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ABSTRACT

Music is often experienced as a simultaneous progression
of multiple streams of notes, or voices. The automatic
separation of music into voices is complicated by the fact
that music spans a voice-leading continuum ranging from
monophonic, to homophonic, to polyphonic, often within
the same work. We address this diversity by defining voice
separation as the task of partitioning music into streams
that exhibit both a high degree of external perceptual sepa-
ration from the other streams and a high degree of internal
perceptual consistency, to the maximum degree that is pos-
sible in the given musical input. Equipped with this task
definition, we manually annotated a corpus of popular mu-
sic and used it to train a neural network with one hidden
layer that is connected to a diverse set of perceptually in-
formed input features. The trained neural model greedily
assigns notes to voices in a left to right traversal of the in-
put chord sequence. When evaluated on the extraction of
consecutive within voice note pairs, the model obtains over
91% F-measure, surpassing a strong baseline based on an
iterative application of an envelope extraction function.

1. INTRODUCTION AND MOTIVATION

The separation of symbolic music into perceptually inde-
pendent streams of notes, i.e. voices or lines, is gener-
ally considered to be an important pre-processing step for
a number of applications in music information retrieval,
such as query by humming (matching monophonic queries
against databases of polyphonic or homophonic music)
[13] or theme identification [12]. Voice separation adds
structure to music and thus enables the implementation of
more sophisticated music analysis tasks [17]. Depending
on their definition of voice, existing approaches to voice
separation in symbolic music can be organized in two main
categories: 1) approaches that extract voices as mono-
phonic sequences of successive non-overlapping musical
notes [5, 6,8, 11, 14, 16, 17]; and 2) approaches that al-
low voices to contain simultaneous note events, such as
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chords [4,9, 10, 15]. Approaches in the first category typ-
ically use the musicological notion of voice that is refer-
enced in the voice-leading rules of the Western musical tra-
dition, rules that govern the horizontal motion of individual
voices from note to note in successive chords [1,4]. Start-
ing with [4], approaches in the second category break with
the musicological notion of voice and emphasize a percep-
tual view of musical voice that corresponds more closely to
the notion of independent auditory streams [2,3]. Orthog-
onal to this categorization, a limited number of voice sep-
aration approaches are formulated as parametric models,
with parameters that are trained on music already labeled
with voice information [6,8,11].

In this paper, we propose a data-driven approach to
voice separation that preserves the musicological notion
of voice. Our aim is to obtain a segregation of music
into voices that would enable a downstream system to de-
termine whether an arbitrary musical input satisfies the
known set of voice-leading rules, or conversely identify
places where the input violates voice-leading rules.

2. TASK DEFINITION

According to Huron [7], “the principal purpose of voice-
leading is to create perceptually independent musical
lines”. However, if a voice is taken to be a monophonic
sequence of notes, as implied by traditional voice-leading
rules [1], then not all music is composed of independent
musical lines. In homophonic accompaniment, for exam-
ple, multiple musical lines (are meant to) fuse together
into one perceptual stream. As Cambouropoulos [4] ob-
serves for homophonic accompaniment, “traditional voice-
leading results in perceivable musical fexture, not indepen-
dent musical lines”. In contrast with the traditional no-
tion of voice used in previous voice separation approaches,
Cambouropoulos redefines in [4] the task of "voice’ sepa-
ration as that of separating music into perceptually inde-
pendent musical streams, where a stream may contain two
or more synchronous notes that are perceived as fusing in
the same auditory stream. This definition is used in [9, 15]
to build automatic approaches for splitting symbolic music
into perceptually independent musical streams.

