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ABSTRACT

In this paper we present and report on a methodology for
evaluating a creative MIR-based application of concatena-
tive synthesis. After reviewing many existing applications
of concatenative synthesis we have developed an applica-
tion that specifically addresses loop-based rhythmic pat-
tern generation. We describe how such a system could be
evaluated with respect to its its objective retrieval perfor-
mance and subjective responses of humans in a listener
survey. Applying this evaluation strategy produced posi-
tive findings to help verify and validate the objectives of
our system. We discuss the results of the evaluation and
draw conclusions by contrasting the objective analysis with
the subjective impressions of the users.

1. INTRODUCTION

MIR-based applications are becoming increasingly
widespread in creative scenarios such as composition and
performance [14] [7] [8]. This is commensurate with
the prevalence of sampling-based approaches to sound
generation, thus the desire is to develop more rich and
descriptive understanding of the underlying content being
used.

One of the primary difficulties faced with designing in-
struments for creative and compositional tasks remains the
elaboration of an appropriate evaluation methodology. In-
deed, this is a trending challenge facing many researchers
[2], and numerous papers address this directly with various
proposals for methodological frameworks, some drawing
from the closely related field of HCI (Human Computer
Interaction) [13], [16], [11]. More generally the evaluation
of computer composition systems has also been the subject
of much discussion in the literature. One frequent bench-
mark for evaluating algorithmic music systems is a type
of Turing test where the success criterion is determined
by the inability of human listener to discern between hu-
man and computer-generated music. As Hiraga [11] notes,
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Jordà. “An Evaluation Framework and Case Study for
Rhythmic Concatenative Synthesis”, 17th International Society for Music
Information Retrieval Conference, 2016.

however, these kind of tests can be problematic for two
reasons. Firstly, it makes the assumption that the music
generated by the algorithm is intended to sound like music
produced by humans, rather than something to be treated
differently. Secondly it ignores other facets of the system
that imperatively needs evaluation, such as the interface
and the experience. Pachet also finds issue with simplistic
Turing test approaches to music evaluation [18]. He re-
peats, for instance, the view that unlike the traditional Tur-
ing test which evaluated the ability to synthesis believable
natural language, no such “common-sense” knowledge ex-
ists for aspects of music.

We have designed and developed an MIR-driven instru-
ment that uses concatenative synthesis to generate looped
rhythmic material from existing content. In terms of eval-
uation we face the challenge of evaluating an MIR driven
software system, thus subject to the same scrutiny facing
any information retrieval system that needs to be appraised.
We also face the challenge of evaluating the system as a
musical composition system that needs to serve the com-
poser and listener alike.

In the next section we will give the reader brief fa-
miliarity with the instrument in terms of its implementa-
tion and functionality. Subsequently, existing concatena-
tive systems will be reported on in terms of their evalu-
ation methodologies (if any). Section 3 will propose the
evaluation framework in questions and the results will be
reported. We will conclude the paper with our impressions
on what we have learnt and scope for improvement in terms
of the system itself and the evaluation methodology.

2. INSTRUMENT DESCRIPTION

Concatenative synthesis builds new sounds by combining
together existing ones from a corpus. It is similar to gran-
ular synthesis differing only in the order of size of the
grains: granular synthesis operates on microsound scales
of 20-200ms whereas concatenative synthesis uses musi-
cally relevant unit sizes such as notes or even phrases. The
process by which these sounds are selected for resynthesis
is a fundamentally MIR-driven task. The corpus is defined
by selecting sound samples, optionally segmenting them
into onsets and extracting a chosen feature set to build de-
scriptions of those sounds. New sounds can finally be syn-
thesised by selecting sounds from the corpus according to

67



Figure 1: Instrument Interface

a unit selection algorithm and connecting them in series,
maybe applying some cross-fading to smooth disparities
in the process.

Concatenative synthesis has a long history of applica-
tion in speech synthesis [15]. One of the most well-known
works in the area of musical concatenative synthesis is
CataRT [22] but there are many other systems referenced
in the literature including some commercial implementa-
tions. Bernardes [3] provides a thorough summary of these
based on similar reports in [25] and [21].

Our system (Figure 1) resembles many concatenative
synthesis applications that offer a 2D timbre space for ex-
ploration. Where it distinguishes itself is in its sound gen-
eration strategy and mode of interaction for the user. Im-
plemented as a VST plugin, it is an inherently loop-based
instrument. It records and analyses incoming audio from
the host as target segments according to a metrical level
and concatenates units of sound from the corpus to gen-
erate new loops with varying degrees of similarity to the
target loop. This similarity is determined by the unit se-
lection algorithm, the central component in concatenative
systems.

