
AUTOMATIC MELODIC REDUCTION USING A SUPERVISED
PROBABILISTIC CONTEXT-FREE GRAMMAR

Ryan Groves
groves.ryan@gmail.com

ABSTRACT

This research explores a Natural Language Processing
technique utilized for the automatic reduction of melodies:
the Probabilistic Context-Free Grammar (PCFG). Au-
tomatic melodic reduction was previously explored by
means of a probabilistic grammar [11] [1]. However, each
of these methods used unsupervised learning to estimate
the probabilities for the grammar rules, and thus a corpus-
based evaluation was not performed. A dataset of analyses
using the Generative Theory of Tonal Music (GTTM) ex-
ists [13], which contains 300 Western tonal melodies and
their corresponding melodic reductions in tree format. In
this work, supervised learning is used to train a PCFG for
the task of melodic reduction, using the tree analyses pro-
vided by the GTTM dataset. The resulting model is evalu-
ated on its ability to create accurate reduction trees, based
on a node-by-node comparison with ground-truth trees.
Multiple data representations are explored, and example
output reductions are shown. Motivations for performing
melodic reduction include melodic identification and sim-
ilarity, efficient storage of melodies, automatic composi-
tion, variation matching, and automatic harmonic analysis.

1. INTRODUCTION

Melodic reduction is the process of finding the more struc-
tural notes in a melody. Through this process, notes that
are deemed less structurally important are systematically
removed from the melody. The reasons for removing a
particular note are, among others, pitch placement, metri-
cal strength, and relationship to the underlying harmony.
Because of its complexity, formal theories on melodic re-
duction that comprehensively define each step required to
reduce a piece in its entirety are relatively few.

Composers have long used the rules of ornamentation to
elaborate certain notes. In the early 1900s, the music the-
orist Heinrich Schenker developed a hierarchical theory of
music reduction (a comprehensive list of Schenker’s pub-
lications was assembled by David Beach [7]). Schenker
ascribed each note in the musical surface as an elabora-
tion of a representative musical object found in the deeper

c© Ryan Groves. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Ryan
Groves. “Automatic Melodic Reduction Using a Supervised Probabilistic
Context-Free Grammar”, 17th International Society for Music Informa-
tion Retrieval Conference, 2016.

levels of reduction. The particular categories of ornamen-
tation that were used in his reductive analysis were neigh-
bor tones, passing tones, repetitions, consonant skips, and
arpeggiations. Given a sequence of notes that can be iden-
tified as a particular ornamentation, an analyst can remove
certain notes in that sequence so that only the more impor-
tant notes remain.

In the 1980s, another theory of musical reduction was
detailed in the GTTM [16]. The authors’ goal was to cre-
ate a formally-defined generative grammar for reducing a
musical piece. In GTTM, every musical object in a piece
is subsumed by another musical object, which means that
the subsumed musical object is directly subordinate to the
other. This differs from Schenkerian analysis, in that ev-
ery event is related to another single musical event. In
detailing this process, Lerdahl and Jackendoff begin by
breaking down metrical hierarchy, then move on to identi-
fying a grouping hierarchy (separate from the metrical hi-
erarchy). Finally, they create two forms of musical reduc-
tions using the information from the metrical and grouping
hierarchies—the time-span reduction, and the prolonga-
tional reduction. The former details the large-scale group-
ing of a piece, while the latter notates the ebb and flow of
musical tension in a piece.

Many researchers have taken the idea—inspired by
GTTM or otherwise—of utilizing formal grammars as
a technique for reducing or even generating music (see
Section 2.0.0.0.2). However, most of these approaches
were not data-driven, and those that were data-driven of-
ten utilized unsupervised learning rather than supervised
learning. A dataset for the music-theoretical analysis of
melodies using GTTM has been created in the pursuit of
implementing GTTM as a software system [13]. This
dataset contains 300 Western classical melodies with their
corresponding reductions, as notated by music theorists ed-
ucated in the principles of GTTM. Each analysis is notated
using tree structures, which are directly compatible with
computational grammars, and their corresponding parse
trees. The GTTM dataset is the corpus used for the su-
pervised PCFG detailed in this paper.