Since a major aim of our approach is to enable build-
ing “musical critics” that automatically determine whether
an arbitrary musical input obeys traditional voice-leading
rules, we adopt the musicological notion of voice as a
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monophonic sequence of non-overlapping notes. This def-
inition however leads to an underspecified voice separa-
tion task: for any non-trivial musical input, there usually
is a large number of possible separations into voices that
satisfy the constraints that they are monophonic and con-
tain notes in chronological order that do not overlap. Fur-
ther constraining the voices to be perceptually independent
would mean the definition could no longer apply to music
with homophonic textures, as Cambouropoulos correctly
noticed in [4]. Since we intend the voice separation ap-
proach to be applicable to arbitrary musical input, we in-
stead define voice separation as follows:

Definition 1. Voice separation is the task of partition-
ing music into monophonic sequences (voices) of non-
overlapping notes that exhibit both a high degree of exter-
nal perceptual separation from the other voices and a high
degree of internal perceptual consistency, to the maximum
degree that is possible in the given musical input.
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Figure 1. Example voice separation from “Earth Song”.

Figure 1 shows a simple example of voice separation
obtained using the definition above. While the soprano and
bass lines can be heard as perceptually distinct voices, we
cannot say the same for the tenor and alto lines shown in
green and red, respectively. However, clear perceptual in-
dependence is not needed under the new task definition.
The two intermediate voices exhibit a high degree of per-
ceptual consistency: their consecutive notes satisfy to a
large extent the pitch proximity and temporal continuity
principles needed to evoke strong auditory streams [7]. In-
deed, when heard in isolation, both the tenor and the alto
are heard as continuous auditory streams, the same streams
that are also heard when the two are played together. The
two streams do not overlap, which helps with perceptual
tracking [7]. Furthermore, out of all the streaming possi-
bilities, they also exhibit the largest possible degree of ex-
ternal perceptual separation from each other and from the
other voices in the given musical input.

3. ANNOTATION GUIDELINES

According to the definition in Section 2, voice separation
requires partitioning music into monophonic sequences of
non-overlapping notes that exhibit a high degree of percep-
tual salience, to the maximum extent that is possible in the
given musical input. As such, an overriding principle that
we followed during the manual annotation process was to
always give precedence to what was heard in the music,
even when this appeared to contradict formal perceptual

principles, such as pitch proximity. Furthermore, when-
ever formal principles seemed to be violated by percep-
tual streams, an attempt was made to explain the apparent
conflict. Providing justifications for non-trivial annotation
decisions enabled refining existing formal perceptual prin-
ciples and also informed the feature engineering effort.

Listening to the original music is often not sufficient
on its own for voice separation, as not all the voices con-
tained in a given musical input can be distinctly heard. Be-
cause we give precedence to perception, we first annotated
those voices that could be distinguished clearly in the mu-
sic, which often meant annotating first the melodic lines
in the soprano and the bass. When the intermediate voices
were difficult to hear because of being masked by more
salient voices, one simple test was to remove the already
annotated most prominent voice (often the soprano [1])
and listen to the result. Alternatively, when multiple con-
flicting voice separations were plausible, we annotated the
voice that, after listening to it in isolation, was easiest to
distinguish perceptually in the original music.

Figure 2 shows two examples where the perceptual
principle of pitch proximity appears to conflict with what
is heard as the most salient voice. In the first measure,
the first D4 note can continue with any of the 3 notes in
the following 16 chord. However, although the bass note
in the chord has the same pitch, we hear the first D4 most
saliently as part of the melody in the soprano. The Dy
can also be heard as creating a musical line with the next
D4 notes in the bass, although less prominently. The least
salient voice assignment would be between the D4 and the
intermediate line that starts on the following G4. While we
annotate all these streaming possibilities (as shown in Fig-
ure 7), we mark the soprano line assignment as the most
salient for the Dy4. Similarly, in the last chord from the sec-
ond measure from Figure 2, although E4 is closer to the
previous Fy, it is the G4 that is most prominently heard as
continuing the soprano line. This was likely reinforced by
the fact that the G4 in the last chord was “prepared” by the

G4 preceding Fy.
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Figure 2. Voice separation annotations, for measures 5 in

“Knockin’ on Heaven’s Door” and 12 in “Let It Be”.

