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ABSTRACT

Previous works on automatic fingering decision for string
instruments have been mainly based on path optimization
by minimizing the difficulty of a whole phrase that is typ-
ically defined as the sum of the difficulties of moves re-
quired for playing the phrase. However, from a practical
viewpoint of beginner players, it is more important to min-
imize the maximum difficulty of a move required for play-
ing the phrase, that is, to make the most difficult move
easier. To this end, we introduce a variant of the Viterbi
algorithm (termed the “minimax Viterbi algorithm”) that
finds the path of the hidden states that maximizes the min-
imum transition probability (not the product of the transi-
tion probabilities) and apply it to HMM-based guitar fin-
gering decision. We compare the resulting fingerings by
the conventional Viterbi algorithm and our proposed min-
imax Viterbi algorithm to show the appropriateness of our
new method.

1. INTRODUCTION

Most string instruments have overlaps in pitch ranges of
their strings. As a consequence, such string instruments
have more than one way to play even a single note (ex-
cept the highest and the lowest notes that are covered only
by a single string) and thus numerous ways to play a whole
song. That is why the fingering decision for a given song is
not always an easy task for string players and therefore au-
tomatic fingering decision has been attempted by many re-
searchers. Previous works on automatic fingering decision
have been mainly based on path optimization by minimiz-
ing the difficulty level of a whole phrase that is typically
defined as the sum or the product of the difficulty levels
defined for each move. (The product of difficulty levels
easily reduces to the sum of the logarithm of the difficulty
levels and therefore the sum and the product do not make
any essential difference.) However, whether a string player
can play a passage using a specific fingering depends al-
most only on whether the most difficult move included in
the fingering is playable. Especially, from a practical view-
point of beginner players, it is most important to minimize

© Gen Hori, Shigeki Sagayama. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Gen Hori, Shigeki Sagayama. “Minimax Viterbi algorithm for
HMM-based Guitar fingering decision”, 17th International Society for
Music Information Retrieval Conference, 2016.

448

Shigeki Sagayama
Meiji University
sagayama@meiji.ac.jp

the maximum difficulty level of a move included in a fin-
gering, that is, to make the most difficult move easier.

The purpose of this paper is to introduce a variant of
the Viterbi algorithm [12] termed the “minimax Viterbi al-
gorithm” that finds the sequence of the hidden states that
maximizes the minimum transition probability on the se-
quence (not the product of all the transition probabilities
on the sequence) and apply it to HMM-based guitar finger-
ing decision. We employ a hidden Markov model (HMM)
whose hidden states are left hand forms of guitarists and
output symbols are musical notes, and perform fingering
decision by solving a decoding problem of HMM using
our proposed minimax Viterbi algorithm for finding the se-
quence of hidden states with the maximum minimum tran-
sition probability. Because the transition probabilities are
set to large for easy moves and small for difficult ones,
resulting fingerings “make the most difficult move easier”
as previously discussed in this section. To distinguish the
original Viterbi algorithm and our variant, we refer to the
former as the “conventional Viterbi algorithm” and to the
latter as the “minimax Viterbi algorithm” throughout the
paper.

As for automatic fingering decision, several attempts
have been made in the last two decades. Sayegh [10]
first formulated fingering decision of string instruments as
a problem of path optimization. Radicioni et al. [8] ex-
tended Sayegh [10]’s approach by introducing segmenta-
tion of musical phrase. Radisavljevic and Driessen [9] in-
troduced a gradient descent search for the coefficients of
the cost function for path optimization. Tuohy and Pot-
ter [11] first applied the genetic algorithm (GA) to guitar
fingering decision and arrangements. As for applications
of HMM to fingering decision, Hori et al. [4] applied input-
output HMM [2] to guitar fingering decision and arrange-
ment, Nagata et al. [5] applied HMM to violin fingering
decision, and Nakamura et al. [6] applied merged-output
HMM to piano fingering decision. Comparing to those pre-
vious works, the present work is new in that it introduces
“minimax paradigm” to automatic fingering decision.