This work was inspired by previous research on a PCFG
for melodic reduction [11], in which a grammar was de-
signed by hand to reflect the common melodic movements
found in Western classical music, based on the composi-
tional rules of ornamentation. Using that hand-made gram-
mar, the researchers used a dataset of melodies to calculate
the probabilities of the PCFG using unsupervised learn-
ing. This research aims to simulate and perform the pro-

775



cess of melodic reduction, using a supervised Probabilisitic
Context-Free Grammar (PCFG). By utilizing a ground-
truth dataset, it is possible to directly induce a grammar
from the solution trees, creating the set of production rules
for the grammar and modelling the probabilities for each
rule expansion. In fact, this is the first research of its type
that seeks to directly induce a grammar for the purpose of
melodic reduction. Different data representations will be
explored and evaluated based on the accuracy of their re-
sulting parse trees. A standard metric for tree comparison
is used, and example melodic reductions will be displayed.

The structure of this paper is as follows: The next sec-
tion provides a brief history of implementations of GTTM,
as well as an overview of formal grammars used for mu-
sical purposes. Section 3 presents the theoretical founda-
tions of inducing a probabilistic grammar. Section 4 de-
scribes the data set that will be used, giving a more detailed
description of the data structure available, and the differ-
ent types of melodic reductions that were notated. Section
5 describes the framework built for converting the input
data type to an equivalent type that is compatible with a
PCFG, and also details the different data representations
used. Section 6 presents the experiment, including the
comparison and evaluation method, and the results of the
different tests performed. Section 7 provides some closing
remarks.

2. LITERATURE REVIEW

In order to reduce a melody, a hierarchy of musical events
must be established in which more important events are at
a higher level in the hierarchy. Methods that create such
a structure can be considered to be in the same space as
melodic reduction, although some of these methods may
apply to polyphonic music as well. The current section de-
tails research regarding hierarchical models for symbolic
musical analysis.

2.1 Implementing GTTM

While much research has been inspired by GTTM, some
research has been done to implement GTTM directly. Fred
Lerdahl built upon his own work by implementing a system
for assisted composition [17]. Hamanaka et al. [13] pre-
sented a system for implementing GTTM. The framework
identifies time-span trees automatically from monophonic
melodic input, and attained an f-measure of 0.60. Frank-
land and Cohen isolated the grouping structure theory in
GTTM, and tested against the task of melodic segmenta-
tion [10].

2.2 Grammars in Music

In 1979, utilizing grammars for music was already of much
interest, such that a survey of the different approaches was
in order [20]. Ruwet [21] suggested that a generative gram-
mar would be an excellent model for the creation of a
top-down theory of music. Smoliar [22] attempted to de-
compose musical structure (including melodies) from au-
dio signals with a grammar-based system.

Baroni et al. [4] also created a grammatical system for
analyzing and generating melodies in the style of Lutheran
chorales and French chansons. The computer program
would create a completed, embellished melody from an in-
put that consisted of a so-called “primitive phrase” (Baroni
et al. 1982, 208).

Baroni and Jacoboni designed a grammar to analyze and
generate melodies in the style of major-mode chorales by
Bach [5, 6]. The output of the system would generate the
soprano part of the first two phrases of the chorale.

