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ABSTRACT 

We present a novel rhythm tracking architecture that 
learns how to track tempo and beats through layered 
learning. A basic assumption of the system is that humans 
understand rhythm by letting salient periodicities in the 
music act as a framework, upon which the rhythmical 
structure is interpreted. Therefore, the system estimates 
the cepstroid (the most salient periodicity of the music), 
and uses a neural network that is invariant with regards to 
the cepstroid length. The input of the network consists 
mainly of features that capture onset characteristics along 
time, such as spectral differences. The invariant proper-
ties of the network are achieved by subsampling the input 
vectors with a hop size derived from a musically relevant 
subdivision of the computed cepstroid of each song. The 
output is filtered to detect relevant periodicities and then 
used in conjunction with two additional networks, which 
estimates the speed and tempo of the music, to predict the 
final beat positions. We show that the architecture has a 
high performance on music with public annotations. 

1. INTRODUCTION 

The beats of a musical piece are salient positions in the 
rhythmic structure, and generally the pulse scale that a 
human listener would tap their foot or hand to in conjunc-
tion with the music. As such, beat positions are an emer-
gent perceptual property of the musical sound, but in var-
ious cases also dictated by conventional methods of no-
tating different musical styles. Beat tracking is a popular 
subject of research within the Music Information Retriev-
al (MIR) community. At the heart of human perception of 
beat are the onsets of the music. Therefore, onset detec-
tion functions are commonly used as a front end for beat 
tracking. The most basic property that characterize these 
onsets is an increase in energy in some frequency bands. 
Extracted onsets can either be used in a discretized man-
ner as in [9, 18, 19], or continuous features of the onset 
detection functions can be utilized [8, 23, 28]. As infor-
mation in the pitch domain of music is important, chord 
changes can also be used to guide the beat tracking [26].  

After relevant onset functions have been extracted, the 

periodicities of the music are usually determined by e.g. 
comb filters [28], the autocorrelation function [10, 19], or 
by calculating the cepstroid vector [11]. Other ways to 
understand rhythm are to explicitly model the rhythmic 
patterns [24], or to combine several different models to 
get better generalization capabilities [4]. To estimate the 
beat positions, hidden Markov models [23] or dynamic 
Bayesian networks (DBNs) have been used [25, 30].  

Although onset detection functions often are computed 
by the spectral flux (SF) of the audio, it has become more 
common to learn onset detection functions with a neural 
network (NN) [3, 29]. Given the success of these net-
works it is not surprising that the same framework has 
been successfully used also for detecting beat positions 
[2]. When these network try to predict beat positions, 
they must understand how different rhythmical elements 
are connected; this is a very complex task.  
 
1.1 Invariant properties of rhythm 

When trying to understand a new piece of music, the lis-
tener must form a framework onto which the elements of 
the music can be deciphered. For example, we use scales 
and harmony to understand pitch in western music. The 
tones of a musical piece are not classified by their fun-
damental frequency, but by their fundamental frequency 
in relation to the other tones in the piece. In the same 
way, for the time dimension of music, the listener builds 
a framework, or grid, across time to understand how the 
different sounds or onsets relate to each other. This 
framework need not initially be at the beat level. In fact, 
in various music pieces, beat positions are not the first 
perceptually emergent timing property of the music. In 
some pieces, we may first get a strong sense of repetition 
at downbeat positions, or at subdivisions of the beat. In 
either of these cases, we identify beat positions after an 
initial framework of rhythm has been established. If we 
could establish such a correct framework for a learning 
algorithm, it would be able to build better representations 
of the rhythmical structure, as the input features would be 
deciphered within an underlying metrical structure. In 
this study we try to use this idea to improve beat tracking.  