The rest of the paper is organized as follows. Sec-
tion 2 recalls the conventional Viterbi algorithm and in-
troduces our proposed minimax Viterbi algorithm. Section
3 introduces a framework of HMM-based fingering deci-
sion for monophonic guitar phrases. Section 4 applies the
minimax Viterbi algorithm to fingering decision for mono-
phonic guitar phrases and evaluates the results. Section 5
concludes the paper and discusses related future works.
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2. MINIMAX VITERBI ALGORITHM

We start by introducing our newly proposed “minimax
Viterbi algorithm” on which we build our fingering deci-
sion method in the following section. First of all, we recall
the definition of HMM ! and the procedure of the conven-
tional Viterbi algorithm for finding the sequence of hidden
states that gives the maximum likelihood. Next, we mod-
ify the algorithm to our new one for finding the sequence of
hidden states that gives the maximum minimum transition
probability.

2.1 Hidden Markov model (HMM)

Suppose that we have two finite sets of hidden states ) and
output symbols O,

Q:{qlaQZa'“
02{01,02,...

7QN}7
aOK}v

and two sequences of random variables X of hidden states
and Y of output symbols,

X =(X1,Xs,...,X7),
Y =(11,Ys,...,Y7),

then a hidden Markov model M is defined by a triplet
M = (A, B,n)
where A is an N x N matrix of the transition probabilities,
A = (aij), aij = a(q;, q5) = P(Xe = ¢j| X1 = @),
B an N x K matrix of the output probabilities,
B = (bir), bir = b(gi, o) = P(Yr = ok Xt = 1),

and IT an N-dimensional vector of the initial distribution
of hidden states,

H = (71'1‘), T, = W(ql) = P(Xl = q7)
2.2 Conventional Viterbi algorithm
When we observe a sequence of output symbols 2

Yy= (y17y27"'ayT)

from a hidden Markov model M, we are interested in the
sequence of hidden states

x = (x1,29,...,27)

that generates the observed sequence of output symbols y
with the maximum likelihood,

Iy = argmax Py, x| M)
T
= argmax P(z|M)P(y|z, M)
T

T
= argzrcnax H(a(l‘t_hltt)b(ltt,yt)) (D

t=1

!'See [7] for more tutorial on HMM and its applications.

2 According to the conventional notation of the probability theory, we
denote random variables by uppercase letters and corresponding realiza-
tions by lowercase letters.

where we write a(xzg, z1) = m(x1) for convenience. The
problem of finding the maximum likelihood sequence &z,
is called “decoding problem.” Although an exhaustive
search requires iterations over the N possible sequences,
we can solve the problem efficiently using the Viterbi al-
gorithm [12] based on dynamic programming (DP), which
uses two N x T tables A = (§;;) of maximum likelihood
and U = (¢;;) of back pointers and the following four
steps.

Initialization initializes the first columns of the two tables
A and ¥ using the following formulae fori = 1,2,..., N,

di1 = 5 b(qs, y1),

i1 = 0.
Recursion fills out the rest columns of A and W using the
following recursive formulae for j = 1,2,..., N andt =
1,2,...,7-1,

Ojt41 = Ingx(éitaij) b(qj, Yet1)s

’L/Jjﬂg_;,_l = arg max(éitaij).
i

Termination finds the index of the last hidden state of the
maximum likelihood sequence &y, using the last column
of the table A,

ir = arg max d;r.
i

Backtracking tracks the indices of the hidden states of the
maximum likelihood sequence &y, from the last to the
first using the back pointers of ¥ fort =7,7—1,...,2,

T—1 = i, ¢
from which &7, is obtained as

x=q, (t=12,...,7).