2.3 Probabilistic Grammars

Gilbert and Conklin [11] designed a PCFG for melodic
reduction and utilized unsupervised learning on 185 of
Bach’s chorales from the Essen Folksong Collection. This
grammar was also explored by Abdallah and Gold [1], who
implemented a system in the logical probabilistic frame-
work PRISM for the comparison of probabilistic systems
applied to automatic melodic analysis. The authors im-
plemented the melodic reduction grammar provided by
Gilbert and Conklin using two separate parameterizations
and compared the results against four different variations
of Markov models. The evaluation method was based on
data compression, given in bits per note (bpn). The authors
found that the grammar designed by Gilbert and Conklin
was the best performer with 2.68 bpn over all the datasets,
but one of the Markov model methods had a very simi-
lar performance. The same authors also collaborated with
Marsden [2] to detail an overview of probabilistic sys-
tems used for the analysis of symbolic music, including
melodies.

Hamanaka et al. also used a PCFG for melodic reduc-
tion [12]. The authors used the dataset of treebanks that
they had previously created [13] to run supervised learn-
ing on a custom-made grammar that he designed, in or-
der to automatically generate time-span reduction trees.
This work is very similar to the work presented here, with
two exceptions. First, the grammar was not learned from
the data. Secondly, Hamanaka used a series of processes
on the test melodies using previous systems he had built.
These systems notated the metrical and grouping struc-
ture of the input melody, before inputting that data into
the PCFG. Hamanaka achieves a performance of 76% tree
accuracy.

2.4 Similar Methods for Musical Reduction

Creating a system that can perform a musical reduction
according to the theory of Heinrich Schenker has also
been the topic of much research. Marsden explored the
use of Schenkerian reductions for identifying variations
of melodies [19]. PCFGs have not yet been utilized for
this particular task. One notable caveat is the probabilistic
modelling of Schenkerian reductions, using a tree-based
structure [15]. Kirlin did not explicitly use a PCFG, how-
ever his model was quite similar, and also was a supervised
learning method.

776 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



3. SUPERVISED LEARNING OF A PCFG

To understand the theoretical framework of the PCFG, it
is first useful to give a brief background of formal gram-
mars. Grammars were formalized by Chomsky [8] and
extended by himself [9] and Backus et al. [3]. The def-
inition of a formal grammar consists of four parameters,
G = {N,Σ, R, S}, which are defined as follows [14]:

N a set of non-terminal symbols
Σ a set of terminals (disjoint from N)
R a set of production rules, each of the form α→ β
S a designated start symbol

Each production rule has a right-hand side, β, that rep-
resents the expansion of the term found on the left-hand
side, α. In a Context-Free Grammar (CFG), the left-hand
side consists of a single non-terminal, and the right-hand
side consists of a sequence of non-terminals and terminals.
Non-terminals are variables that can be expanded (by other
rules), while terminals are specific strings, representing el-
ements that are found directly in the sequence (for exam-
ple, the ‘dog’ terminal could be one expansion for the Noun
non-terminal). Given a CFG and an input sequence of ter-
minals, the CFG can parse the sequence, creating a hierar-
chical structure by iteratively finding all applicable rules.
Grammars can be ambiguous; there can be multiple valid
tree structures for one input sequence.

PCFGs extend the CFG by modelling the probabilities
of each right-hand side expansion for every production
rule. The sum of probabilities for all of the right-hand side
expansions of each rule must sum to 1. Once a PCFG is
calculated, it is possible to find the most probable parse
tree, by cumulatively multiplying each production rule’s
probability throughout the tree, for every possible parse
tree. The parse tree with the maximum probability is the
most likely. This process is called disambiguation.

3.1 Inducing a PCFG

When a set of parse tree solutions (called a treebank) ex-
ists for a particular set of input sequences, it is possible
to construct the grammar directly from the data. In this
process, each parse tree from the treebank will be broken
apart, so that the production rule at every branch is isolated.
A grammar will be formed by accumulating every rule that
is found at each branch in each tree, throughout the en-
tire treebank. When a rule and its corresponding expan-
sions occurs multiple times, the probabilities of the right-
hand side expansion possibilities are modelled. Inducing a
PCFG is a form of supervised learning.