Other non-trivial annotation decisions, especially in the
beginning of the annotation effort, involved whether two
streams should be connected or not. Overall, we adopted
the guideline that we should break the music into fewer and
consequently longer voices, especially if validated percep-
tually. Figure 3, for example, shows the A4 in the third
measure connected to the following Cs. Even though the
two notes are separated by a quarter rest, they are heard as
belonging to the same stream, which may also be helped
by the relatively long duration of A4 and by the fact that
the same pattern is repeated in the piece. We have also dis-
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Figure 3. Voice separation annotation in the treble for
measures 38-41 in “Count on Me”.

covered that “preparation” through previous occurrences
of the same note or notes one octave above or below can
significantly attenuate the effect of a large pitch distance
and thus help with connecting the note to an active stream.
This effect is shown in Figure 4, where the voice in the first
measure is most prominently heard as continuing with the
B4 in the second measure.

Figure 4. Voice separation annotation in the treble for
measures 26-27 in “A Thousand Miles”.

Sometimes, the assignment of a note to one of the avail-
able active voices is hard to make due to inherent musi-
cal ambiguity. An example is shown in Figure 5, where
it is hard to determine if the A4 in the second measure
connects to the top Cg or the Cs one octave below. Af-
ter being played separately, each voice assignment can be
distinguished perceptually in the original music. The Cj is
closer in pitch to the A4 and it is also in a range with better
defined pitch sensations than the Cg. On the other hand,
the pitch distance between the upper C¢ and the Ay is at-
tenuated by the synchronous Cs. Eventually we annotated
Ay as connecting to the slightly more salient Cs, but also
marked it as ambiguous between the two C notes.

Figure 5. Voice separation annotation in the treble for
measures 62-63 in “A Thousand Miles”.

Other examples of harmony influencing voice assign-
ment involve the seventh scale degree notes appearing in
VII and VII® chords. As shown in Figure 6, when such a
chord is first used, the 7 note does connect to any of the
previous streams, despite the closer pitch proximity.

4. VOICE SEPARATION DATASET

We compiled a corpus of piano versions of 20 popular
compositions of varying complexity that are representative
of many genres of music. Each song was downloaded from
www.musescore.com and converted to MusicXML. In se-
lecting music, we followed a few basic criteria. First, we
avoided collecting piano accompaniments and gave pref-
erence to piano renditions that sounded as much as pos-
sible like the original song. Among other things, this en-
sured that each score contained at least one clearly defined

Figure 6. Voice separation annotation in the bass for mea-
sures 26-28 in “Earth Song”.

melody. Second, we collected only tonal music. Atonal
music is often comprised of unusual melodic structures,
which were observed to lead to a poor perception of voices
by the annotators. Following the annotation guidelines, we
manually labeled the voice for each note in the dataset. The
annotations will be made publicly available. The names
of the 20 musical pieces are shown in Table 1, together
with statistics such as the total number of notes, number
of voices, average number of notes per voice, number of
within-voice note pairs, number of unique note onsets, and
average number of notes per chord. The 20 songs were
manually annotated by the first author; additionally, the
10 songs marked with a star were also annotated by the
second author. In terms of F-measure, the inter-annotator
agreement (ITA) on the 10 songs is 96.08% (more de-
tailed ITA numbers are shown in Table 2). The last col-
umn shows the (macro-averaged) F-measure of our neural
greedy model, to be discussed in Section 6. As can be
seen in Table 1, the number of voices varies widely, rang-
ing between 4 for Greensleeves to 123 for 21 Guns, the
longest musical composition, with a variable musical tex-
ture and frequent breaks in the harmonic accompaniment
of the melody. The last line shows the same total/average
statistics for the first 50 four-part Bach Chorales available
in Music21, for which we use the original partition into
voices, without the duplication of unisons.