2. METHOD 

In the proposed system we use multiple neural networks 
that each try to model different aspects related to rhythm, 
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as shown in Figure 1. First we process the audio with 
harmonic/percussive source separation (HP-separation) 
and multiple fundamental frequency (MF0) estimation. 
From the processed audio, features are calculated that 
capture onset characteristics along time, such as the SF 
and the pitch flux (PF). Then we try to find the most sali-
ent periodicity of the music (which we call the cepstroid), 
by analyzing histograms of the previously calculated on-
set characteristics in a NN (Cep Network). We use the 
cepstroid to subsample the flux vectors with a hop size 
derived from a subdivision of the computed cepstroid. 
The subsampled vectors are used as input features in our 
cepstroid invariant neural network (CINN). The CINN 
can track beat positions in complex rhythmic patterns, 
because the previous processing has made the input vec-
tors invariant with regards to the cepstroid of the music. 
This means that the same neural activation patterns can 
be used for MEs of different tempi. In addition, the speed 
of the music is estimated with an ensemble of neural net-
works, using global features for onset characteristics as 
input. As the last learning step, the tempo is estimated. 
This is done by letting an ensemble of neural networks 
evaluate different plausible tempo candidates. Finally, the 
phase of the beat is determined by filtering the output of 
the CINN in conjunction with the tempo estimate; and 
beat positions are estimated.  

An overview of the system is given in Figure 1. In 
Sections 2.1-2.4  we describe the steps to calculate the in- 

 
Figure 1. Overview of the proposed system. The audio is 
first processed with MF0 estimation and HP-separation. 
Raw input features for the neural networks are computed 
and the outputs of the neural networks are combined to 
build a model of tempo and beats in each song.  

put features of our NNs and in Section 2.5 we give an 
overview of the NNs. In Section 2.6-2.9 we describe the 
different NNs, and in Section 2.10, we describe how the 
phase of the beat is calculated. 

2.1 Audio Processing 

The audio waveform was converted to a sampling fre-
quency of 44.1 kHz. Then, as a first step, HP-separation 
was applied. This is a common strategy (e.g. [16]), used 
to isolate the percussive instruments, so that subsequent 
learning algorithms can accurately analyze their rhythmic 
patterns. The source separation of our implementation is 
based on the method described in [15]. With a median 
filter across each frame in the frequency direction of a 
spectrogram, harmonic sounds are detected as outliers, 
and with a median filter across each frequency bin in the 
time direction, percussive sounds are detected as outliers. 
We use these filters to extract a percussive waveform P1 
and a harmonic waveform H1, from the original wave-
form O. We further suppress harmonic sounds in P1 (such 
as traces of the vocals or the bass guitar) by applying a 
median filter in the frequency direction of the Constant-Q 
transform (CQT), as described in [11, 13]. This additional 
filtering produces a clean percussive waveform P2, and a 
harmonic waveform H2 consisting of the traces of pitched 
sounds filtered out from P1.  

The task of tracking MF0s of the audio is usually per-
formed by polyphonic transcription algorithms (e.g. [1]). 
From several of these algorithms, the frame-wise MF0s 
can be extracted at the semi-tone level. We used a frame-
wise estimate from [14], extracted at a hop size of 5.8 ms 
(256 samples). 

2.2 Calculating Flux Matrices P', S' and V'  

Three types of flux matrices (P', S' and V') were calculat-
ed, all extracted at a hop size of 5.8 ms. 

2.2.1 Calculating 𝑃" 

Two spectral flux matrices (𝑃#"  and 𝑃$" ) were calculated 
from the percussive waveforms P1 and P2. The short time 
Fourier transform (STFT) was applied to P1 and P2 with a 
window size of 2048 samples and the spectral flux of the 
resulting spectrograms was computed. Let 𝑋&,(  represent 
the magnitude at the ith frequency bin of the jth frame of 
the spectrograms. The SF for each bin is then given by  

𝑃′&,(	 = 𝑋&,( − 𝑋&,(-.                        (1) 

In this implementation we used a step size s of 7 (40 ms). 

2.2.2 Calculating 𝑉′ 

The vibrato suppressed SF was computed for waveforms 
containing instruments with harmonics (H1, H2 and O), 
giving the flux matrices (𝑉01

" , 𝑉02
"  and 𝑉3" ). We used the 

algorithm for vibrato suppression first described in [12] 
(p. 4), but changed the resolution of the CQT to 36 bins 
per octave (down from 60) to get a better time resolution. 