4. GTTM DATASET

The GTTM dataset contains the hierarchical reductions
(trees) of melodies in an Extensible Markup Language
(XML) representation.

There are two different types of reduction trees that are
created with the theories in GTTM: time-span reduction
trees, and prolongational reduction trees. The time-span

(a) (b)

(c)

Figure 1: The prolongational tree (a) and the time-span
tree (b) for the second four notes in Frédéric Chopin’s
“Grande Valse Brillante”, as well as the score (c). The in-
tervals between notes are notated in number of semitones.

reduction is built upon the grouping structure analysis pro-
vided in GTTM, which in turn uses the metrical structure
analysis to influence its decision-making. Time-span re-
duction trees are generally more reliant on the metrical in-
formation of a piece, since it utilizes the grouping structure
directly. The prolongational reductions are designed to no-
tate the ebb and flow of tension and progression in a piece.
In fact, in GTTM, the prolongational reductions use time-
span reduction trees as a starting point, but then build the
branching system from the top, down, based on pitch and
harmonic content in addition to the time-span information.

An example helps to detail their differences. Figure
1 shows a particular phrase from one of the melodies in
the GTTM dataset: Frédéric Chopin’s “Grande Valse Bril-
lante” [13]. The note labelled P1-2-2 is attached to the
last note of the melody in the prolongational reduction, be-
cause of the passing tone figure in the last 3 notes, whereas
the time-span tree connects note P1-2-2 to the first note of
the melody, due to its metrical strength and proximity.

The entire dataset consists of 300 melodies, with anal-
yses for each. However, the prolongational reduction trees
are only provided for 100 of the 300 melodies, while the
time-span trees are provided for all 300 melodies. The pro-
longational reductions require the annotations of the un-
derlying harmony. Likewise, there are only 100 harmonic
analyses in the dataset.

5. FORMING THE PCFG

Gilbert and Conklin decided to model the relevant charac-
teristics of the data by hand, by manually creating grammar
rules that represented the music composition rules of orna-
mentation [11]. The melodic embellishment rules included
in their grammar were the following: passing tone, neigh-
bor tone, repeated tone, and the escape tone. Additionally,
they created a “New” rule which was a kind of catch-all
for any interval sequence that could not be described by
the other rules. In order for the rules to be applicable at

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 777



Figure 2: A visualization of a set of melodic embellish-
ment rules, encoded manually into the production rules of
a formal grammar [11, 3].

any pitch location, the fundamental unit of data was the in-
terval between two notes, rather than two separate values
for each note. The complete ruleset is shown in Figure 2.

When learning a grammar directly from a dataset of
annotations, the most important decision to make is the
data representation. The representation chosen should be
able to capture the most relevant characteristics of the data.
Similar to Gilbert and Conklin, each rule modelled two
consecutive intervals in a sequence of three notes, and had
the following form (notes labelled as n1 through n3):

intervaln1,n3 → intervaln1,n2 intervaln2,n3 (1)

The motivation was that melodic rules often involve a
sequence of 3 notes. This is true for the passing tone,
neighbor tone, and the escape tone. The repetition rule
would normally require only two notes, however to keep
a consistent format, repetitions were only reduced when
three consecutive notes of the same pitch were found,
which were then reduced to two notes of the same pitch
(creating one interval). The “New” rule was no longer
needed, since the model learns the rules directly from the
training data. This form of one interval expanding into
two consecutive intervals for the grammatical rules was
adopted for this research.

5.1 A Framework for Converting Trees

Utilizing a representation that required a sequence of two
intervals in every right-hand expansion presented a prob-
lem, because the GTTM reduction trees were in a format
that associated pairs of notes at each branch intersection—
not the three consecutive notes required for the two con-
secutive intervals. Given this challenge, a framework was
developed to convert the note representation of the GTTM
data into the interval notation desired, and to build the cor-
responding tree structure using the interval representation.