2.1 Unit Selection

The unit selection algorithm is quite straightforward. For
each unit i in the segmented target sequence (e.g. 16-step)
and each corpus unit j (typically many more), the con-
catenation unit cost Ci,j is calculated by the weighted Eu-
clidean distance of each feature k as given by Equation 1,
where a and b are the values of the features in question.

Ci,j =

√√√√
n∑

k=1

wk(ak − bk)2 (1)

In terms of feature selection, after consulting a number
of different articles [10], [20] and [27], dealing with fea-
ture extraction and rhythm we decided on a combination of
MFCCs, loudness, spectral centroid and spectral flatness.

These unit costs are stored in similarity matrixM . Next
we create a matrix M ′ of the indices of the ascendingly

Author (Year) Evaluation
Schwarz (2000) No
Zils & Pachet (2001) No
Hazel (2001) No
Hoskinson & Pai (2001) No
Xiang (2002) No
Kobayashi (2003) No
Cardle et al. (2003) Videos of use cases
Lazier & Cook (2003) No
Sturm (2004) No
Casey (2005) Retrieval Accuracy
Aucouturier & Pachet, (2005) User Experiment
Simon et al. (2005) Algorithm Performance
Jehan (2005) Algorithmic evaluation
Schwarz (2005) No
Weiss et al. (2009) No
Frisson et al. (2010) No
Hackbarth (2010) No
Bernardes (2014) Author’s impressions

Table 1: Evaluation in Concatenative Systems

sorted elements of M . Finally a concatenated sequence
can be generated by returning a vector of indices I from
this sorted matrix and playing back the associated sound
file. To retrieve the closest sequence V0 one would only
need to return the first row (Equation 3).

V0 = (I0,i, I0,i+1..., I0,N ) (2)

Returning sequence vectors solely based on the row re-
stricts the possibilities to the number of rows in the matrix
and is quite limited. We can extend the number of possi-
bilities to ij−T units if we define a similarity threshold T
and return a random index between 0 and j − T for each
step i in the new sequence.

3. EVALUATION OF CONCATENATIVE
SYNTHESIS

As we were researching existing works in the table pre-
sented by Bernardes, [3] we were struck by the absence
of discussion regarding evaluation in most of the accom-
panying articles. This table we reproduce here (Table 1)
amended and abridged with our details on the evaluation
procedures (if any) that were carried out.

Some of the articles provided descriptions of use cases
[4] or at least provided links to audio examples [24]. No-
tably, many of the articles [23], [9] consistently made ref-
erences to the role of “user”, but only one of those actually
conducted a user experiment [1]. By no means is this in-
tended to criticise the excellent work presented by these
authors. Rather it is intended to highlight that although
evaluation is not always an essential part of such exper-
iments - especially in ”one-off” designs for single users
such as the author as composer - it is an underexplored as-
pect that could benefit from some contribution.

We can identify two key characteristics of our research
that can inform what kind of evaluation can be carried out.
Firstly it’s a retrieval system, and can be analysed to deter-
mined its ability to retrieve relevant items correctly. Sec-
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ondly it is a system that involves users or more precisely,
musical users. How do we evaluate this crucial facet?

Coleman has identified and addressed the lack of sub-
jective evaluation factors in concatenative synthesis [5]. In
his doctoral thesis he devotes a chapter to a listening sur-
vey conducted to determine the quality of a number of dif-
ferent algorithmic components of the system under con-
sideration. He asks the listeners to consider how well the
harmony and timbre of the concatenated sequences are re-
tained. In a previous paper [17] we conducted a similar-
style listening survey to determine the ability of a genetic
algorithm to create symbolic rhythmic patterns that also
mimic a target input pattern. Evaluation strategies need
to be tailored specifically for systems, but if the system
is intended to retrieve items according to some similarity
metric, and the material is musical, then a listening survey
should be critical. Furthermore, and echoing Coleman’s
work, we would emphasise that whatever the application of
a concatenative system, the evaluation of the timbral qual-
ity is essential.

In light of these elements we also devised a quantitative
listening survey to examine musical output of the system
not only in terms of its facility in matching the target con-
tent perceptually but also in producing musically pleasing
and meaningful content.

4. METHOD

4.1 Evaluation and Experimental Design

Given the rhythmic characteristics of the system we for-
mulated an experiment that evaluated its ability to generate
new loops based on acoustic drum sounds. We gathered a
dataset of 10 breakbeats ranging from 75 BPM to 142BPM
and truncated them to single bar loops. Breakbeats are
short drum solo sections from funk music records in the
1970s and exploited frequently as sample sources for hip-
hop and electronic music. This practice has been of interest
to the scientific community, as evident in work by Ravelli
et al. [19], Hockman [12] and Collins [6].