B
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First, the spectrogram is computed with the CQT. Then, 
shifts of a peak by one bin, without an increase in sound 
level, are suppressed by subtracting the sound level of 
each bin of the new frame, with the maximum sound lev-
el of the adjacent bins in the old frame. This means that 
for the vibrato suppressed SF (𝑉′), Eqn (1) is changed by 
including adjacent bins and calculating the maximum 
value before applying the subtraction.  

     𝑉′&,(	 = 𝑋&,( − max(𝑋&-#,(-. , 𝑋&,(-., 𝑋&8#,(-.)       (2) 

2.2.3 Calculating 𝑆′ 

When listening to a melody, we use pitch in conjunction 
with onset positions to infer the rhythmical structure. 
Therefore, it seems beneficial to utilize the pitch dimen-
sion of music in the beat tracking as well. We calculated 
the PF by applying the same function as described for the 
SF in Eqn (1) to the “semigram” – the estimated MF0s in 
a pitchogram, interpolated to a resolution of one semitone 
per bin. The output is the rate of change in the semigram, 
covering pitches between midi pitch 26 and 104, and we 
will denote this feature matrix as 𝑆′.  

2.3 Calculating Histograms HP, HS, CP, and CS 

Next we compute two periodicity histograms HP and HS 
from the flux matrices 𝑃#" and 𝑆", and then transform them 
into the cepstroid vectors CP and CS.  

The processing is based on a method recently intro-
duced in [11]. In this method, a periodicity histogram of 
inter-onset intervals (IOIs) is computed, with the contri-
bution of each onset-pair determined by their spectral 
similarity and their perceptual impact. The basic idea is 
that the IOI of two strong onsets with similar spectra 
(such as two snare hits) should constitute a relevant level 
of periodicity in the music. In our implementation we in-
stead apply the processing frame-wise on 𝑃#" and 𝑆", using 
the spectral similarity and perceptual impact at each inter-
frame interval. We use the same notion of spectral simi-
larity and perceptual impact as in [11] when computing 
HP from 𝑃#", but when we compute HS from 𝑆", the notion 
of spectral distance is replaced with tonal distance. First 
we smooth 𝑆′ in the pitch direction with a Hann window 
of size 13 (approximately an octave). We then build a his-
togram of tonal distances for each frame, letting n repre-
sent the nth semitone of 𝑆′ and k the kth frame, giving us 
the tonal distance at all histogram positions a 

∀𝑎 ∈ {1	, ⋯ ,1900} 	 𝑆′D8&	E − 𝑆′D8&8F	E 		(3)
#HI

EJ$K&J-LH,-IL,⋯	,LH

 

By using the grid defined by i in Eqn (3), we try to 
capture similarities in a few consecutive tones. The grid 
stretches over 100 frames, which corresponds to roughly 
0.5 seconds. The idea is that repetitions of small motives 
occurs at musically relevant periods. 

To get the cepstroid vector from a histogram, the dis-
crete cosine transform (DCT) is first applied. The result-
ing spectrum unveils periodically recurring peaks of the 

histogram. In this spectral representation, frequency rep-
resents the period length and magnitude corresponds to 
salience in the metrical structure. We then interpolate 
back to the time domain by inserting spectral magnitudes 
at the position corresponding to their wavelength. Finally, 
the Hadamard product of the original histogram and the 
transformed version is computed to reduce noise. The re-
sult is a cepstroid vector (CP, CS). The name cepstroid 
(derived from period) was chosen based on similarities to 
how the cepstrum is computed from the spectrum. 

2.4 Calculating Global SF and PF  

Global features for the SF and PF were calculated for our 
speed estimation. We extracted features from the feature 
matrices of Section 2.2. The matrices were divided into 
log-spaced frequency bands over the entire spectrum by 
applying triangular filters as specified in Table 1. 

Feature Matrices 𝑃#" 𝑃$" 𝑆′ 𝑉3"  𝑉01
"  𝑉02

"  
Number of bands 3 3 1,2,4 3 3 3 

Table 1. The feature matrices are divided into bands. 

After the filtering stage we have 22 feature vectors, and 
each feature vector X is converted into 12 global features. 
We compute the means 𝑋, 𝑋H.$ and 𝑋H.L, where 0.2 and 
0.5 represents the element-wise power (3 features). Also, 
X is sorted based on magnitude into percentiles, and Hann 
windows of widths {41, 61}, centered at percentiles {31, 
41} are applied (4 features). We finally extract the per-
centiles at values {20, 30, 35, 40, 50} (5 features). 