2.3 Modification for minimax Viterbi algorithm

Next, we consider the problem of finding the sequence of
hidden states  with the maximum minimum transition
probability 3,

Ty = argmax  min (a(z—1, z0)b(xe,v)),  (2)
€ <t<T

1<

2

which we call “minimax decoding problem*” A naive
approach to the problem is an exhaustive search, that is,
to enumerate all the sequences of the N hidden states and
the length 7', calculate the minimum transition probability
for all the sequences, and find the one with the maximum
value, which involves iterations over N7 sequences and is
not for an actual implementation. Instead, we introduce a

3 Because the output probabilities are 0 or 1 in our application of HMM
to guitar fingering decision, the sequence &y, eventually becomes the
one with the maximum minimum transition probability, although its def-
inition (2) depends on the output probabilities as well.

4 Although the antonym “maximin” is appropriate for probability
(which is the reciprocal of difficulty), we still use “minimax” for our pro-
posed algorithm because it is appropriate for difficulty and conveys our
concept of “make the most difficult move easier.”

449



Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016

variant of the conventional Viterbi algorithm that can solve
the problem efficiently. We modify the second step of the
conventional Viterbi algorithm by replacing the term §;,a;;
with min(éit, a,J) where

. 6 (0 < aij)
mln(éztvazj) = { ai; (aij < 6it)
The modified second step is as follows.

Recursion for minimax Viterbi algorithm fills out the
two tables A and ¥ using the following recursive formulae
forj=1,2,...,Nandt =1,2,...,T-1,

djtr1 = mflx(min(@t,aij)) bi(yes1),

Vi1 = arg max(min(éit, a;j)).
K3

We modify only the second step and leave other steps un-
changed. The modified second step works as the original
one but now the element J;; keeps the value of the maxi-
mum minimum transition probability of the subsequence
of hidden states for the first ¢ observations. The term
min(d;, a;;) updates the value of the minimum transition
probability as the term d;;a;; in the conventional Viterbi
algorithm does the likelihood > .

3. FINGERING DECISION BASED ON HMM

We implement automatic fingering decision based on an
HMM whose hidden states are left hand forms and output
symbols are musical notes played by the left hand forms.
In this formulation, fingering decision is cast as a decod-
ing problem of HMM where a fingering is obtained as a
sequence of hidden states. Because each hidden state has a
unique output symbol, the output probability for the unique
symbol is always 1. To compare the results of the conven-
tional Viterbi algorithm and the minimax Viterbi algorithm
clearly, we concentrate on fingering decisions for mono-
phonic guitar phrases in the present study although HMM-
based fingering decision is able to deal with polyphonic
songs as well.

3.1 HMM for monophonic fingering decision

To play a single note with a guitar, a guitarist depresses a
string on a fret with a finger of the left hand and picks the
same string with the right hand. Therefore a form ¢; for
playing a single note can be expressed in a triplet

q; = (Si»fivhi)

where s; = 1,...,6 is a string number (from the high-
est to the lowest), f; = 0,1,... is a fret number, and
h; = 1,...,4 is a finger number of the player’s left hand
(1,2,3 and 4 are the index, middle, ring and pinky fingers).
The fret number f; = 0 means an open string for which

5 Note that min(d;¢, a;;) does not compare the probability of some
subsequence and some transition probability but it does two transition
probabilities here.

the finger number h; does not make sense. For a classi-
cal guitar with six strings and 19 frets, the total number of
forms is 6 x (19 x 4 + 1) = 462 . For the standard tun-
ing (E4-B3-G3-D3-As-Es), the MIDI note numbers of the
open strings are

ny, = 64,no = 59,n3 = 55,n4 = 50, n5 = 45, ng = 40

from which the MIDI note number of the note played by
the form g¢; is calculated as

note(q;) = ns, + fi.

3.2 Transition and output probabilities

In standard applications of HMM, model parameters such
as the transition probabilities and the output probabilities
are estimated from training data using the Baum-Welch al-
gorithm [1]. However, for our application of fingering de-
cision, it is difficult to prepare enough training data, that
is, machine-readable guitar scores attached with tablatures.
For this reason, we design those parameters as explained in
the following instead of estimation from training data.

