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ABSTRACT

In recent years, advances in machine learning and in-
creases in data set sizes have produced a number of viable
algorithms for analyzing music in a hierarchical fashion
according to the guidelines of music theory. Many of these
algorithms, however, are based on techniques that rely on
a series of local decisions to construct a complete music
analysis, resulting in analyses that are not guaranteed to
resemble ground-truth analyses in their large-scale organi-
zational shapes or structures. In this paper, we examine
a number of hierarchical music analysis data sets — draw-
ing from Schenkerian analysis and other analytical systems
based on A Generative Theory of Tonal Music — to study
three global properties calculated from the shapes of the
analyses. The major finding presented in this work is that
it is possible for an algorithm that only makes local de-
cisions to produce analyses that resemble expert analyses
with regards to the three global properties in question. We
also illustrate specific similarities and differences in these
properties across both ground-truth and algorithmically-
produced analyses.

1. INTRODUCTION

Music analysis refers to a set of techniques that can illus-
trate the ways in which a piece of music is constructed,
composed, or organized. Many of these procedures focus
on illustrating relationships between certain types of mu-
sical objects, such as harmonic analysis, which can show
how chords and harmonies in a composition function in
relation to each other, or voice-leading analysis, whose
purpose is to illustrate the flow of a melodic line through
the music. Some types of analysis are explicitly hierarchi-
cal, in that their purpose is to construct a hierarchy of mu-
sical objects illustrating that some objects occupy places
of higher prominence in the music than others. Different
kinds of hierarchical analysis have different methods for
determining the relative importance of objects in the hier-
archy. The most well-known of these hierarchical proce-
dures is Schenkerian analysis, which organizes the notes
of a composition in a hierarchy according to how much
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each note contributes to the overall musical structure. The
procedure also illustrates how notes at one level of the hi-
erarchy function in relation to surrounding notes at higher
and lower levels. While Schenkerian analysis is the most
common type of hierarchical analysis in the music theory
community, there are a number of similar procedures that
were developed in the music and linguistics community,
specifically the procedures put forth in the book A Genera-
tive Theory of Tonal Music by Lerdahl and Jackendoff [10],
abbreviated here as GTTM. GTTM applies an explicitly hi-
erarchical view to multiple aspects of a musical composi-
tion, leading to two types of analysis known as time-span
reductions and prolongational reductions, both of which
are similar to Schenkerian analysis in that all three analyt-
ical methods organize the pitches of the music in hierar-
chies of relative importance, allowing a person to view a
musical composition at multiple levels of abstraction.

None of these types of musical analysis were origi-
nally developed as computational algorithms, and so all
contain certain ambiguities in their definitions. Schenke-
rian analysis, in particular, is known for originally being
defined primarily through examples and not via a step-
by-step procedure. Similarly, the two GTTM reductional
analysis systems contain preference rules that can con-
flict with each other; the authors explicitly state that there
is not enough information in GTTM to provide a “fool-
proof algorithm” for analyzing a composition. Neverthe-
less, there are now a number of automated computational
systems that can construct analyses in a Schenkerian fash-
ion [7, 11] or by following the rules of time-span or pro-
longational reductions in the GTTM formalism [4]. The
most common computational technique underlying these
systems and others like them is the context-free grammar:
such a formalism is widely-adopted because such gram-
mars are easily applied to musical objects, are inherently
rule-based, can be adapted to work with probabilities, and
admit a computationally-feasibly O(n3) parsing algorithm
that can be used to find the best analysis for a piece of mu-
sic.