2.5 Neural Network Settings 

Here we define the settings for all neural networks. In the 
subsequent Sections 2.6-2.9, further details are provided 
for each individual NN. All networks were standard feed-
forward neural networks with one to three hidden layers.  

2.5.1 Ensemble Learning 

We employed ensemble learning by creating multiple in-
stances of a network and averaging their predictions. The 
central idea behind ensemble learning is to use different 
models that are better than random and more or less un-
correlated. The average of these models can then be ex-
pected to provide a better prediction than randomly 
choosing one of them [27]. For the Tempo and Speed 
networks, we created an ensemble by randomly selecting 
a subset of the features for the training of 20 networks 
(Tempo) or 60 networks (Speed). For the CINN, only 3 
networks were used in the ensemble due to time con-
straints, and all features were used in each network. 

2.5.2 Target values 

The target values in the networks are defined as: 

• Cep - Classifying if a frame represents a correct (1) 
or an incorrect cepstroid (0). The beat interval, 
downbeat interval, and duple octaves above the 
downbeat or below the beat were defined as correct. 
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• CINN - Classifying if the current frame is at a beat 

position (1), or if it is not at a beat position (0). 
• Speed - Fitting to the log of the global beat length.  
• Tempo - Classifying which of two tempo candidates 

that is correct (1) and which is incorrect (0). 

2.5.3 Settings of the Neural Networks 

We use scaled conjugate descent to train the networks. In 
Table 2, settings of the neural networks are defined. 

 Hidden Epoch EaSt EnLe OL 
Cep {20, 20, 20} 600 100 - LoSi 

CINN {25} 1000  3- LoSi 
Speed {6, 6, 6} 20 4 6040 Li 
Tempo {20, 20} 100  2060 LoSi 

Table 2. The settings for the neural networks of the sys-
tem. Hidden, denotes the size of the hidden layers and 
Epoch is the maximum number of epochs we ran the net-
work. EaSt defines how many epochs without an increase 
in performance that were allowed for the internal valida-
tion set of the neural networks. EnLe is specified as NENF, 
where NE is the number of ensembles and NF is the 
number of randomly drawn features for each ensemble. 
OL specifies if a logistic activation function (LoSi) or a 
linear summation (Li) was used for the output layer.  

The activation function of the first hidden layer was 
always a hyperbolic tangent (tanh) unit, and for subse-
quent hidden layers it was always a rectified linear unit 
(ReLU). The use of a mixture of tanh units and ReLUs 
may seem unconventional but can be motivated. The suc-
cess of ReLUs is often attributed to their propensity to 
alleviate the problem of vanishing gradients [17]. Vanish-
ing gradients are often introduced by sigmoid and tanh 
units when those units are placed in the later layers, be-
cause gradients flow backwards through the network dur-
ing training. With tanh units in the first layer, only gradi-
ents for one layer of weight and bias values will be af-
fected. At the same time, the network will be allowed to 
make use of the smoother non-linearities of the tanh units. 

2.6 Cepstroid Neural Network (Cep) 

In the first NN we compute the most salient periodicity of 
the music. To do this we use the cepstroid vectors (CP 
and CS) previously computed in Section 2.3. First, two 
additional vectors are created from both cepstroid vectors 
by filtering the vectors with a Gaussian 𝜎 = 7.5, and a 
Laplacian of a Gaussian 𝜎 = 7.5. Then we include octave 
versions, by interpolating to a time resolution given by  

1
2

E
,											

1
2

E
×

1
3
,									∀𝑛 ∈ {	−2, −1, 0, 1, 2}							(4) 

Finally, much like one layer and one receptive field of a 
convolutional neural network, we go frame by frame 
through the vectors, trying to classify each histogram 
frame as correct or incorrect, depending on if that particu-
lar time position corresponds to a correct cepstroid. The 

input features are the magnitude values of the vectors at 
each frame. As true targets, the beat interval and the 
downbeat interval, as well as duple octaves above the 
downbeat and duple octaves below the beat are used. The 
output of the network is our final cepstroid vector (C) and 
the highest peak is used as our cepstroid (𝐶).  

