, batch normalization and dropout
application are interleaved. For all networks we have to
choose the number of layers, how many hidden units per
layer to use and when to interleave a regularization layer.
For convolutional networks we have to choose the num-
ber of filter kernels and their extent in time and frequency
direction.

2.9 Networks for Framewise Polyphonic Piano
Transcription

The output layer of all considered model classes has 88
units, in line with the playable notes on most modern pi-
anos, and the output nonlinearity is the logistic function,
whose output ranges lie in the interval [0, 1].

The loss function being minimized is the frame- and
element-wise applied binary crossentropy

L(t)
bce(yt, ŷt) = −(yt · log(ŷt) + (1− yt) · log(1− ŷt))

where ŷt = fL(xt) is the output vector of the network,
and yt the ground truth at time t. As the overall loss over
the whole training set we take the mean

L =
1

T

T∑

t=1

L(t)
bce

For the purpose of computing the performance mea-
sures, the prediction of the network is thresholded to obtain
a binary prediction ȳt = ŷt > 0.5.

2.10 Optimization

The simplest way to adapt the weights Θ of the network to
minimize the loss is to take a small step with length α in
the direction of steepest descent:

Θi+1 = Θi − α ·
∂L
∂Θ

Computing the true gradient ∂L
∂Θ = 1

T

∑T
t=1

∂L(t)
bce

∂Θ re-
quires a sum over the length of the whole training set, and
is computationally too costly. For this reason, the gradi-
ent is usually only approximated from an i.i.d. random
sample of size M � T . This is called mini-batch stochas-
tic gradient descent. There are several extensions to this
general framework, such as momentum [24], Nesterov mo-
mentum [22] or Adam [19], which try to smooth the gradi-
ent estimate, correct small missteps or adapt the learning
rate dynamically, respectively. Additionally we can set a
learning rate schedule that controls the temporal evolution
of the learning rate.

3. DATASET AND MEASURES

The computational experiments have been performed with
the MAPS dataset [12]. It provides MIDI-aligned record-
ings of a variety of classical music pieces. They were ren-
dered using different hi-quality piano sample patches, as
well as real recordings from an upright Disklavier. This en-
sures clean annotation and therefore almost no label-noise.
For all performance comparisons the following framewise
measures on the validation set are used:

P =
T−1∑

t=0

TP [t]

TP [t] + FP [t]

R =
T−1∑

t=0

TP [t]

TP [t] + FN [t]

F1 =
2 · P ·R
P +R

The train-test folds are those used in [26] which were
published online 1 . For each fold, the validation set con-
sists of 43 tracks randomly removed from the train set,

1 http://www.eecs.qmul.ac.uk/˜sss31/TASLP/info.
html
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deviating from the 26 used in [26], and leading to a di-
vision of 173-43-54 between the three sets. Note that the
test sets are the same, and are referred to as configuration I
in [26]. The exact splits for configuration II were not pub-
lished. We had to choose them ourselves, using the same
methodology, which has the additional constraint that only
recordings of the real piano are used for testing, resulting
in a division of 180-30-60. This constitutes a more realistic
setting for piano transcription.

4. ANALYSIS OF RELATIVE
HYPER-PARAMETER IMPORTANCE

To identify and select an appropriate input representation
and determine the most important hyper-parameters re-
sponsible for high transcription performance, a multi-stage
study with subsequent fANOVA analysis was conducted,
as described in [17]. This is similar in spirit to [14], albeit
on a smaller scale.

4.1 Types of Representation

To isolate the effects of different input representations on
the performance of different model classes, only param-
eters for the spectrogram were varied according to Table
1. This leads to 204 distinct input representations. The
hyper-parameters for the model class as well as the opti-
mization scheme were held fixed. To make our estimates
more robust, we conducted multiple runs for the same type
of input.

The results for each model class are summarized in
Table 2, containing the three most influential hyper-
parameters and the percentage of variability in perfor-
mance they are responsible for. The most important hyper-
parameter for both model classes is the type of spectro-
gram used, followed by pairwise interactions. Please note
that the numbers in the percentage column are mainly use-
ful to judge the relative importance of the parameters. We
will see these relative importances put into a larger context
later on.

