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ABSTRACT

With public data sources such as Million Song dataset, re-
searchers can now study longitudinal questions about the
patterns of popular music, but the scale and complexity
of the data complicate analysis. We propose MusicDB, a
new approach for longitudinal music analytics that adapts
techniques from relational databases to the music setting.
By representing song timeseries data relationally, we aim
to dramatically decrease the programming effort required
for complex analytics while significantly improving scal-
ability. We show how our platform can improve perfor-
mance by reducing the amount of data accessed for many
common analytics tasks, and how such tasks can be imple-
mented quickly in relational languages — variants of SQL.
We further show that expressing music analytics tasks over
relational representations allows the system to automati-
cally parallelize and optimize the resulting programs to im-
prove performance. We evaluate our system by expressing
complex analytics tasks including calculating song density
and beat-aligning features and showing significant perfor-
mance improvements over previous results. Finally, we
evaluate expressiveness by reproducing the results from a
recent analysis of longitudinal music trends using the Mil-
lion Song dataset.

1. INTRODUCTION

Over the past decade, a concerted investment in building
systems to help extract knowledge from large, noisy, and
heterogeneous datasets — big data — has had a transfor-
mative effect on nearly every field of science and industry.
Progress has also been fueled by the availability of pub-
lic datasets (e.g., the Netflix challenge [1], early releases
of Twitter data [14], Google’s syntatic n-grams data [7],
etc.), which have focused and accelerated research in both
domain science and systems. The field of Music Infor-
mation Retrieval (MIR) appears to been less affected, as
complications from copyright-encumbered properties have
limited the introduction of big datasets to the community.
Now, however, such datasets are finally making their way
into the field.

In other fields we have observed that as the data size
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and scope of problems increased, issues of scale became
the bottleneck: single-site solutions written in R or python
give way to distributed shared-nothing systems that can
readily handle large datasets. These systems relieve the
user of worrying about issues such as memory manage-
ment, concurrency and distributed computing by focusing
on limited data models and APIs. General purpose systems
such as Hadoop [21] and Spark [22] provide MapReduce-
style dataflow computations [4], but can be hard to pro-
gram and optimize because of their generality and rela-
tively low-level interfaces. Increasingly, programmers are
experimenting with the models and languages of relational
databases [11,12,17] for non-relational analytics over time-
series, graphs, images, and more due to their higher-level
programming abstractions, simpler data models, and auto-
matic optimization.

In this paper, we propose a platform for longitudinal
music analytics built on a relational big data system. Be-
cause music data (which may include multi-dimensional
arrays and timeseries of extracted features) is ostensibly
not relational upon collection, we describe a ”relationaliza-
tion” of the data to afford distributed, parallel processing.
Then, we present four algorithms found in music analytics
tasks in the MIR literature and show that they can be ex-
pressed in declarative relational languages similar to SQL,
affording scalability, portability, and automatic optimiza-
tion, and freeing the programmer from systematic concerns
related to memory management, concurrency, and distributed
processing. The four algorithms are song density, feature
beat-alignment, pitch keyword distribution by year, and
timbre keyword distribution by year. The first two algo-
rithms are common music analysis tasks, and the latter two
are highly computational algorithms presented in a high
profile MIR study over the Million Song Data set [20]. We
reproduce prior results with only a few lines of code and
a significant performance improvement over prior experi-
ments on similar large-scale systems.

We propose our model as an approach for platforms to
raise the level of abstraction for longitudinal music analyt-
ics and reduce the barrier to entry for researchers in musi-
cology and sociology.

1.1 Million Song Dataset

The key dataset used in our experiments is the The Million
Song Dataset (MSD) [3]. The dataset includes metadata
and extracted features from one million pop music songs
from a period of decades, including information such as
genre tags, chroma measurements, timbre and loudness
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measurements, detected beats, artist and song metadata such
as year, duration and location, and many other attributes.
This dataset has been highly influential in the MIR commu-
nity, leading to the Million Song Dataset Challenge [16],
as well as being a key data set used to study music history
[20] and MIR tasks such as cover song detection [2, 10].
The MSD is available as available as a large collection of
HDF5 [5] files; at over 250GB even when heavily com-
pressed, it is the largest public dataset in MIR and is the
first true “Big Data” dataset in the field.

The MSD is available in a number of formats, including
a relational database. However, the database representa-
tion include the metadata only, and cannot be used for the
content-based longitudinal analytics tasks we aim to sup-
port with MusicDB.