The difficulty levels of moves are implemented in the
transition probabilities between hidden states; a small
value of the transition probability means the corresponding
move is difficult and a large value easy. As for the move-
ment of the left hand along the neck, the transition prob-
ability should be monotone decreasing with respect to the
movement distance with the transition. Furthermore, the
distribution of the movement distance is sparse and con-
centrates on the center because the left hand of a guitarist
usually stays at a fixed position for several notes and then
leaps a few frets to a new position. To approximate such a
sparse distribution concentrated on the center, we employ
the Laplace distribution (Figure 1),

f(.r):%exp (_|x;u\> 3)

It is known that a one dimensional Markov process with
increments according to the Laplace distribution is approx-
imated by a piecewise constant function [3] that is similar
to the movement of the left hand along the neck. The mean
and the variance of the Laplace distribution (3) are p and
2¢2 respectively. We set y to zero and ¢ to the time in-
terval between the onsets of the two notes at both ends of
the transition so that a long interval makes the transition
probability larger, which reflects that a long interval makes
the move easier. For simplicity, we assume that the four
fingers of the left hand (the index, middle, ring and pinky
fingers) are always put on consecutive frets. This lets us
calculate the index finger position (the fret number the in-
dex finger is put on) of form ¢; as follows,

ifp(q;) = fi —hi+ 1.

6 The actual number of forms is less than this because the 19th fret
is most often split by the sound hole and not usable for third and fourth
strings, the players hardly place their index fingers on the 19th fret or
pinky fingers on the first fret, and so on.
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(x)

Figure 1. The probability density function of the Laplace
distribution for = ¢ = 1, which is sparse and concen-
trates on the center.

Using the index finger position, we set the transition prob-
ability as

aj,j(dt) =P(X; = Qj|Xt—1 = qi, dy)
) ~ ),
2dt dt

1
S — hj 4
T sy —s,) P ) @

where d; in the first term is set to the time interval be-
tween the onsets of the (¢ — 1)-th note and the ¢-th note.
The second term corresponds to the difficulty of changing
between strings where we employ a function 1/(1 + |z|)
which is less sparse than the Laplace distribution (3). The
third term pg (h;) corresponds to the difficulty level of the
destination form defined by the finger number /;. In the
simulation in the following section, we set pg (1) = 0.35,
pu(2) = 0.3, pg(3) = 0.25 and py(4) = 0.1 which
means the form using the index finger is easiest and the
pinky finger the most difficult. The difficulty levels of the
forms are expressed in the transition probabilities (not in
the output probabilities) in such a way that the transition
probability is small when the destination form of the tran-
sition is difficult.

As for the output probability, because all the hidden
states have unique output symbols in our HMM for fin-
gering decision, it is 1 if the given output symbol o is the
one that the hidden state ¢; outputs and O if oy, is not,

bik = P(Y; = o X¢ = ¢i)
R (if or, = note(q;))
0 (if ox # note(q;))
4. EVALUATION

To evaluate our proposed method, we compared the results
of fingering decision using the conventional Viterbi algo-
rithm and the minimax Viterbi algorithm. Figures2-4 show
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Figure 2. The results of fingering decision for the C ma-
jor scale starting from C3. Comparing the two tablatures,
the one obtained by the minimax Viterbi algorithm is more
natural and one that actual guitarists would choose. As for
the minimum transition probability, the line chart shows
that the minimax Viterbi algorithm gives a larger one.

the results for three example monophonic phrases. In each
figure, the top and the middle tablatures show the two fin-
gerings obtained by the conventional Viterbi algorithm and
the minimax Viterbi algorithm. The numbers on the tabla-
tures show the fret numbers and the numbers in parenthesis
below the tablatures show the finger numbers where 1,2,3
and 4 are the index, middle, ring and pinky fingers. The
bottom line chart shows the time evolution of the transi-
tion probability of the conventional Viterbi algorithm (gray
line) and the minimax Viterbi algorithm (black line). The
two tablatures and the line chart share a common horizon-
tal time axis, that is, a point on the line chart between two
notes in the tablature indicates the transition probability
between the two notes.