2.7 Cepstroid Invariant Neural Network (CINN) 

After the cepstroid has been computed, we use it to derive 
the hop size h for our grid in each ME, at which we will 
subsample the input vectors of the network. By setting h 
to an appropriate multiple of the cepstroid, the input vec-
tors of songs with different tempo (but potentially a simi-
lar rhythmical structure) will be synchronized; and the 
network can therefore make use of the same neural acti-
vation patterns for MEs of different tempi. This enables 
the CINN to easily identify distinct rhythmical patterns 
(similar to the ability of a human listener). We want a hop 
size between approximately 50-100 ms, and therefore 
compute which duple ratio of 70 ms that is closest to the 
current cepstroid  

						 min
EJ⋯,-$,-#,H,#,$,⋯

log$
70
𝐶 2E

																							(5)	 

The value of n, which minimizes the function above, is 
then used to calculate the hop size h of the ME by 

ℎ =
𝐶
2E
																																												(6) 

The rather coarse hop size (50-100 ms) is used as we 
wish to include features from several seconds of audio, 
without the input layer becoming too large. However, to 
make the network aware of peaks that slips through the 
coarse grid, we perform a peak picking on the vector 𝑃#", 
which we have first computed by summing 𝑃#" across fre-
quency. For each grid position, we write the magnitude of 
the closest peak, the absolute distance to the closest peak, 
as well as the sign of the computed distance to three fea-
ture vectors that we will denote by 𝑃.  

Just as for the speed features described in Section 2.4, 
we filter the feature matrices 𝑃#", 𝑆′ and 𝑉3"  with triangular 
filters to extract feature vectors. In summary, for each 
grid position, we extract features by interpolating over the 
16 feature vectors defined in Table 3.  

Feature 𝑃′# 𝑃 𝑆′ 𝑉3 
Number of bands/features 6 3 6 1 

Table 3. Feature vectors that are interpolated to the grid 
defined by the cepstroid. 

For each frame we try to estimate if it corresponds to a 
beat (1) or not (0). We include 38 grid-points in each di-
rection from the current frame position, resulting in a 
time window of 2 ∙ ℎ ∙ 38  seconds. At ℎ = 70	ms , the 
time window is approximately 5.3 seconds. The comput-
ed beat activation from the CINN will be denoted as the 
beat vector 𝐵 in the subsequent processing. 
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2.8 Speed Neural Network 

Octave errors are a prevalent problem in tempo estima-
tion and beat tracking, and different methods for choosing 
the correct tempo octave have previously been proposed 
[13]. It was recently shown that a continuous measure of 
the speed of the music can be very effective at alleviating 
octave errors [11]. We therefore compute a continuous 
speed estimate, which guides our tempo estimation, using 
the input features described in Section 2.4. The ground 
truth annotation of speed 𝐴. , is derived from the loga-
rithm of the annotated beat length 𝐴𝐵b 

𝐴. = log$ 𝐴𝐵b                                   (7) 

Eqn (7) is motivated by our logarithmic perception of 
tempo [6]. As we have very few annotations (1 per ME), 
we increase the generalization capabilities with ensemble 
learning. We also use an inner cross validation (5-fold) 
for the training set. If this is not done, the subsequent 
tempo network will overestimate the relevance of the 
computed speed, rendering a decrease in test perfor-
mance.  

2.9 Tempo Neural Network 

The tempo is estimated by finding tempo candidates, and 
letting the neural network perform a classification be-
tween extracted candidates to pick the most likely tempo. 
First, the candidates are extracted by creating a histogram 
𝐻d  of the beat vector 𝐵  (that we previously extracted 
with the CINN). The energy at each histogram bin is 
computed as the sum of the product of the magnitudes of 
the frames of 𝐵 at the frame offset given by a 

∀𝑎 ∈ 1	,⋯ ,1900 											 𝐵& ∙ 𝐵&8F
&

																				(8) 

We process the histogram to extract a cepstroid vector 
𝐶d, by using the same processing scheme as described for 
𝐶e  in Section 2.3. Peaks are then extracted in both 𝐻d 
and 𝐶d, and the corresponding beat length of the histo-
gram peaks are used as tempo candidates.  