2. RELATED WORK

Serra et al. provide a longitudinal analysis of music trends
in popular music by utilizing the MSD [20] . The au-
thors study the chroma, timbre, and loudness components
of the MSD and find that the frequency of chroma key-
words (which can be thought of as single notes, chords,
etc) fit a power law distribution which is mostly invariant
across time. However, the authors also find that transi-
tions from one keyword to the next have become more uni-
form over time, suggesting less complexity in newer mu-
sic. They also describe shifting trends in timbre and loud-
ness, including numerical evidence that recorded music is
increasingly louder on average. In Section 4 we describe
these tasks in detail and present new algorithms for them
using MusicDB. In Section 5 we evaluate our approach ex-
perimentally.

Raffek and Ellis analyzed MIDI files and matched them
to corresponding songs in the MSD [18] . Their algorithm
is fast but is not distributed; they estimate that running their
approach on roughly 140k MIDI files against the MSD
would take multiple weeks even when parallelized on their
multi-threaded processor with 12 threads.

Bertin-Mahieux and Ellis described a method for find-
ing cover songs in the MSD [2]. The method begins with
an aggressive filtering step, which requires computing jump-
codes for the entire MSD and storing them in a SQLite
database. Once the number of potential matches for a new
song is filtered, a more accurate matching process is run
to find cover songs. Using three cores, they computed
the jumpcodes for the entire MSD in roughly three days,
although matching cover songs once the jumpcodes are
computed takes roughly a second per new song. The au-
thors also mention that the jumpcodes had to be stored in
many different SQLite tables, as they were unable to index
roughly 1.5M codes in a single table. MusicDB provides
a platform that can process the data directly, in parallel,
without specialized engineering.

Humphrey, Nieto, and Bello also provide a method to
detect cover songs [10]. Their method starts by transform-
ing beat-aligned chroma of a song into a high-dimensional,
sparse representation by projecting its 2D Fourier Magni-
tude Coefficients. They then use PCA to reduce dimen-

sionality and use the results to find cover songs using a
distance function. The authors claim that using ten threads
on a machine with “plenty of RAM”, various methods can
take between 3-8 hours to complete this computation on
the MSD.

Hauger et al. describe the million musical tweets dataset
(MMTD) [9] collected from tweets with information about
a user’s location and what they were listening to at a certain
time. This dataset, as well as others, can be used to aug-
ment the MSD for new MIR tasks. As it exists, the MSD
is available as a directory hierarchy with hundreds of gi-
gabytes of HDF5 files stored on AWS. Incorporating new
data in analysis tasks over this dataset requires additional
effort in the analysis pipeline, leaving either the authors of
the data or the users of the data to write new code to han-
dle the new data source and manually join it with the MSD.
MusicDB provides a scalable substrate for such integration
tasks.

3. DATA MODEL

A key step in efficiently analyzing the MSD is to repre-
sent its information in an appropriate data model. The rep-
resentation of the MSD available on the website (on mil-
lion HDF5 files) support efficient lookup by ID, but any
more complex processing requires custom programs to be
written, and parallelization, concurrency, distribution, and
memory management are all the direct responsibility of the
programmer. Moreover, tasks that require only a portion of
metadata from each song must still access and load all song
data from disk.

Instead, we can organize the music data as sets of records.
In practice, this ”relationalization” of timeseries and mul-
tidimensional data can significantly increase the size of the
dataset. In our work, the end size of our relationalized
data is roughly 500GB, about twice as large as the orig-
inal dataset. However, all applications we have observed
do not require the entire MSD, and the subset of relation-
alized data necessary for computation is much smaller than
the entire MSD in HDF5 format. Further, representing the
data as a set of records affords automatic partitioning and
parallel processing, as we will see.

The steps to relationalization are as follows:

• Metadata that appears only once per song is inserted
into one table (songs), with song ID as the key. This
includes fields such as song duration, artist name,
song name, etc.

• Nested fields are represented in separate tables, re-
taining a foreign key to the songs table. To repre-
sent the order within the nested field, an additiona
column is added. For example, each song segment
is represented as a record (song id, segment number,
value, where segment number explicitly encodes the
implicit order in the original array. This additional
field is one source of the space overhead we find in
practice.
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• We use additional tables to support specific compo-
nents of the MSD, including a separate table for each
of the following: beat-aligned chroma features, beat-
aligned timbre features, and beat-aligned chroma fea-
tures that have been transposed such that most songs
are in C major or C minor.

table key arity non-key fields
songs song id 33 duration, key,

tempo, etc
segments song id,

seg num
31 timbre, loudness,

and pitch measure-
ments

mbtags song id, tag 3 tag count
bars song id,

bar num
4 bar start and confi-

dence
beats song id,

beat num
4 beat start and confi-

dence
sections song id, sec-

tion id
4 section start and

confidence
terms song id,

term
4 term frequency and

weight
tatums song id,

tatum num
4 tatum start and con-

fidence
similar
artists

song id,
artist id,
simi-
lar artist id

3 N/A

Table 1. Core tables after relationalization of the MSD.
Additional tables may be created, such as beat aligned fea-
tures.