The largest downside to context-free grammars is pre-
cisely that they are context-free: there are restrictions on
how much musical context can be used when applying the
rules of a grammar to “parse” a piece of music into an
analysis. Most decisions made during the analysis process
under the context-free paradigm have to be made some-
what “locally,” and are unable to consider many important
“global” properties that are critical to producing a high-
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quality musical analysis. For instance, certain composi-
tional techniques, such as identical repetitions of an arbi-
trarily melodic sequence, are impossible to describe sat-
isfactorily with a context-free grammar [13]. Other com-
mon practices, such as the rules of musical form, manifest
themselves as certain shapes and structures in the hierar-
chy [9, 10, 15], and it is unclear whether a purely context-
free system could identify such structures. In this work,
we show (a) evidence that context-free grammars can re-
produce certain global structures in music analyses, and
(b) similarities and differences in those global structures
across various types of hierarchical music analysis.

2. REPRESENTATION OF HIERARCHICAL
ANALYSES

For simplicity, we assume we are analyzing a monophonic
sequence of notes. The two most common ways to do this
in a hierarchical manner are (a) to create a hierarchy di-
rectly over the notes, and (b) to create a hierarchy over
the melodic intervals between the notes. Each representa-
tion has distinct advantages and disadvantages [2, 12], but
Schenkerian analysis is more easily represented by a hi-
erarchy of melodic intervals. We explain this through the
following example. Imagine we wish to analyze the five-
note descending passage in Figure 1, which takes place
over G-major harmony. Schenkerian analysis is guided by
the concept of a prolongation: a situation where a note or
pair of notes controls a musical passage even though the
governing note or notes may not be sounding throughout
the entire passage. For instance, in Figure 1, the sequence
D–C–B contains the passing tone C, and we say the C pro-
longs the motion from the D to the B. The effect is simi-
lar for the notes B–A–G. However, there is another level
of prolongation at work: the entire five-note span is gov-
erned by the beginning and ending notes D and G. This
two-level structure can be represented by the binary tree
shown in Figure 2(a), which illustrates this hierarchy of
prolongations through the melodic intervals they encom-
pass. A more succinct representation is shown in Figure
2(b): this structure is known as a maximal outerplanar
graph or MOP, and illustrates the same hierarchy as the
binary tree [14].

!"# !! !!!
D C B A G

Figure 1. An arpeggiation of a G-major chord with passing
tones. The slurs are a Schenkerian notation used to indicate
the locations of prolongations.

A MOP is a graph representing a complete triangulation
of a polygon. Like their binary tree equivalents, MOPs are
rooted, but by an edge, rather than a vertex; this edge rep-
resents the most abstract level of the melodic hierarchy.
Every triangle within a MOP corresponds to a hierarchical
relationship among the three notes that form the triangle,
with the middle note taking on a subservient role in relation

(a) (b)D–G
D–B B–G

D–C C–B B–A A–G

D G
B

C A

Figure 2. The prolongational hierarchy of a G-major chord
with passing tones represented as (a) a tree of melodic in-
tervals, and (b) a MOP.

to the left and right notes. It is equivalent to say that every
triangle has a parent edge and two child edges, or has two
parent vertices and a child vertex. Triangles closer to the
root of the MOP express more abstract relationships than
those farther away. Though originally developed to repre-
sent Schenkerian prolongations, we will use MOPs later in
this paper to work with the GTTM reductional systems as
well.

2.1 Large-Scale Organization of MOPs

Like binary trees, MOPs can be described by a variety
of global attributes that are determined from their overall
shape. We explore three such attributes and how common
music composition and analysis practices affect these at-
tributes.

Height: The height of a MOP is defined to be the num-
ber of triangles in the longest possible sequence of trian-
gles from the root edge moving through subsequent child
edges to the bottom of the MOP. It is analogous to the
height of the equivalent binary tree. For a MOP with a
fixed number of triangles, there are a certain range of pos-
sible heights; for instance, Figure 3 shows two MOPs with
five triangles, one with a height of 5 and one with a height
of 3. Because a MOP with n vertices will always con-
tain n − 2 triangles, we can say the maximum height of
such a MOP is n − 2, whereas the minimum height is
dlog2(n− 1)e.

height = 3height = 5

Figure 3. Two MOPs, each with five triangles, but differ-
ent heights.