The neural network is not directly trained to classify if 
a tempo candidate is correct or incorrect. Instead, to cre-
ate training data, each possible pair of tempo candidates 
are examined, and the network is trained to classify 
which of the two candidates in the pair that correspond to 
the correct tempo (using only pairs with one correct can-
didate for the training data).  

For testing, the tempo candidate that receives the high-
est probability in its match-ups against the other candi-
dates is picked as the tempo estimate. This idea was first 
described in [11] (in that case without using any preced-
ing beat tracking and using a logistic regression without 
ensemble learning). Input features are defined for both 
tempo candidates in the pair by their corresponding beat 
length Bl. We compute: 

• The magnitude at Bl in 𝐻d, 𝐶d and in the feature vec-
tors used for the Cep NN (see Section 2.6). We in-
clude octave ratios as defined in Eqn (4). 

• We compute 𝑥 = log2 𝐵𝑙 − 𝑆𝑝𝑒𝑒𝑑 . Then sgn(𝑥)  and 
𝑥  are used as features. 

• A Boolean vector for all musically relevant ratios 
defined in Eqn (4), where the corresponding index is 
1 if the pair of tempo candidates have that ratio. 

We constrain possible tempo candidates to the range 
23-270 BPM. This range is a bit excessive for the given 
datasets, but will allow the system to generalize better to 
other types of music with more extreme tempi. 

2.10   Phase Estimation 

At the final stage, we detect the phase of the beat vector 
and estimate the beat positions. The tempo often drifts 
slightly in music, for example during performances by 
live musicians. To model this in a robust way, we com-
pute the CQT of the beat vector. The result is a spectro-
gram where each frequency corresponds to a particular 
tempo, the magnitude corresponds to beat strength, and 
where the phase corresponds to the phase of the beat at 
specific time positions. The beat vector is upsampled 
(100 times higher resolution) prior to applying the CQT, 
and we use 60 bins per octave. We filter the spectrogram 
with a Hann window of width one tempo octave (60 
bins), centered at the frequency that corresponds to the 
previously computed tempo. As a result, any magnitudes 
outside of the correct tempo octave are set to 0 in the 
spectrogram. When the inverse CQT (ICQT) is finally 
applied to the filtered spectrogram, the result is a beat 
vector which resembles a sinusoid, where the peaks cor-
respond to tentative beat positions. With this processing 
technique we have jointly estimated the phase and drift, 
using a fast transform which seems to be suitable for beat 
tracking. 

The beat estimations are finally refined slightly by 
comparing the peaks of the computed sinusoidal beat vec-
tor with the peaks of the original beat vector from the 
CINN. Let us define a grid i, consisting of 100 points, 
onto which we interpolate phase deviations that are with-
in ± 40 % of the estimated beat length. We then create a 
“driftogram” M by evaluating each estimated beat posi-
tion j, adding 1 to each drift position Mi, j where a peak 
was found in the original beat vector. The driftogram is 
smoothed with a Hann window of size 17 across the beat 
direction and size 27 across the drift direction. To adjust 
the beat position, we use the the maximum value for each 
beat frame of M.  

3. EVALUATION 

3.1 Datasets 

We used the three datasets defined in Table 4 to evaluate 
our system. The Ballroom datasets consist of ballroom 
dance music and was annotated by [20, 24]. The Hains-
worth dataset [21] is comprised of varying genres, and 
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the SMC dataset [22] consists of MEs that were chosen 
based on their difficulty and ambiguity. Tempo annota-
tions were computed by picking the highest peak of a 
smoothed histogram of the annotated inter-beat intervals. 

Dataset Number of MEs Length 
Ballroom 698 6h 4m 

Hainsworth 222 3h 20m 
SMC 217 2h 25m 

Table 4. Datasets used for evaluation, and their size. 

3.2 Evaluation Metrics 

There are several different metrics for beat tracking, all 
trying to capture different relevant aspects of the perfor-
mance. For an extensive review of different evaluation 
metrics, we refer the reader to [7].  