4. ALGORITHMS

We describe four algorithms for scalable analysis of the
relationalized MSD dataset. The first two algorithms are
common MIR tasks, and the latter two come from an influ-
ential study using the MSD [20].

4.1 Song Density

In 2011, Lamere described a Hadoop-based approach for
calculating song density from the MSD [15]. A song’s
density is defined as the number of detected segments di-
vided by the duration of the song in seconds. To calculate
this metric for every song in the MSD, Lamere provides
a MapReduce [4] algorithm that scans each song, extracts
the segments, and computes the density. The map function
was written in Java specifically for this purpose.

This task can be expressed directly with no custom gen-
eral purpose code in SQL. In MusicDB, song density for a
single song can be expressed as a simple count query over
the segments table, followed by a join with the songs table
and division by song duration. This method generalizes to
the following query (in an imperative dialect of SQL used
by the Myria system [8]) that computes the density for all
songs.

Query 1. Lines 1-2 scan the relevant relations. Lines 4-
7 count the number of segments per song and lines 8-14
calculate the density by dividing the number of segments
by the duration in seconds. Line 15 stores the result.

1 segments = SCAN(SegmentsTable);
2 songs = SCAN(SongsTable);
3 -- implicit GROUP BY song_id
4 seg_count = SELECT
5 song_id,
6 COUNT(segment_number) AS c
7 FROM segments;
8 density = SELECT
9 songs.song_id,

10 (seg_count.c /
11 songs.duration) AS density
12 FROM songs, seg_count
13 WHERE songs.song_id =
14 seg_count.song_id;
15 store(song_density);

4.2 Beat-aligning features

While chroma and timbre data in the MSD are provided on
a per-segment basis, it is often more useful to align these
features to beats, which are easier to interpret musically.
Beat-aligning these features is an extremely common and
useful processing step that is used in cover song detec-
tion [2], longitudinal music studies [20], and many other
MIR tasks, and is therefore a useful task to consider for
MusicDB.

In 2011, Serra identifies dynamic time warping as one
of the best methods for beat-alignment [19]. Dynamic time
warping involves creating an SxB matrix, where S is the
number of segments of a song and B is the number of
beats. If a segment s overlaps with a beat b, the b, s entry
of the matrix is set to the fraction of the segment contained
in the beat (i.e. 1 if the segment falls entirely in the beat,
.5 if the beat contains exactly half of the segment, etc). All
other entries are set to 0, and then the rows are normalized
such that each row of values sums to 1. Segment-based
features such as chroma or timbre can then be beat-aligned
by transposing the beat matrix and performing matrix mul-
tiplication on the features (a BxS matrix multiplied by
a SxF matrix will result in a BxF matrix, where F is
the number of features). Some additional regularization of
rows is performed for chroma features.

In a relational system, the time warp operation can be
computed using just two operations: a join and an aggre-
gation. We first join the segments and beats table on the
start and end time of each segment and bar, such that over-
lapping segments and beats are joined:

Query 2. Portion of a query that joins overlapping seg-
ments and beats of a song so that beat aligned features can
be computed.

1 JOIN segments, beats WHERE
2 -- segment overlaps start of beat
3 (seg_start <= beat_start
4 AND seg_end <= beat_start)
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5 OR
6 -- segment overlaps end of beat
7 (seg_start < beat_end
8 AND seg_end >= beat_end)
9 OR

10 -- segment fully inside beat
11 (seg_start > beat_start
12 AND seg_end < beat_end)
13 OR
14 -- beat fully inside segment
15 (seg_start < beat_start
16 AND seg_end > beat_end)
17 ;

We can then perform two aggregations on the result,
and re-join the aggregate queries to perform an operation
identical to multiplying the features by a time warp matrix.
Refer to Figure 1, which visualizes this query. In each ag-
gregation, we will calculate the fraction of a segment that
falls within a beat, which is defined as the length of the
segment that falls within the beat divided by the length of
the segment (or 1.0 if the segment spans the beat).

On the right side of the diagram, we compute the first
aggregation. We use the fraction of the segment that falls
within a beat to scale each feature of that segment (i.e.
chroma or timbre features), and then take the sum of the
scaled features per beat.

On the left side of the diagram, we perform a second
aggregate which simply computes the sum of the segment
fractions for each beat. We call this sum the divisor.