Investigating the heights of the MOPs that result from
hierarchical analysis gives us insight into the composi-
tional structure of the music from which the MOPs were
created. MOPs with large heights result from situations
where the notes of critical importance in a hierarchy are
positioned towards the beginning and end of a musical
passage, with importance decreasing monotonically as one
moves towards the middle of the passage in question (as in
the left MOP of Figure 3. In contrast, MOPs with small
heights result from hierarchies where the structural impor-
tance does not increase or decrease monotonically over
time during a passage, but rather rises and falls in a pat-
tern similar to how strong and weak beats fall rhythmically
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within a piece.
Average Path Length: While height provides a coarse

measure of the shape of a MOP, a different metric, average
path length, provides finer-grained detail about the bal-
ancedness or skewedness of the structure [5]. Measuring
the level of balancedness or unbalancedness in a tree gives
an overall sense of whether the leaves of the tree are all at
roughly the same level or not; when applied to a MOP, this
determines whether the leaf edges are all roughly the same
distance away from the root edge. Towards that end, the
average (external) path length in a MOP is calculated by
averaging the lengths of all the paths from the root edge to
all leaf child edges. For a MOP with n vertices, the mini-
mum average path length is very close to log2 n+1, while
the maximum average path length is (n−1)(n+2)

2n [1, 8].
GTTM and related literature posits that music is con-

structed around structures that are largely balanced, that is,
tending towards shorter average path lengths. One reason
for this, from a prolongational standpoint, is that a melodic
hierarchy expressed as a MOP illustrates patterns of ten-
sion and relaxation: each triangle represents tension rising
from the left parent vertex to the child, then relaxing from
the child to the right parent. Balanced MOP structures im-
ply waves of tension and relaxation roughly on the same
level, whereas unbalanced MOPs imply tension and relax-
ation patterns that may seem implausible to a listener: “it is
most unlikely that a phrase or piece begins in utmost ten-
sion and proceeds more or less uniformly towards relax-
ation, or that it begins in relaxation and proceeds toward a
conclusion of utmost tension.” [9, 10].

Left-Right Skew: An important consideration not ac-
counted for by the concepts of height or average path
length is determining whether the MOP has more left-
branching structures or more right-branching structures.
To this end, we define a variant of path length by choos-
ing to count a left-branch within a path as −1 and a right-
branch as +1. It is clear that this metric assigns negative
numbers to all MOP edges that lie on paths from the root
edge with more left branches than right branches, and pos-
itive numbers to edges in the opposite situation. Using
this measure of distance, we define the left-right skew of
a MOP to be the sum of these numbers for all paths in a
MOP from the root edge to a leaf edge, giving us an over-
all sense of whether the MOP is skewed to the left or to the
right. Due to the organization of leaf edges within a MOP,
a fully right-branching MOP with n vertices will achieve a
left-right skew of

n−4∑

i=−1

i+ (n− 2) =
n2

2
− 5n

2
+ 3

and a fully left-branching MOP will achieve a correspond-
ing negative value.

3. FIRST EXPERIMENT

Our first experiment is intended to answer the question,
“Can a fully-automated algorithm for music analysis based
on context-free parsing techniques produce MOPs with

global structural attributes matching those of ground-truth
MOPs?” Note that we are assuming that the three global at-
tributes — MOP height, average path length, and left-right
skew — are not randomly distributed; this assumption is
based on the previous work described earlier detailing that
the overall shape of a hierarchical music analysis is most
decidedly not random, but influenced by the way compo-
sitions are constructed and the manner in which listeners
hear and interpret them.

We used the PARSEMOP system in concert with
the SCHENKER41 data set to conduct this experiment.
SCHENKER41 is a data set of 41 common practice period
musical excerpts along with corresponding Schenkerian
analyses in MOP form for each excerpt [6]. The excerpts
are homogeneous: they are all in major keys, written or ar-
ranged for a keyboard instrument or voice with keyboard
accompaniment, and do not modulate. The correspond-
ing analyses of the excerpts are all derived from textbooks
or other expert sources, and can be regarded as ground
truth. SCHENKER41 serves as training data for the PARSE-
MOP machine-learning system, which learns the rules of
Schenkerian analysis by inferring a probabilistic context-
free grammar from patterns extracted from SCHENKER41
[7]. After training, PARSEMOP can produce MOP analy-
ses for new, previously-unseen pieces of music.