5. THE VOICE SEPARATION MODEL

To separate a musical input into its constituent voices, we
first order all the notes based on their onsets into a se-
quence of chords C = {¢y,cq,...,cr}, where a chord is
defined to be a maximal group of notes that have the same
onset. Assignment of notes to voices is then performed in
chronological order, from left to right, starting with the first
chord c¢;. Because voices are by definition monophonic,
each note in the first chord is considered to start a sepa-
rate, new voice. These first voices, together with an empty
voice €, constitute the initial set of active voices V. At each
onset t, the algorithm greedily assigns a note n from the
current chord ¢; to one of the voices in the active set by se-
lecting the active voice v that maximizes a trained assign-
ment probability p(n, v), i.e. v(n) = argmax, .y, p(n,v).
Notes from the current chord are assigned to voices in the
order of their maximal score p(n,v(n)). If a note is as-
signed to the empty voice, then a new voice is added to
the active set. The set of candidate active voices V) avail-
able for any given note n is a subset of active voices V
constrained such that assigning n to any of the voices in
V would not lead to crossing voices or to multiple syn-
chronous notes being assigned to the same voice.
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Popular Music dataset #Notes | # Voices | #N/V | #Pairs | #Onsets | Synchronicity | F-measure
21 Guns (Green Day) 1969 123 16.01 1801 666 2.96 86.24
Apples to the Core (Daniel Ingram) 923 29 31.83 892 397 2.32 77.67
Count on Me (Bruno Mars) 775 11 70.45 764 473 1.64 97.22
Dreams (Rogue)* 615 12 51.25 603 474 1.30 98.32
Earth Song (Michael Jackson)* 431 15 28.73 416 216 2.00 93.27
Endless Love (Lionel Richie) 909 23 39.52 886 481 1.89 96.52
Forest (Twenty One Pilots) 1784 89 20.04 1695 1090 1.64 91.93
Fur Elise (Ludwig van Beethoven)* 900 77 11.69 823 653 1.38 91.98
Greensleeves™ 231 4 57.75 213 72 3.21 92.88
How to Save a Life (The Fray)* 440 13 33.85 427 291 1.51 98.11
Hymn for the Weekend (Coldplay) 1269 50 25.38 1218 706 1.80 92.30
Knockin’ on Heaven’s Door (Bob Dylan)* 355 41 8.66 312 180 1.97 90.92
Let It Be (The Beatles)™ 563 22 25.59 540 251 2.24 87.29
One Call Away (Charlie Puth) 993 56 17.73 937 505 1.97 91.33
See You Again (Wiz Khalifa)* 704 66 10.67 638 359 1.96 81.16
Teenagers (My Chemical Romance) 315 18 17.50 297 145 2.17 91.39
A Thousand Miles (Vanessa Carlton)* 1001 61 16.41 937 458 2.19 96.61
To a Wild Rose (Edward Macdowell) 307 20 15.35 287 132 2.33 88.72
Uptown Girl (Billy Joel) 606 46 13.17 560 297 2.04 93.41
When I Look at You (Miley Cyrus)* 1152 82 14.05 1067 683 1.69 92.92
Totals & Averages 16242 42.90 26.28 15313 8529 2.01 91.51
[ Bach Chorales dataset [ 12282 ] 4] 6141 [ 11874 | 4519 ] 273 ] 95.47 |

Table 1. Statistics for the Popular Music dataset and the Bach Chorales dataset.

The assignment probability p(n,v) captures the com-
patibility between a note n and an active voice v. To com-
pute it, we first define a vector ®(n, v) of perceptually in-
formed compatibility features (Section 5.2). The probabil-
ity is then computed as p(n, v) = o(w? hy (n,v)), where
o is the sigmoid function and hy(n,v) is the vector of
activations of the neurons on the last (hidden) layer in a
neural network with input ®(n, v).

To train the network parameters 6§ = [w, W], we maxi-
mize the likelihood of the training data:

T
0= arg;naxH H H p(n,v|9)l("’v)(1—p(n,v|€))1ﬁl("’”)

t=1n€ccy UGV
ey
where [(n, v) is a binary label that indicates whether or not
note n was annotated to belong to voice v in the training
data. This formulation of the objective function is flexible
enough to be used in 2 types of voice separation scenarios:

1. Ranking: Assign a note to the top-ranked candidate
active voice, i.e. v(n) = arg max p(n, v).
veEV
2. Multi-label classification: Assign a note to all can-
didate active voices whose assignment probability is
large enough, i.e. V(n) = {v € V|p(n,v) > 0.5}.