The two aggregates are then re-joined on beat id and the
weighted sum from the first aggregate is normalized by di-
viding each value by the sum from the second aggregate.
This divisor serves the same function as making sure rows
of the time warp matrix sum to 1. The result of the joined
aggregates is a table with the schema (song id, beat id, fea-
ture columns), which is a relational representation of the
BxF feature matrix described above.

This algorithm, while correct, is not necessarily opti-
mal. Specifically, performing two aggregates over the same
joined relation and then re-joining is an expensive opera-
tion. Relational engines that support window functions of-
fer an alternative approach. A window function makes a
single pass over a dataset, applying an aggregation over
each window as defined by a grouping value or a fixed
size. The engine on which MusicDB is based (a variant
of the Myria system [8]) provides a generalization of win-
dow functions, but we do not employ that mechanism here
to ensure reuse across platforms.

4.3 Pitch Keyword Distribution by Year

In 2012, Serra et al studied the progression of chroma key-
words over time [20]. The authors form these keywords by
transposing every song to an equivalent main tonality by
correlating to tonal profiles provided by [13]. After that,
the beat-aligned chroma values are discretized to binary
values (1 if the value is greater than 0.5, 0 otherwise) and
then concatenated. Intuitively, this discretization repre-
sents whether or not a certain pitch is present or not. These

Figure 1. The relational algebra expression for beat-
aligning features from segments. Segments and beats from
a song are joined on song ID and overlap conditions. Two
aggregations are performed and rejoined to form a table
with features now aligned to beats instead of segments.
The process of generated two results and joining them can
be costly and can be aided by using window functions pro-
vided in many database systems.

keywords can then be summed over years and used to fit a
distribution. The authors show that these chroma keywords
fit a power law which has variables that are near invariant
over time.

The discretization and sum of keywords can be imple-
mented using our data model by the following SQL-like
program:

Query 3. Lines 1-2 scan the appropriate tables. Lines 4-19
(with some lines emitted) create an integer keyword based
on the value of each pitch column. Lines 21-26 count key-
words by year and line 28 stores the result.

1 songs = SCAN(SongsTable);
2 pitch = SCAN(PitchTransposed);
3

4 keywords = SELECT
5 p.song_id AS song_id,
6 p.beat_number AS beat_number,
7 CASE WHEN p.basis0 >= 0.5
8 THEN int(pow(2, 11))
9 ELSE 0

10 END
11 +
12 CASE WHEN p.basis1 >= 0.5
13 THEN int(pow(2, 10))
14 ELSE 0
15 END
16 +
17 ...
18 AS keyword
19 FROM pitch p;
20

21 -- implicit GROUP BY year, keyword
22 yearPitchKeywords = SELECT
23 s.year, k.keyword,
24 count(k.keyword)
25 FROM songs s, keywords k
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26 WHERE s.song_id = k.song_id;
27

28 store(yearPitchKeywords);

4.4 Timbre Keyword Distribution by Year

Similar to the pitch keywords in Section 4.3, the timbre
values from the MSD can be discretized and studied over
time. Serra et al sample timbre values from by year such
that no year is more represented from than any other [20].
From this sample set, they estimate the tertiles for each
timbre value. The tertile values are then used to discretise
the timbre values similarly to the pitch keywords. For each
timbre column, the value is converted to a 0 if it is less than
the first tertile, 1 if it is less than the second tertile, and 2
otherwise; concatenating these values makes one timbre
keyword.

The authors fit power laws to the timbre keywords as
before. However, they find that the power law distributions
significantly differ over time. They conclude that while
the chroma distribution appears to be time invariant, timbre
information (which encodes many complex factors such as
instrument use, tone, and production style) has changed
over time; additionally, the authors find that while there
are local shifts in timbre values, the distribution is slowly
converging.

The query for finding timbre keywords is similar to the
query in Section 4.3, but slightly more complex. It requires
access to a quantiles function that takes a quantile constant
and a column, and returns an integer representing which
quantile a row’s column value falls in (for example, quan-
tile(3, col) returns 0 if col is in the first tertile of the values
contained in col, 1 if it in the second, and 2 if it is in the
third).

Query 4. Lines 1-2 scan the appropriate tables. Lines 4-15
(with some lines emitted) create an integer keyword based
on the tertile each timbre column falls in (the function re-
turns 0 through 2). Lines 17-22 count keywords by year
and line 24 stores the result.