There are three variants of PARSEMOP, which vary only
in treatment of the Urlinie, a uniquely Schenkerian con-
cept. According to Schenker, all tonal music compositions
should have, at the most abstract level of the melodic hier-
archy, one of three possible background structures. These
three structures, representing Schenker’s fundamental con-
ception of melody, consist of a stepwise descent from the
third, fifth, or eighth scale degree to the tonic below, and
the entire melodic content of the piece serves as an elabo-
rate prolongation of this descending melodic line. PARSE-
MOP-A, when trained on the SCHENKER41 corpus, does
not have any a priori knowledge of the Urlinie: it does
not even know that such a concept exists in music. There-
fore, PARSEMOP-A produces output MOPs that usually
do not contain an Urlinie, except if by chance. PARSE-
MOP-B, on the other hand, is given information about the
Urlinie for the pieces of music it is analyzing. PARSE-
MOP-B produces output MOPs that always contain the cor-
rect Urlinie (the structure is copied from the input music).
Clearly, PARSEMOP-A and PARSEMOP-B represent two
opposite ends of the spectrum with regard to the Urlinie.
PARSEMOP-C is a compromise between the two: it uses
extra rules in the context-free grammar to guarantee that
an Urlinie will be produced in the output MOP analyses,
but it may not match the notes of the correct Urlinie ex-
actly.

We ran the three PARSEMOP variants using leave-one-
out cross-validation on each of the 41 excerpts in the
SCHENKER41 corpus, leaving us with four sets of MOPs:
one ground-truth, and three algorithmically produced. Be-
cause the minimum and maximum values for each of the
three global MOP attributes are dependent on the number
of vertices in a MOP (corresponding to the length of the
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musical excerpt in question), we normalized the values for
the attributes as follows. MOP height was scaled to always
occur between 0 and 1, with 0 corresponding to a MOP
of minimum height for a given piece, and 1 corresponding
to the maximum height. Average path length was simi-
larly scaled to be between 0 and 1. Left-right skew was
scaled to be between−1 and +1, with 0 corresponding to a
perfectly left-right balanced MOP, and−1/+1 correspond-
ing to maximally left- or right-branching MOPs. Finally,
we compared the distribution of the attributes obtained for
each PARSEMOP variant against corresponding attribute
distributions calculated from the ground-truth MOPs; his-
tograms can be seen in Figure 4.

The data illustrate a number of phenomena. Firstly, the
histograms for height and average path length suggest that
all the data sets, both ground-truth and algorithmically-
produced, show a preference for MOPs that are a com-
promise between balanced and unbalanced, but tending to-
ward balanced: very deep MOPs or MOPs with long path
lengths (values close to 1) are avoided in all data sets.
PARSEMOP-B and -C have higher average heights and av-
erage path lengths than PARSEMOP-A due to the presence
of an Urlinie, which is always triangulated in a deep, un-
balanced fashion. This is most evident in the PARSEMOP-
B and -C plots for left-right skew: these show a dramatic
left-branching structure that is almost certainly due to the
Urlinie, especially when compared to the histogram for
PARSEMOP-A.

Secondly, it is clear that in some situations, the context-
free grammar formalism does a remarkably good job at
preserving the overall shape of the distribution of the
attributes, at least through visual inspection of the his-
tograms. We can confirm this by computing Spearman’s
rank correlation coefficient ρ for each pair of data — this
calculates the correlation between a list of the 41 pieces
sorted by a ground-truth metric and the same metric after
having been run through PARSEMOP. All pairs show pos-
itive correlation coefficients, with eight of the nine being
statistically significant at the α = 0.005 level (obtained
via the Šidák correction on 0.05). In particular, rank corre-
lation coefficients for all three PARSEMOP-B comparisons
are all greater than 0.9, indicating a strong correlation.