The first scenario is the simplest one and rests on the work-
ing assumption that a note can belong to a single voice.
The second scenario is more general and allows a note to
belong to more than one voice. Such capability would be
useful in cases where a note is heard simultaneously as
part of two musical streams. Figure 7, for example, shows
the voice separation performed under the two scenarios for
the same measure. In the ranking approach shown on the
left, we label the second F4 as belonging to the soprano
voice. Since in this scenario we can assign a note to just
one voice, we select the voice assignment that is heard as
the most salient, which in this case is the soprano. In the

multi-label approach shown on the right, we label the sec-
ond F, as belonging to both active voices, since the note is
heard as belonging to both. In the experiments that we re-

Figure 7. Two voice separation scenarios, for measure 16
from “A Thousand Miles”.

port in this paper (Section 6), we used the simpler ranking
approach, leaving the more general multi-label approach
for future work.

5.1 Iterative Envelope Extraction

We also propose a baseline system for voice-separation
that iteratively extracts the upper envelope i.e. the topmost
monophonic sequence of non-overlapping notes. Figure 8
shows how the iterative envelope extraction process works
on the second measure from Figure 2, copied here for read-
ability. The top left measure is the original measure from
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Figure 8. Voice separation as iterative envelope extraction.

Figure 2 and we use it as the current input. Its upper en-
velope is shown in the bottom left measure, which will be-
come the first voice. After extracting the first voice from
the input, we obtain the second measure in the top staff,
which is now set to be the current input. We again apply
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the same envelope extraction process to obtain the second
voice, shown in the second measure on the bottom staff.
After extracting the second voice from the current input,
we obtain a new current input, shown in the third measure
on the top staff. Extracting the third voice from the current
input results in an empty set and correspondingly the base-
line algorithm stops. For this input, the baseline extracted
voice 1 without errors, however it made a mistake in the
last note assignment for voice 2.

5.2 Voice Separation Features

The assignment probability p(n,v) is computed by the
neural model based on a vector of input features ®(n,v) =
[P0, D1, ..., i that will be described in this section, using
v.last to denote the last note in the active voice v.

5.2.1 Empty Voice Feature

The empty voice feature ¢ is set to 1 only for the empty
voice, i.e. ¢o(n,€) = 1 and ¢g(n,v) = 0,Vv # e. All the
remaining features in any feature vector for an empty voice
®(n, €) are set to zero. This allows the empty voice to ac-
tivate a bias parameter wy, which is equivalent to learning
a threshold —wy that the weighted combination of the re-
maining features must exceed in order for the note to be as-
signed to an existing, non-empty, active voice. Otherwise,
the note n will be assigned to the empty voice, meaning it
will start a new voice.

5.2.2 Pitch and Pitch Proximity Features

According to Huron’s formulation of the pitch proximity
principle, the coherence of an auditory stream is main-
tained by close pitch proximity in successive tones within
the stream [7]. Correspondingly, we define a pitch prox-
imity feature ¢q(n,v) = pd(n,v.last) = |ps(n) —
ps(v.last)| to be the absolute distance in half steps be-
tween the pitch space representations of notes n and v.last.
The pitch proximity feature enables our system to quickly
learn that notes rarely pair with voices lying at intervals
beyond an octave. We also add two features ¢q(n,v) =
ps(n) and ¢3(n,v) = ps(v.last) that capture the absolute
pitch of the note n and v.last. Pitch values are taken from
a pitch space in which C4 has value 60 and a difference of
1 corresponds to one half step, e.g. Cs has value 72. Us-
ing absolute pitches as separate input features will enable
neurons on the hidden layer to discover possibly unknown
pitch-based rules for perceptual streaming.

5.2.3 Temporal and Temporal Continuity Features

We define an inter-onset feature ¢4(n,v) as the tempo-
ral distance between the note onsets of n and v.last. An
additional feature ¢5(n,v) is computed as the temporal
distance between the note onset of n and the note offset
(the time when a note ends) of v.last. These complemen-
tary features help our system model both acceptable rest
lengths between notes and the gradual dissipation of note
salience throughout the duration of a note.

Notes that lie between the onsets of v.last and n may
influence the voice assignment. Thus, we appropriately de-
fine a feature ¢g(n,v) as the number of unique onsets
between the onsets of v.last and n. We also define two
features ¢7(n,v) = gd(n) and ¢g(n,v) = qd(v.last)
for the durations of n and v.last, respectively, where note
durations are measured relative to the quarter note. These
features, when combined in the hidden layer, enable the
system to learn to pair notes that appear in common dura-
tion patterns, such as dotted quarter followed by an eighth.