1 songs = SCAN(SongsTable);
2 timbre = SCAN(TimbreBeatAligned);
3

4 keywords = SELECT
5 t.song_id as song_id,
6 t.beat_number AS beat_number,
7 int(pow(10, 11)) *
8 QUANTILE(3, t.basis1)
9 +

10 int(pow(10, 10)) *
11 QUANTILE(3, t.basis2)
12 +
13 ...
14 AS keyword
15 FROM timbre t;
16

17 -- implicit GROUP BY year, keyword
18 yearTimbreKeywords = SELECT
19 s.year, k.keyword,

20 count(k.keyword)
21 FROM songs s, keywords k
22 WHERE s.song_id = k.song_id;
23

24 store(yearTimbreKeywords);

5. EXPERIMENTAL EVALUATION

We evaluate the feasibility of our relationalized approach
by measuring the wall-clock performance of our imple-
mentation on a 72-worker cluster and comparing perfor-
mance qualitatively with reports from the literature. We
find that the entire MSD dataset can be analyzed in sec-
onds or minutes, where previous results on large-scale plat-
forms report tens of minutes and required custom code,
while smaller-scale implementations reported taking hours
or days.

5.1 Song Density

We ran the song density query described in Section 4.1 on
a MusicDB cluster with 72 worker threads. The compu-
tation takes roughly half a minute, a far cry from the 20
minutes described in [15]. These two results are not di-
rectly comparable; the example in [15] was run on virtual
machines in EC2, so the hardware, software, number of
nodes, and most other factors are not comparable. How-
ever, the Hadoop implementation required custom code,
and the underlying platform on which we implemented
these algorithms (a variant of the Myria system [8]) has
been previously shown to significantly outperform Hadoop
on general tasks.

By using a relational model to represent the MSD and
using a distributed analytics database, we can quickly ana-
lyze the MSD using a simple query and allowing the sys-
tem and optimizer handle the complexities of computation.

5.2 Pitch Keyword Distribution by Year

We ran the query described in Section 4.3 on our 72-node
production cluster of MusicDB. Computing the pitch key-
words took about three minutes, while counting keywords
by year took an additional minute. The resulting dataset
contains the frequency for each keyword per year, and has
the schema (Keyword, Year, Count) with (Keyword, Year)
as the primary key. It is small enough (< 1GB) to down-
load locally and perform more complicated statistical tasks,
such as fitting power law distributions over counts per year
as in [20].

Figures 2, 3, and 4 show the power law distributions
for pitch keywords in the years 1965, 1975, and 1985. We
confirm the author’s results [20] that the power law coeffi-
cient is invariant over time. We used the R package pow-
eRlaw [6] to perform this post-processing analysis.

The database system we used does not have complex
functions such as power law fitting, so the last step of the
computation must be performed out of the system. How-
ever, this step could be run in parallel as the data for each
year is independent. Alternatively, in a more general dis-
tributed system, the keyword counts for each year could be
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Figure 2. Power law distribution for pitch keywords from
songs released in 1965.
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Figure 3. Power law distribution for pitch keywords from
songs released in 1975.

partitioned and evaluated in a distributed manner. We did
not demonstrate this capability in this case to avoid a con-
trivance; the resulting data’s size was not large enough to
justify the approach.

6. DISCUSSION AND FUTURE WORK

Distributed analytics systems have made it easier and faster
to perform complex analysis on large datasets. In Sec-
tion 2 we briefly mentioned several recent studies using
the MSD. The authors of these studies ran experiments that
ran on single-node systems, often taking hours or days to
complete. However, most of these tasks are embarrass-
ingly parallel and could be run not only in parallel on a
single machine, but on thousands of nodes in a distributed
system. Big data systems exist to empower users to easily
analyze data in such a distributed environment. As more
large dataset become available in the MIR community, it is
no longer feasible or necessary to run single or mutli-core
algorithms locally for weeks at a time.

We have shown that representing the data in the MSD
as tables can reduce the amount of data necessary for com-
putations (for example, only reading the segment and song
tables in Section 3, and only the segment and beat tables in
Section 4.2). This works especially well in a relational sys-
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Figure 4. Power law distribution for pitch keywords from
songs released in 1985.

tem, where joining tables is a common task with many op-
timizations. However, reading and distributed less data is
helpful outside of relational systems as well. Even though
we showed that many common MIR tasks can be expressed
relationally, some tasks are still very difficult to imple-
ment in an imperative language. If a distributed system
such as Hadoop or Spark is more preferable for a given
task, relationalizing the data can still be used to reduce
the data necessary for computation in these systems. Fi-
nally, since these systems utilize higher level coding mod-
els that abstract away parallelization and distributed com-
putation, they may empower musicologists who are less
familiar with these concepts to ask quickly questions over
larger data sets.
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