However, a high Spearman ρ coefficient does not nec-
essarily imply the distributions are identical. We ran two-
sample two-tailed t-tests on each pair of data to determine
if the means of the two data sets in question were dif-
ferent (the null hypothesis being that the means of each
data set within a pair were identical). Two cases resulted
in p-values significant at the α = 0.005 level, indicat-
ing rejection of the null hypothesis: the height compar-
isons for PARSEMOP-B, and the left-right skew compar-
isons for PARSEMOP-C. This implies a situation where
PARSEMOP-B is apparently very good preserving relative
ranks of MOP heights in the data set (this rank correlation
between algorithmic MOP heights and ground-truth MOP
heights was revealed above), but there is also a statistically
significant, though small, difference in the means of the
distribution of these heights.

4. SECOND EXPERIMENT

Our first experiment suggests that there may be some bias
in our calculations being introduced by the Urlinie, namely
because it has a particular structure that is always present in
the resulting analyses. This situation is further complicated
by the presence of a number of short pieces of music in the
SCHENKER41 data set, where, for instance, the music may
consist of ten notes, five of which constitute the Urlinie.
In a situation like this, the MOP structure is already likely
determined by the locations of the notes of the Urlinie, and
so the PARSEMOP algorithm has very little effect on the
final shape of the MOP analysis. In short, we suspect that
these two factors may be artificially increasing the height
and average path length of the algorithmically-produced
MOPs.

To address this, we replicated the first experiment but
only calculated the global MOP attributes for pieces with at
least 18 notes (leaving 23 pieces out of 41), hypothesizing
that having more notes in the music would outweigh the
effects of the Urlinie. The leave-one-out cross-validation
step was not altered (this still used all the data). Figure 5 il-
lustrates the new histograms compiled for this experiment.
In short, these new data support our hypothesis: removing
short pieces largely eliminates very deep MOPs and those
with very long average path lengths.

We can again address similarities and differences us-
ing tests involving Spearman’s correlation coefficient ρ
and paired t-tests. All of the statistically significant re-
sults for ρ relating to PARSEMOP-B still remain: all three
global MOP structure attributes calculated on the PARSE-
MOP-B MOPs are strongly positively rank-correlated (ρ >
0.8) with the ground-truth MOP attributes. There is a
weaker rank correlation (ρ ≈ 0.583) between the left-
right skew attribute calculated on the PARSEMOP-C data
and its ground-truth that is also statistically significant
(p < 0.005). In contrast, the two statistical significances
identified via the t-tests in the first experiment both disap-
pear when run on only the pieces of at least 18 notes, sug-
gesting that these association may have spurious, caused
by noise in the shorter pieces.

5. THIRD EXPERIMENT

In our third experiment, we branched out from Schenke-
rian analysis to explore A Generative Theory of Tonal Mu-
sic’s time-span and prolongational reductions. These are
two forms of music analysis that, like Schenkerian analy-
sis, are designed to illustrate a hierarchy among the notes
of a musical composition.

Time-span reduction is introduced in GTTM as
grounded in the concept of pitch stability: listeners con-
struct pitch hierarchies based primarily on the relative con-
sonance or dissonance of a pitch as determined by the prin-
ciples of Western tonal music theory. However, pitch sta-
bility is not a sufficient criteria upon which to found a re-
ductional system, because pitches do not occur in a vac-
uum, but take place over time: there are temporal and
rhythmic considerations that are required. Lerdahl and
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Figure 4. Histograms displaying the distribution of global MOP attributes comparing algorithmically-generated MOPs
(grey bars) and ground-truth MOPs (black bars). Sample means are shown for algorithmic and truth MOPs, respectively.
The ground-truth bars for PARSEMOP-A are different from -B and -C because PARSEMOP-A has no conception of the
Urlinie, and therefore the Urlinie in the ground-truth MOPs is triangulated slightly differently in the training data for
PARSEMOP-A.
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Figure 5. Histograms of the same variety as in Figure 4, but only for excerpts containing 18 or more notes.
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Jackendoff address this by basing time-span reductions on
their conceptualizations of metrical and grouping struc-
ture, where metrical structure is determined from analyz-
ing the strong and weak beats of a composition, while the
grouping structure comes from a listener perceiving notes
grouped into motives, phrases, themes, and larger sections.