Figure 2 shows the results for the C major scale start-
ing from C3. From the line chart of the transition prob-
ability, we see that the minimum value of the gray line
(the conventional Viterbi algorithm) at the sixth transition
is smaller than any value of the black line (the minimax
Viterbi algorithm), that is, the minimax Viterbi algorithm
gives a larger minimum transition probability. As for the
tablatures, the one obtained by the minimax Viterbi algo-
rithm is more natural and one that actual guitarists would
choose.

Figure 3 shows the results for the opening part of “Ro-
mance Anonimo.” From the line chart of the transition
probability, we see that the gray line (the conventional
Viterbi algorithm) keeps higher values at the cost of two
very small values while the black line (the minimax Viterbi
algorithm) avoids such very small values although it keeps
relatively lower values. From the line charts of Figures
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Figure 3. The results of fingering decision for the opening
part of “Romance Anonimo” (only top notes). Compar-
ing the two tablatures, the one obtained by the minimax
Viterbi algorithm avoids using the pinky finger and sup-
presses changing between strings. We see from the line
chart that the conventional Viterbi algorithm keeps higher
values at the cost of two very small values while the mini-
max Viterbi algorithm avoids very small values although it
keeps relatively lower values.

2 and 3, we see that the minimax Viterbi algorithm actu-
ally minimizes the maximum difficulty for playing a given
phrase and makes the most difficult move easier, which can
not be done by the conventional Viterbi algorithm. As for
the resulting tablatures, while the one obtained by the con-
ventional Viterbi algorithm uses the pinky finger twice and
changes between strings three times, the one obtained by
the minimax Viterbi algorithm does not use the pinky fin-
ger and changes between strings only once.

Figure 4 shows the results for the opening part of “Eine
Kleine Nachtmusik.” In both fingerings, the first eight
notes are played with a single finger that presses down mul-
tiple strings across a single fret. The top tablature obtained
by the conventional Viterbi algorithm uses the index fin-
ger for the first eight notes and the pinky finger for the
ninth note while the middle one obtained by the minimax
Viterbi algorithm prefers the ring finger for the first eight
notes to avoid using the pinky finger for the ninth note.
The slight difference in the transition probability for the
first eight notes comes from the difference in the difficulty
of the form p (h;) in (4) defined by the finger number h;.

5. CONCLUSION

We have introduced a variant of the Viterbi algorithm
termed the minimax Viterbi algorithm that finds the se-
quence of the hidden states that maximizes the minimum
transition probability, and demonstrated the performance
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Figure 4. The results of fingering decision for the opening
part of “Eine Kleine Nachtmusik” (only top notes). Com-
paring the two tablatures, the one obtained by the minimax
Viterbi algorithm uses the ring finger (instead of the in-
dex finger) for the first eight notes to avoid using the pinky
finger for the ninth note. The slight difference in the tran-
sition probability for the first eight notes comes from the
difference in the difficulty of using the index finger and the
pinky finger.

of the algorithm with guitar fingering decision based on
a synthetic HMM. Fingering decision using our proposed
variant has turned out to be able to minimize the maximum
difficulty of the move required for playing a given phrase.
We have compared the resulting fingerings by the conven-
tional Viterbi algorithm and the minimax Viterbi algorithm
to see that our proposed variant is capable of making the
most difficult move easier that can not be done by the con-
ventional one. Those observations give rise to interests
in the interpolation between the conventional Viterbi al-
gorithm and the minimax Viterbi algorithm. We consider
that such an interpolation can be implemented using the
LP-norm of a real vector, which is the absolute sum of the
vector elements for p=1 and the maximum absolute value
for p =00, and is one of our future study plans. We hope
that the present work draws the researcher’s attention to the
new “minimax paradigm” in automatic fingering decision.
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