In turn, each of these loops was then used as a seed loop
for the system with the sound palette derived from the re-
maining 9 breakbeats. Four variations were then generated
with 4 different distances to the target. These distances
correspond to indices into the similarity matrix we alluded
to in Section 2, which we normalise by dividing the index
by the size of the table. The normalised distances then cho-
sen were at 0.0 (the closest to the target), 1.0 (the furthest
from the target) and two random distances in ranges 0.0 -
0.5 and 0.5 - 1.0.

Repeating this procedure 10 times for each target loop
in the collection for each of the distance categories, we
produced a total of 40 generated files to be compared with
the target loop. Each step in the loop was labelled in terms
of its drum content, for example the first step might have
a kick and a hi-hat. Each segmented onset (a total of 126
audio samples) in the palette was similarly labelled with
its corresponding drum sounds producing a total of 169
labelled sounds. The labellings we used were K = Kick,

S = Snare, HH = Hi-hat, C = Cymbal and finally X when
the content wasn’t clear. Figure 2 shows the distribution
of onsets by type in the full corpus of segmented units.
Another useful statistic is highlighted in Figure 3, which
plots the distribution of onsets for each step in the 16 step
sequence for the predominant kick, snare and hi-hat for the
10 target loops. Natural trends are evident in these graphs,
namely the concentration of the kick on the 1st beat, snares
on the 2nd and 4th beat and hi-hats on off beats.

Figure 2: Distribution of Sounds in Corpus

Figure 3: Distribution of Sounds in Target Loops

4.2 Retrieval Evaluation

The aim of the experiment was first to determine how well
the system was able to retrieve similarly labelled ”units”
for each 1/16th step in the seed loop. To evaluate the ability
of the algorithm to retrieve correctly labelled sounds in the
generated loops we defined the accuracy A by equation 3,
based on a similar approach presented in [26]. We make a
simplification that corresponding HH and X and C labels
also yield a match based on our observation that their noisy
qualities are very similar, and some of the target loops used
did not have onsets sounding at each 1/16th step.

A =
number of correctly retrieved labels

total number of labels in target loop
(3)

4.2.1 Retrieval Results

By studying the Pearson’s correlation between the retrieval
ratings and the distance, we can confirm the tendency of
smaller distances to produce more similar patterns by ob-
serving the moderate negative correlation (ρ = -0.516, p
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<0.001) between increased distance and the accuracy rat-
ings (Figure 4).

An interesting observation is that when we isolate the
retrieval accuracy ratings to kick and snare we see this cor-
relation increase sharply to (ρ = -0.826, p <0.001), as can
be seen in Figure 5.

Figure 4: Scatter Plot and Regression Line of Retrieval
Accuracy with Distance for all Drum Sounds

Figure 5: Scatter Plot and Regression Line of Retrieval
Accuracy with Distance for Kick and Snare

Delving into the data further, we can identify 3 different
categorical groupings that demonstrate predictable trends
in terms of the central tendencies and descending retrieval
accuracy (Figure 6). We label these categories A, B and
C with the breakdown of the number of patterns and their
corresponding distance ranges as follows:

• A - 10 patterns - 0.0

• B - 9 patterns - [0.2 - 0.5]

• C - 21 patterns - [0.5 - 1.0]

Figure 6: Central Tendencies of Retrieval Ratings for the
Similarity/Distance Categories

4.3 Listener Evaluation

The retrieval accuracy gives the objective ratings of the
system’s capability for retrieving correctly labelled items.
This information may not be consistent with the human lis-
tener’s perceptual impression of similarity, nor does it give
any indication whether the retrieved items are musically
acceptable or pleasing. To assess the human experience of
the sonic output and to compare with the objective ratings
of the system, we conducted a listening survey which will
be described here.

Figure 7: Screenshot of Web Survey

To directly compare and contrast with the retrieval eval-
uation the same 40 loops generated by the system and used
in the retrieval analysis were transferred to the listening
survey. The survey itself was web-based (Figure 7) and
took roughly 15-20 minutes to complete. Participants were
presented with the seed pattern and the generated patterns
and could listen as many times as they liked. Using a 5
point Likert scale the participants were then asked to rate
their agreement with the following statements:
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Figure 8: Correlations Between Distance and Subjective
Ratings of Pattern Similarity, Timbre Similarity and Liking

• Is the rhythmic pattern similar?

• Is the timbre similar?

• Did you like the loop?

Twenty one participants in all took part in total, drawn
from researchers at the authors’ institute as well as friends
and colleagues with an interest in music. Twenty out of the
21 participants declared they were able to play a musical
instrument Ten of the 21 participants specified they played
a percussion instrument and 9 reported they could read no-
tation. In the instructions we provided brief explanations
of the key terms and audio examples demonstrating con-
trasting rhythmic patterns and timbres.