In Figure 1, we can see the mean performance attain-
able with different types of spectrograms for both model
classes. The error bars indicate the standard deviation for
the spread in performance, caused by the rest of the varied
parameters. Surprisingly, the spectrogram with logarith-
mically spaced bins and logarithmically scaled magnitude,
LM , enables the shallow net to perform best, even though
it is a clear mismatch for logistic regression. The lower
performance of the constant-Q transform was quite unex-
pected in both cases and warrants further investigation.

4.2 Greater context

Attempting a full grid search on all possible input rep-
resentation and model class hyper-parameters described
in Section 2 to compute their true marginalized perfor-
mance is computationally too costly. It is possible however
to compute the predicted marginalized performance of a
hyper-parameter efficiently from a smaller subsample of
the space, as shown in [17]. All parameters are randomly

Model Class Pct Parameters
Logistic Regression 48.6% Spectrogram Type

16.9% Spectrogram Type
× Normed Area Filters

10.4% Spectrogram Type
× Sample Rate

Shallow Net 68.4% Spectrogram Type
20.8% Spectrogram Type

× Sample Rate
5.7% Sample Rate

Table 2: The three most important parameters determining
input representation for different model classes
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Figure 1: (a) Mean logistic regression performance de-
pendent on spectrogram (b) Mean shallow net performance
dependent on type of spectrogram

varied to sample the space as evenly as possible, and a ran-
dom forest of 100 regression trees is fitted to the measured
performance. This allows to predict the marginalized per-
formance of individual hyper-parameters. Table 3 contains
the list of hyper-parameters varied.

0 10 20 30 40 50
Relative Importance

Learning Rate × Optimizer

Learning Rate × Dropout

Optimizer × Spectrogram Type

Learning Rate × Spectrogram Type

Dropout × Spectrogram Type

Batch Normalization

Optimizer

Dropout

Spectrogram Type

Learning Rate

Figure 2: Relative importance of the first 10 hyper-
parameters for the shallow net model class.

The percentage of variance in performance these hyper-
parameters are responsible for, can be seen in Figure 2 for
the 10 most important ones. A total of 3000 runs with
random parameterizations were made.

Analyzing the results of all the runs tells us that the most
important hyper-parameters are Learning Rate (47.11%),
and Spectrogram Type (5.28%). The importance of the
learning rate is in line with the findings in [14]. Figure
2 shows the relative importances of the first 10 hyper-
parameters, and Figure 3 shows the predicted marginal per-
formance of the learning rate dependent on its value (on a
logarithmic scale) in greater detail.
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Optimizer (Plain SGD, Momentum, Nesterov Momentum, Adam)
Learning Rate (0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 10.0, 50.0, 100.0)
Momentum (Off, 0.7, 0.8, 0.9)
Learning rate Scheduler (On, Off)
Batch Normalization (On, Off)
Dropout (Off, 0.1, 0.3, 0.5)
L1 Penalty (Off, 1e-07, 1e-08, 1e-09)
L2 Penalty (Off, 1e-07, 1e-08, 1e-09)

Table 3: The list of additional hyper-parameters varied,
and their ranges.
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Figure 3: Mean predicted performance for the shallow net
model class, dependent on learning rate (on a logarithmic
scale). The dark line shows the mean performance, and the
gray area shows the standard deviation.

5. STATE OF THE ART MODELS

Having completed the analysis of input representation,
more powerful model classes were tried: a deep neu-
ral network consisting entirely of dense layers (DNN),
a mixed network with convolutional layers directly after
the input followed by dense layers (ConvNet), and an all-
convolutional network (AllConv [29]). Their architectures
are described in detail in Table 4. To the best of our knowl-
edge, this is the first time an all-convolutional net has been
proposed for the task of framewise piano transcription.

We computed a logarithmically filtered spectrogram
with logarithmic magnitude from audio with a sample rate
of 44.1 kHz, a filterbank with 48 bins per octave, normed
area filters, no circular shift and no zero padding. The
choices for circular shift and zero padding ranged very low
on the importance scale, so we simply left them switched
off. This resulted in only 229 bins, which are logarithmi-
cally spaced in the higher frequency regions, and almost
linearly spaced in the lower frequency regions as men-
tioned in Section 2.1. The dense network was presented
one frame at a time, whereas the convolutional network
was given a context in time of two frames to either side of
the current frame, summing to 5 frames in total.