F-measure is calculated from Recall and Accuracy, 
using a limit of ± 70 ms for the beat positions. P-Score 
measures the correlation between annotations and detec-
tions. CMLc is derived by finding the longest Correct 
Metrical Level with continuity required and CMLt is 
similar to CMLc but does not require continuity. AMLc 
is derived by finding the longest Allowed Metrical Level 
with continuity required. This measure allows for several 
different metrical levels and off-beats. AMLt is Similar 
as AMLc but does not require continuity. The standard 
tempo estimation metric Acc1 was computed from the 
output of the Tempo Network. It corresponds the fraction 
of MEs that are within 8 % of the annotated tempo. 

3.3 Evaluation procedure 

We used a 5-fold cross validation to evaluate the system 
on the Ballroom dataset. More specifically, the training 
fold was used to train all the different neural networks of 
the system. After all networks were trained, the test fold 
was evaluated on the complete system and the results re-
turned. Then the procedure was repeated with the next 
train/test-split. The Hainsworth and SMC datasets were 
evaluated by running the MEs on a system previously 
trained on the complete Ballroom dataset.  

As a benchmark for our cross-fold validation results on 
the Ballroom dataset, we use the cross-fold validation re-
sults of the state-of-the-art systems for tempo estimation 
[5], and beat tracking [25]. The systems were evaluated 
on a song-by-song basis with data provided by the au-
thors. To make statistical tests we use bootstrapping for 
paired samples, with a significance level of p < 0.01. For 
the Hainsworth and SMC dataset, benchmarking is most 
appropriate with systems that were trained on separate 
training sets. We use [16] as a benchmark for tempo es-
timation, and [8] as a benchmark for beat tracking. 

4. RESULTS 

4.1 Tempo 

The tempo estimation results (Acc1), are shown in Table 
5, together with the results of the benchmarks.  

      (Acc1)   Ballroom  Hainsworth      SMC 
 Proposed      0.973*       0.802     0.332 
 Böck [5]      0.947*       0.865*     0.576* 
 Gkiokas [16]      0.625       0.667     0.346 

Table 5. The results for our tempo estimation system in 
comparison with the benchmarks. Results marked with 
(*) were obtained from cross-fold validation. Results in 
bold are most relevant to compare. Statistical significance 
for systems with song-by-song data in comparison with 
the proposed system is underlined.  

4.2 Beat tracking 

Table 6 shows the performance of the system, evaluated 
as described in Section 3.2.  

Ballroom F-Me P-Sc CMLc CMLt AMLc AMLt 
Proposed 92.5* 92.2* 86.8* 90.3* 89.4* 93.2* 
Krebs [25] 91.6* 88.8* 83.6* 85.1* 90.4* 92.2* 
                                        Hainsworth 
Proposed 74.2 77.7 57.6 67.6 65.0 79.2 
Davies [8] - - 54.8 61.2 68.1 78.9 
                                             SMC 
Proposed 37.5 49.4 14.9 22.5 20.9 33.2 

Table 6. The results for our proposed system in compari-
son with the benchmarks. Results marked with (*) were 
obtained from a cross-fold validation. Statistical signifi-
cance for systems with song-by-song data in comparison 
with the proposed system is underlined. 

5. SUMMARY & CONCLUSIONS 

We have presented a novel beat tracking and tempo esti-
mation system that uses a cepstroid invariant neural net-
work. The many connected networks make it possible to 
explicitly capture different aspects of rhythm. With a Cep 
network we compute a salient level of repetition of the 
music. The invariant representations that were computed 
by subsampling the feature vectors allowed us to obtain 
an accurate beat vector in a CINN. By applying the CQT 
to the beat vector, and then filtering the spectrogram to 
keep only magnitudes that corresponds to the estimated 
tempo before applying the ICQT, we computed the phase 
of the beat. Alternative post processing strategies, such as 
applying a DBN on the beat vector, could potentially im-
prove the performance. The results are comparable to the 
benchmarks both for tempo estimation and beat tracking. 
This indicates that the ideas put forward in this paper are 
important, and we hope that they can inspire new network 
architectures for MIR. Tests on hidden datasets for the 
relevant MIREX tasks would be useful to draw further 
conclusion regarding the performance. 
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