4.3.1 Listener Evaluation Results

The survey data was analysed using Spearman’s rank cor-
relation on the mode of the participants’ responses to each
loop stimulus with the associated distance of that loop.
We identified a moderate to strong negative correlation for
each of the pattern, timbre and ”likeness” aspects (p<0.01
in all instances). This can be observed in the red values in
the correlation matrix presented in Figure 8.

It should be evident that the subjective listening data
conforms quite well to the findings of the objective re-
trieval rating. Increased distance resulted in decreased re-
trieval accuracy which in turn corresponded to a decrease
in listener ratings for qualities pertaining to pattern sim-
ilarity and impression of timbral similarity in the sounds
themselves. Furthermore, it was revealed that the aestheti-
cal judgement of the generated loops, encapsulated by the
”likeness” factor, also followed the trend set out by the ob-
jective algorithm. We were curious to establish whether
any particular subject did not conform to this preference
for similar loops, but examining the individual correlation
coefficients revealed all to be negative (all participants pre-
ferred more similar sounding patterns).

5. CONCLUSIONS

In this paper we presented a proposal for a framework that
evaluates concatenative synthesis systems. Using a system
that we developed which specifically generates rhythmic
loops as a use case we demonstrated how such a framework
could be applied in practice. An application-specific exper-
iment was devised and the objective results and subjective
results showed favourably the performance of the similar-
ity algorithm involved. It is hoped that by providing a well-
documented account of this process other researchers can
be encouraged to adapt comparable evaluation strategies in
creative applications of MIR such as concatenative synthe-
sis.
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derley, and Stéphane Huot. What does ” Evaluation ”
mean for the NIME community? NIME 2015 - 15th In-
ternational Conference on New Interfaces for Musical
Expression, page 6, 2015.

[3] Gilberto Bernardes. Composing Music by Selection:
Content-based Algorithmic-Assisted Audio Composi-
tion. PhD thesis, University of Porto, 2014.

[4] Mark Cardle, Stephen Brooks, and Peter Robinson.
Audio and User Directed Sound Synthesis. Proceed-
ings of the International Computer Music Conference
(ICMC), 2003.

[5] Graham Coleman. Descriptor Control of Sound Trans-
formations and Mosaicing Synthesis. PhD thesis, Uni-
versitat Pompeu Fabra, 2015.

[6] Nick Collins. Towards autonomous agents for live
computer music: Realtime machine listening and inter-
active music systems. PhD thesis, University of Cam-
bridge, 2006.

[7] Matthew E. P. Davies, Philippe Hamel, Kazuyoshi
Yoshii, and Masataka Goto. AutoMashUpper: An Au-
tomatic Multi-Song Mashup System. Proceedings of
the 14th International Society for Music Information
Retrieval Conference, ISMIR 2013, pages 575—-580,
2013.

1 http://www.giantsteps-project.eu

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 71



[8] Dimitri Diakopoulos, Owen Vallis, Jordan Hochen-
baum, Jim Murphy, and Ajay Kapur. 21st century elec-
tronica: Mir techniques for classification and perfor-
mance. In International Society for Music Information
Retrieval Conference, pages 465–469, 2009.

[9] Benjamin Hackbarth. Audioguide : A Framework for
Creative Exploration of Concatenative Sound Synthe-
sis. IRCAM Research Report, 2011.

[10] Perfecto Herrera, Amaury Dehamel, and Fabien
Gouyon. Automatic labeling of unpitched percussion
sounds. In Audio Engineering Society 114th Conven-
tion, 2003.

[11] Rumi Hiraga, Roberto Bresin, Keiji Hirata, and
Haruhiro Katayose. Rencon 2004: Turing Test for
Musical Expression. Proceedings of the International
Conference on New Interfaces for Musical Expression,
pages 120–123, 2004.

[12] Jason A. Hockman and Matthew E. P. Davies. Com-
putational Strategies for Breakbeat Classification and
Resequencing in Hardcore, Jungle and Drum & Bass.
In Proc. of the 18th Int. Conference on Digital Audio
Effects (DAFx-15), pages 1–6, 2015.

[13] William Hsu and Marc Sosnick. Evaluating interactive
music systems: An HCI approach. In Proceedings of
New Interfaces for Musical Expression, pages 25–28,
2009.

[14] Eric J Humphrey, Douglas Turnbull, and Tom Collins.
A brief review of creative MIR. International Society
for Music Information Retrieval, 2013.

[15] Andrew J. Hunt and Alan W. Black. Unit selection in
a concatenative speech synthesis system using a large
speech database. 1996 IEEE International Conference
on Acoustics, Speech, and Signal Processing Confer-
ence Proceedings, 1:373–376, 1996.

[16] Chris Kiefer, Nick Collins, and Geraldine Fitzpatrick.
HCI Methodology For Evaluating Musical Controllers:
A Case Study. Proceedings of the 2008 International
Conference on New Interfaces for Musical Expression
(NIME-08), pages 87–90, 2008.
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