An example GTTM tree is shown in Figure 3. Note that
at the end of every branch is a single note. An algorithm
was developed to allow the conversion of these note-based
trees to any interval representation desired, based on a se-
quence of 3 notes. The algorithm traverses the tree from

Figure 3: The prolongational reduction tree for half of
the first melody in the GTTM dataset, Frédéric Chopin’s
“Grande Valse Brillante”, as displayed in the GTTM visu-
alizer provided by Hamanaka, Hirata, and Tojo [13].

Figure 4: A depiction of the process for converting a tree
that uses a note representation to a tree that uses an inter-
val representation, by traversing the tree breadth-wise and
relating sets of 3 notes.

the top, down, in a breadth-wise fashion. At each level of
depth, the sequence of notes at that depth are broken into
sets of 3 consecutive notes, and their intervals are com-
puted. The framework allows for any interval-based rep-
resentation to be applied. For example, it could be regular
pitch intervals, inter-onset interval (IOI), difference in met-
ric prominence, or even representations that consider the
notes’ relationships to scale and harmony. Figure 4 high-
lights the breadth-wise traversal process.

The framework was built in Python. It takes a function
as input, which allows the user to define unique interval
representations. When the function is called during the tree
conversion process, the information available for defining
the representation consists of the two notes (which contain
duration, onset and pitch information), the current key, and
the current underlying harmony (if available). The interval
encoding that is returned by the function is then used as a
node in the resulting tree.

5.2 Training/Induction

The Python-based Natural Language Toolkit (NLTK) was
used for the process of PCFG induction [18]. Given a tree-
bank of solutions, the process for inducing a PCFG is de-
scribed as follows. For every tree in the treebank, traverse
through the tree to identify each branching location. For
every branching location, create a rule with the node la-
bel as the left-hand side, and the children as the right-hand
side. Collect the set of rules found at every branch of ev-
ery tree in the treebank, and pass that list of production
rule instances into NLTK’s induce pcfg function. The in-
duce pcfg function will catalogue every rule, and build up
a grammar based on those rules. It will also model the

778 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



probability of each rule’s unique expansions.

5.3 Data Representations

For the representation of intervals between two consecu-
tive notes, this research focused on a few certain musical
attributes. These attributes were tested first in isolation,
and then in combination. The following descriptions relate
to the attributes labelled in the results table (the key for
each attribute is given in parentheses following the name).

Pitch The difference in pitch between two notes was
a part of every data representation tested. However, the
encodings for these pitch values varied. Initially, a simple
pitch-class representation was used. This allowed pitch in-
tervals at different points in the musical scale to be grouped
into the same production rules. It was assumed that di-
rection of pitch would also be an important factor, so the
Pitch-Class (PC) attribute allowed the following range of
intervals: [-11, 11]. Melodic embellishment rules often
apply to the same movements of intervals within a musi-
cal scale. For this reason, the Key-Relative Pitch-Class
(KPC) was also used, which allowed a range of intervals
from [-7, 7], measuring the distance in diatonic steps be-
tween two consecutive notes.

Metrical Onset For encoding the metrical relation-
ships between two notes, the metric delta representation
was borrowed from previous research [11]. This metric
delta assigns every onset to a level in a metrical hierarchy.
The metrical hierarchy is composed of levels of descending
importance, based on their onset location within a metrical
grid. The onsets were assigned a level based on their clos-
est onset location in the metrical hierarchy. This metrical
hierarchy was also used in GTTM for the metrical structure
theory [16].

Because the GTTM dataset contains either 100 or 300
solutions (for prolongational reduction trees and time-span
trees, respectively), the data representations had to be de-
signed to limit the number of unique production rules cre-
ated in the PCFG. With too many production rules, there
is an increased chance of production rules that have a zero
probability (due to the rule not existing in the training set),
which results in the failure to parse certain test melodies.
Therefore, two separate metrical onset attributes were cre-
ated. One which represented the full metrical hierarchy,
named Metric Delta Full (Met1), and one which repre-
sented only the change in metric delta (whether the met-
ric level of the subsequent note was higher, the same, or
lower than the previous note), named Metric Delta Re-
duced (Met0).