Though similar to time-span reduction, prolongational
reduction adds the concepts of tension and relaxation to the
criteria that are used to form a musical hierarchy. The mo-
tivation for the need for two types of reduction is that time-
span reductions cannot express some structural relation-
ships that take place across grouping boundaries, which
determine the overall form of a time-span analysis. In con-
trast, prolongational reductions are not tied to grouping
boundaries, and therefore can represent rising and falling
tension across such boundaries. The two types of trees
produced by the reductional systems are often similar in
branching structure at the background levels, but become
more dissimilar at lower levels of the hierarchies [10].

Because time-span and prolongation reductions seem
similar on the surface, it is appropriate to address their sim-
ilarities and differences through a study of the three global
attributes calculated for MOPs in the previous section. We
perform this study by using the GTTM database developed
by Hamanaka et al. [3], through their research on the fea-
sibility of automating the analytical methods described in
GTTM [4]. This database consists of 300 eight-bar ex-
cerpts of music from the common practice period, along
with time-span reductions and prolongational reductions
for certain subsets of the pieces. Specifically, there are 99
excerpts that include both time-span and prolongational re-
ductions. Note that these reductions in the database were
produced by a human expert, not an algorithm.

Our first task was to convert the time-span and prolon-
gation reductions into MOPs. This is necessary because
although time-span and prolongational reductions are ex-
pressed through binary trees (which are structurally equiv-
alent to MOPs), the GTTM reductions use binary trees cre-
ated over the notes of a composition, whereas MOPs are
equivalent to binary trees created over melodic intervals
between notes, as shown earlier in Figure 2. Therefore, we
require an algorithm to convert between these two funda-
mentally different representations.

Time-span and prolongational reductions are repre-
sented by trees with primary and secondary branching, like
that of Figure 7(a). Phase one of the conversion algorithm
converts these trees into an intermediate representation: a
multi-way branching tree where all children of a note are
represented at the same level, as in Figure 7(b). Phase
two converts this intermediate representation to a MOP
by adding edges in appropriate places, as in Figure 7(c).
This conversion algorithm is guaranteed to preserve all hi-
erarchical parent-child relationships present in the original
time-span or prolongational tree. It may introduce other
relationships through adding additional edges, however.

Once all the time-span and prolongational reductions
were converted into MOPs, we computed histograms of the
MOP height, average path length, and left-right skew for

W X Y Z

Y

W X Z

Y

W
X Z

(a) (b) (c)

Figure 7. Illustration of a time-span/prolongational tree
structure converted into a MOP.

both the time-span reductions and prolongational MOPs.
These are shown in Figure 6. Spearman’s rank coefficient
test reveals positive rank-correlations between MOP height
(ρ = 0.660), average path length (ρ = 0.762), and left-
right skew (ρ = 0.300) calculated from time-span analyses
and the corresponding attribute for prolongational analy-
ses. At the same time, paired t-tests suggest that the sample
means have statistically significant differences for all three
attributes as well, when comparing time-span and prolon-
gational reductions. Lastly, though the paired histograms
for height and average path length may appear similar, the
left-right skew paired histograms seem more visually dif-
ferent. This is confirmed via a two-sample Kolmogorov-
Smirnov test, which indicates the left-right skew values for
time-span versus prolongational reductions are drawn from
different distributions. All of these statistical significances
account for multiple comparisons using the Šidák correc-
tion (α = 0.05→ α = 0.017).