All further hyper-parameter tuning and architectural
choices have been left to a human expert. Models within
a model class were selected based on average F-measure
across the four validation sets. An automatic search via
a hyper-parameter search algorithm for these larger model

DNN ConvNet AllConv
Input 229 Input 5x229 Input 5x229
Dropout 0.1 Conv 32x3x3 Conv 32x3x3
Dense 512 Conv 32x3x3 Conv 32x3x3
BatchNorm BatchNorm BatchNorm
Dropout 0.25 MaxPool 1x2 MaxPool 1x2
Dense 512 Dropout 0.25 Dropout 0.25
BatchNorm Conv 64x3x3 Conv 32x1x3
Dropout 0.25 MaxPool 1x2 BatchNorm
Dense 512 Dropout 0.25 Conv 32x1x3
BatchNorm Dense 512 BatchNorm
Dropout 0.25 Dropout 0.5 MaxPool 1x2
Dense 88 Dense 88 Dropout 0.25

Conv 64x1x25
BatchNorm
Conv 128x1x25
BatchNorm
Dropout 0.5
Conv 88x1x1
BatchNorm
AvgPool 1x6
Sigmoid

# Params 691288 1877880 284544

Table 4: Model Architectures

classes, as described in [4, 11, 28] is left for future work
(the training time for a convolutional model is roughly 8−9
hours on a Tesla K40 GPU, which leaves us with 204·3·4·8
hours (variants × #models × #folds × hours per model),
or on the order of 800 − 900 days of compute time to de-
termine the best input representation exactly).

For these powerful models, we followed practical rec-
ommendations for training neural networks via gradient
descent found in [1]. Particularly relevant is the way of
setting the initial learning rate. Strategies that dynamically
adapt the learning rate, such as Adam or Nesterov Momen-
tum [19, 22] help to a certain extent, but still do not spare
us from tuning the initial learning rate and its schedule.

We observed that using a combination of batch normal-
ization and dropout together with very simple optimiza-
tion strategies leads to low validation error fairly quickly,
in terms of the number of epochs trained. The strategy
that worked best for determining the learning rate and its
schedule was trying learning rates on a logarithmic scale,
starting at 10.0, until the optimization did not diverge any-
more [1], then training until the validation error flattened
out for a few epochs, then multiplying the learning rate
with a factor from the set {0.1, 0.25, 0.5, 0.75}. The rates
and schedules we finally settled on were:

• DNN: SGD with Momentum, α = 0.1, µ = 0.9 and
halving of α every 10 epochs

• ConvNet: SGD with Momentum, α = 0.1, µ = 0.9
and a halving of α every 5 epochs

• AllConv: SGD with Momentum, α = 1.0, µ = 0.9
and a halving of α every 10 epochs

The results for framewise prediction on the MAPS
dataset can be found in Table 6. It should be noted that we
compare straightforward, simple, and largely un-smoothed
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systems (ours) with hybrid systems [26]. There is a small
degree of temporal smoothing happening when processing
spectrograms with convolutional nets. The term simple is
supposed to mean that the resulting models have a small
amount of parameters and the models are composed of a
few low-complexity building blocks. All systems are eval-
uated on the same train-test splits, referred to as configu-
ration I in [26] as well as on realistic train-test splits, that
were constructed in the same fashion as configuration II
in [26].

Model Class P R F1

Hybrid DNN [26] 65.66 70.34 67.92
Hybrid RNN [26] 67.89 70.66 69.25
Hybrid ConvNet [26] 72.45 76.56 74.45
DNN 76.63 70.12 73.11
ConvNet 80.19 78.66 79.33
AllConv 80.75 75.77 78.07

Table 5: Results on the MAPS dataset. Test set perfor-
mance was averaged across 4 folds as defined in configu-
ration I in [26].

Model Class P R F1

DNN [26] - - 59.91
RNN [26] - - 57.67
ConvNet [26] - - 64.14
DNN 75.51 57.30 65.15
ConvNet 74.50 67.10 70.60
AllConv 76.53 63.46 69.38

Table 6: Results on the MAPS dataset. Test set perfor-
mance was averaged across 4 folds as defined in configu-
ration II in [26].

6. CONCLUSION

We argue that the results demonstrate: the importance of
proper choice of input representation, and the importance
of hyper-parameter tuning, especially the tuning of learn-
ing rate and its schedule; that convolutional networks have
a distinct advantage over their deep and dense siblings, be-
cause of their context window and that all-convolutional
networks perform nearly as well as mixed networks, al-
though they have far fewer parameters. We propose these
straightforward, framewise transcription networks as a new
state-of-the art baseline for framewise piano transcription
for the MAPS dataset.
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