Harmonic Relationship This research was also de-
signed to test whether or not the information of a note’s
relationship to the underlying harmony was useful in the
melodic reduction process. A Chord Tone Change (CT)
attribute was therefore created, which labelled whether or
not each note in the interval was a chord tone. This created
four possibilities: a chord tone followed by a chord tone, a

chord tone followed by a non-chord tone, a non-chord tone
followed by a chord tone and a non-chord tone followed by
a non-chord tone. This rule was designed to test whether
harmonic relationships affected the reduction process.

6. THE EXPERIMENT

Given a method for creating a treebank with any interval-
based data representation from the GTTM dataset and in-
ducing the corresponding PCFG, an experiment was de-
signed to test the efficacy of different data representa-
tions when applied to the process of melodic reduction.
This section details the experiment that was performed.
First, different representations that were tested are pre-
sented. Then, the comparison and evaluation method are
described. Finally, the results of cross-fold evaluation for
the PCFG created with each different data representation
are shown.

6.1 Comparison

The comparison method chosen was identical to the meth-
ods used in other experiments of the same type, in which
the output of the system is a tree structure, and the tree so-
lutions are available [13, 15]. First, for a given test, the
input melody is parsed, which yields the most probable
parse tree as an output. The output trees are then com-
pared with the solution trees. To do so, the tree is simply
traversed, and each node from the output tree is compared
for equivalence to the corresponding node in the solution
tree. This method is somewhat strict, in that mistakes to-
wards the bottom of the tree will be propagated upwards,
so incorrect rule applications will be counted as incorrect
in multiple places.

6.2 Evaluation

Cross-fold evaluation was used to perform the evaluation.
The entire treebank of solutions were first partitioned into 5
subsets, and 1 subset was used for the test set in 5 iterations
of the training and comparison process. The results were
then averaged. In order to keep consistency across data
representations, the same test and training sets were used
for each cross-validation process.

6.3 Results

Each data representation that was selected was performed
on both the set of time-span reduction trees and the set of
prolongational reduction trees, when possible. As men-
tioned previously, the set of prolongational reduction trees
amounted to only 100 samples, while the time-span trees
amounted to 300. In some situations, the data representa-
tion would create too many unique production rules, and
not all the test melodies could be parsed. All of the data
representations in the results table had at least a 90% cov-
erage of the test melodies, meaning that at least 90% of the
tests could be parsed and compared. There are also two
data representations that use time-span trees with the har-
monic representation. For these tests, the solution set con-
tained only 100 samples as opposed to the usual 300 for

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 779



time-span trees, since there is only harmonic information
for 100 of the 300 melodies.

Tree- % nodes
type PC KPC Met1 Met0 CT correct
TS X 35.33
PR X 38.57
TS X X 40.40
PR X X 38.50
TS X X 44.12
PR X X 46.55
TS X X X 44.80
PR X X X 46.74

These results mostly progress as one might expect.
Looking at only the tests done with time-span trees, the re-
sults improve initially when using the Key-Relative Pitch-
Class encoding for pitch intervals paired with the Chord
Tone Change feature; it received a 5% increase as com-
pared with the PCFG that only used the Pitch-Class fea-
ture (which could be considered a baseline). It gained an
even bigger increase when using the Metric Delta Full
feature, an almost 9% increase in efficacy compared with
the Pitch-Class test. Combining metric and chord features
with the Key-Relative Pitch-Class encoding did not pro-
vide much further gain that with the metric feature alone.
The prolongational reduction also improved when given
the metric delta information, however the harmonic rela-
tionship feature affected the outcome very little.