6. CONCLUSIONS

The data presented here suggest a number of conclusions.
The first two experiments involving PARSEMOP imply that
when PARSEMOP makes mistakes in analyzing music, the
mistakes do not drastically change the overall shape or
structure of the corresponding ground-truth analysis. This
information is challenging to reconcile with the fact that
PARSEMOP, like any music analysis algorithm derived
from context-free parsing techniques, does no global cal-
culations related to shape or structure during the analyti-
cal process. One explanation is that the notes of a music
composition imply an overall shape and structure that the
analytical process simply reveals, in that the shape is in-
herently present in the music and does not have to be given
explicitly to the grammar. If this were true, then using
a formal grammar class higher in the Chomsky hierarchy
(e.g., a grammar with some amount of context-sensitivity)
may not be necessary to create algorithms that can analyze
music satisfactorily.

The third experiment comparing time-span and prolon-
gational analyses reveals fundamental differences and sim-
ilarities in the overall structure of the two analytical forms.
For instance, it is clear that both types of reductional sys-
tem strongly prefer balanced, shallow trees, as is clear
from the histograms on height, average path length, and
left-right skew. Also, both analysis varieties produce trees
that slightly skew to the left. However, our statistical tests
also strongly suggest that the underlying distributions of
the global MOP structure attributes are different, even if
the differences in means happen to be small.
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[2] Édouard Gilbert and Darrell Conklin. A probabilistic
context-free grammar for melodic reduction. In Pro-
ceedings of the International Workshop on Artificial
Intelligence and Music, 20th International Joint Con-
ference on Artificial Intelligence, pages 83–94, Hyder-
abad, India, 2007.

[3] Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo.
Musical structural analysis database based on GTTM.
In Proceedings of the 15th International Society for
Music Information Retrieval Conference, pages 325–
330, 2015.

[4] Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo.
σGTTM III: Learning based time-span tree genera-
tor based on PCFG. In Proceedings of the 11th In-
ternational Symposium on Computer Music Multidis-
ciplinary Research, pages 303–317, 2015.

[5] Maarten Keijzer and James Foster. Crossover bias in
genetic programming. In Proceedings of the European
Conference on Genetic Programming, pages 33–44,
2007.

[6] Phillip B. Kirlin. A data set for computational stud-
ies of Schenkerian analysis. In Proceedings of the 15th
International Society for Music Information Retrieval
Conference, pages 213–218, 2014.

[7] Phillip B. Kirlin and David D. Jensen. Using super-
vised learning to uncover deep musical structure. In
Proceedings of the 29th AAAI Conference on Artificial
Intelligence, pages 1770–1776, 2015.

[8] Donald E. Knuth. The Art of Computer Programming,
Volume 3: Sorting and Searching. Addison Wesley
Longman, Redwood City, CA, second edition, 1998.

[9] Fred Lerdahl. Tonal Pitch Space. Oxford University
Press, Oxford, 2001.

[10] Fred Lerdahl and Ray Jackendoff. A Generative Theory
of Tonal Music. MIT Press, Cambridge, MA, 1983.

[11] Alan Marsden. Schenkerian analysis by computer: A
proof of concept. Journal of New Music Research,
39(3):269–289, 2010.

[12] Panayotis Mavromatis and Matthew Brown. Parsing
context-free grammars for music: A computational
model of Schenkerian analysis. In Proceedings of the
8th International Conference on Music Perception &
Cognition, pages 414–415, 2004.

[13] Mariusz Rybnik, Wladyslaw Homenda, and Tomasz
Sitarek. Foundations of Intelligent Systems: 20th Inter-
national Symposium, ISMIS 2012, chapter Advanced
Searching in Spaces of Music Information, pages 218–
227. 2012.

[14] Jason Yust. Formal Models of Prolongation. PhD the-
sis, University of Washington, 2006.

[15] Jason Yust. Organized Time, chapter Structural Net-
works and the Experience of Musical Time. 2015. Un-
published manuscript.

646 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016