The best performing PCFG was induced from the pro-
longational reduction trees, and used a data representa-
tion that included the Key-Relative Pitch-Class encod-
ing combined with both the simplified metric delta and the
chord tone information.

It is possible that the lack of data and the subsequent
limitation on the complexity of the data representation
could be avoided by the use of probabilistic smoothing
techniques (to estimate the distributions of those rules that
did not exist in the training set) [14, 97]. Indeed, the use of
the Key-Relative Pitch-class feature as the basis for most
of the representations was an attempt to limit the num-
ber of resulting rules, and therefore the number of zero-
probability rules. This would be an appropriate topic for
future experimentation.

A specific example helps to illustrate both the effec-
tiveness and the drawbacks of using the induced PCFG
for melodic reduction. Figure 5 displays the iterative re-
ductions applied by pruning a PCFG tree, level by level.
The grammar used to create this reduction was trained
on prolongational reduction trees, and included the Key-
Relative Pitch-class intervals, with notations for the Met-
ric Delta Reduced feature, and the Chord Tone Change
feature. This PCFG was the best performing, according to
the evaluation metric. From a musicological perspective,
the PCFG initially makes relatively sound decisions when
reducing notes from the music surface. It is only when it
begins to make decisions at the deeper levels of reduction
that it chooses incorrect notes as the more important tones.

Figure 5: A set of melodies that show the progressive re-
ductions, using the data representation that includes key-
relative pitch-class, metric delta and chord tone features.

7. CONCLUSION

This research has performed for the first time the induction
of a PCFG from a treebank of solutions for the process of
melodic reduction. It was shown that, for the most part,
adding metric or harmonic information in the data repre-
sentation improves the efficacy of the resulting probabilis-
tic model, when analyzing the results for the model’s abil-
ity to reduce melodies in a musically sound way. A specific
example reduction was generated by the best-performing
model. There is still much room for improvement, be-
cause it seems that the model is more effective at identi-
fying melodic embellishments on the musical surface, and
is not able to identify the most important structural notes
at deeper layers of the melodic reductions. The source
code for this work also allows any researcher to create
their own interval representations, and convert the GTTM
dataset into a PCFG treebank.

There are some specific areas of improvement that
might benefit this method. Currently there is no way to
identify which chord a note belongs to with the grammar—
the harmonic data is simply a boolean that describes
whether or not the note is a chord tone. If there were a
way to identify which chord the note belonged to, it would
likely help with the grouping of larger phrases in the re-
duction hierarchy. For example, if a group of consecutive
notes belong to the same underlying harmony, they could
be grouped together, which might allow the PCFG to bet-
ter identify the more important notes (assuming they fall
at the beginning or end of phrases/groups). Beyond that, it
would be greatly helpful if the sequences of chords could
be considered as well. Furthermore, there is no way to ex-
plicitly identify repetition in the melodies with this model.
That, too, might be able to assist the model, because if it
can identify similar phrases, it could potentially identify
the structural notes on which those phrases rely.

The source code for this research is available to the pub-
lic, and can be found on the author’s github account 1 .

1 http://www.github.com/bigpianist/SupervisedPCFG MelodicReduction

780 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



8. REFERENCES

[1] Samer A. Abdallah and Nicolas E. Gold. Comparing
models of symbolic music using probabilistic gram-
mars and probabilistic programming. In Proceedings of
the International Computer Music Conference, pages
1524–31, Athens, Greece, 2014.

[2] Samer A. Abdallah, Nicolas E. Gold, and Alan Mars-
den. Analysing symbolic music with probabilistic
grammars. In David Meredith, editor, Computational
Music Analysis, pages 157–89. Springer International,
Cham, Switzerland, 2016.

[3] John W. Backus. The syntax and semantics of the pro-
posed international algebraic language of the Zurich
ACM-GAMM conference. In Proceedings of the Inter-
national Conference for Information Processing, pages
125–31, Paris, France, 1959.

[4] Mario Baroni, R. Brunetti, L. Callegari, and C. Ja-
coboni. A grammar for melody: Relationships between
melody and harmony. In Mario Baroni and L Calle-
gari, editors, Musical Grammars and Computer Anal-
ysis, pages 201–18, Florence, Italy, 1982.

[5] Mario Baroni and C. Jacobini. Analysis and generation
of Bach’s chorale melodies. In Proceedings of the In-
ternational Congress on the Semiotics of Music, pages
125–34, Belgrade, Yugoslavia, 1975.

[6] Mario Baroni and C. Jacoboni. Proposal for a gram-
mar of melody: The Bach Chorales. Les Presses de
l’Université de Montréal, Montreal, Canada, 1978.

[7] David Beach. A Schenker bibliography. Journal of Mu-
sic Theory, 13(1):2–37, 1969.

[8] Noam Chomsky. Three models for the description of
language. Institute of Radio Engineers Transactions on
Information Theory, 2:113–24, 1956.

[9] Noam Chomsky. On certain formal properties of gram-
mars. Information and Control, 2(2):137–67, 1959.

[10] B. Frankland and Annabel J. Cohen. Parsing of
melody: Quantification and testing of the local group-
ing rules of Lerdahl and Jackendoff’s “A generative
theory of tonal music”. Music Perception, 21(4):499–
543, 2004.

[11] Édouard. Gilbert and Darrell Conklin. A probabilistic
context-free grammar for melodic reduction. In Pro-
ceedings for the International Workshop on Artificial
Intelligence and Music, International Joint Conference
on Artificial Intelligence, pages 83–94, Hyderabad, In-
dia, 2007.

[12] Masatoshi Hamanaka, K. Hirata, and Satoshi Tojo.
σGTTM III: Learning based time-span tree genera-
tor based on PCFG. In Proceedings of the Symposium
on Computer Music Multidisciplinary Research, Ply-
mouth, UK, 2015.

[13] Masatoshi Hamanaka, Keiji Hirata, and Satoshi Tojo.
Implementing “A generative theory of tonal music”.
Journal of New Music Research, 35(4):249–77, 2007.

[14] Daniel Jurafsky and James H. Martin. Speech and
language processing: An introduction to natural
language processing, computational linguistics, and
speech recognition. Prentice Hall, Upper Saddle River,
NJ, 1st edition, 2000.

[15] Phillip B. Kirlin. A probabilistic model of hierarchi-
cal music analysis. Ph.D. thesis, University of Mas-
sachusetts Amherst, Amherst, MA, 2014.

[16] Fred Lerdahl and Ray Jackendoff. A generative theory
of tonal music. The MIT Press, Cambridge, MA, 1983.

[17] Fred Lerdahl and Yves Potard. La composition as-
sistée par ordinateur. Rapports de recherche. Insti-
tut de Recherche et Coordination Acoustique/Musique,
Centre Georges Pompidou, Paris, France, 1986.

[18] Edward Loper and Steven Bird. NLTK: The natural
language toolkit. In Proceedings of the Workshop on
Effective Tools and Methodologies for Teaching Natu-
ral Language Processing and Computational Linguis-
tics, volume 1, pages 63–70, Stroudsburg, PA, 2002.

[19] Alan Marsden. Recognition of variations using auto-
matic Schenkerian reduction. In Proceedings of the
International Conference on Music Information Re-
trieval, pages 501–6, Utrecht, Netherlands, August 9-
13 2010.

[20] Christopher Roads and Paul Wieneke. Grammars as
representations for music. Computer Music Journal,
3(1):48–55, March 1979.

[21] Nicolas Ruwet. Theorie et methodes dans les etudes
musicales. Musique en Jeu, 17:11–36, 1975.

[22] Stephen W. Smoliar. Music programs: An approach to
music theory through computational linguistics. Jour-
nal of Music Theory, 20(1):105–31, 1976.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 781