5.2.4 Chordal Features

Notes that reside in the soprano either alone or at the
top of a chord tend to be heard as the most salient. As
a result, the most prominent melodic line of a score of-
ten navigates through the topmost notes, even in situa-
tions where a candidate active voice lies closer in pitch
to the alto or tenor notes of the current chord. Notes in
a low bass range that stand alone or at the bottom of a
chord exhibit a similar behavior. To enable the learning
model to capture this perceptual effect, we define two fea-
tures ¢g(n,v) = cp(n) and @19(n,v) = cp(v.last) to
mark the relative positions of n and v.last in their respec-
tive chords, where the chord position number (cp) starts
at 0 from the top of a chord. To place chord positions
into the appropriate context, we define ¢11(n,v) as the
number of notes in n’s chord and ¢13(n,v) as the num-
ber of notes in v.last’s chord. For more direct compar-
isons between notes in n’s chord and the active voice, we
calculate pitch proximities (pd) between v.last and n’s
upper and lower neighbors n.above and n.below. Thus,
we define the features ¢13(n,v) = pd(v.last, n.above)
and ¢14(n,v) = pd(v.last,n.below). We also add the
features ¢15(n,v) = pd(n,n.above) and ¢16(n,v) =
pd(n,n.below) to encode the intervals between n and its
chordal neighbors.

5.2.5 Tonal Features

We use scale degrees ¢17(n,v) = sd(n) and ¢15(n,v) =
sd(v.last) of the notes n and v.last as features in order to
enable the model to learn melodic intervals that are most
appropriate in a given key. For example, if a candidate ac-
tive voice ends on a leading tone, then it is likely to resolve
to the tonic. We also define a feature ¢19(n,v) for the
interval between the note n and the root of its chord, and
similarly, a feature ¢90(n,v) for the interval between the
note v.last and the root of its chord.

The last tonal feature ¢o1 (1, v) is a Boolean feature that
is set to 1 if the note v.last in the active voice v appears in a
tonic chord at a cadence. Tonic chords at cadences induce
a sense of finality [1], which could potentially break the
voice from the notes that follow.

5.2.6 Pseudo-polyphony Features

In pseudo-polyphony, two perceptually independent
streams are heard within a rapidly alternating, monophonic
sequence of notes separated by relatively large pitch inter-
vals. Figure 9 presents an example of pseudo-polyphony.
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Dataset Model All within-voice pairs of notes Exclude pairs of notes separated by rests \

: Jaccard [ Precision | Recall | F-measure [[ Jaccard | Precision | Recall [ F-measure |
Baseline 59.07 74.51 74.03 74.27 67.55 80.48 80.79 80.64
Popular Music | NGModel 83.55 92.08 90.01 91.03 85.73 92.74 91.89 92.31
ITA 92.45 94.96 97.21 96.08 93.04 95.12 97.70 96.41
Bach Chorales Baseline 87.25 93.34 93.04 93.18 87.62 93.22 93.58 93.39
‘ NGModel 91.36 95.59 95.37 95.47 91.66 95.91 95.39 95.64

Table 2. Comparative results of Neural Greedy (NG) Model vs. Baseline on Popular Music and Bach Chorales; Inter-
Annotator (ITA) results on the subset of 10 popular songs shown in Table 1.

Although the offset of each D4 note is immediately fol-
lowed by the onset of the next note, the often large inter-
vals and the fast tempo break the upper and lower notes
into two perceptually independent streams.

Agl—‘g | |

G

Figure 9. Example pseudo-polyphony from “Forest”.

We model this phenomenon by introducing three fea-
tures to the neural system. In designing these features,
we first employ the envelope extraction method described
in Section 5.1 to gather monophonic sequences of non-
overlapping notes. We next find the maximal contiguous
subsequences with an alternating up-down pattern of di-
rection changes, like the one shown in Figure 9. The first
feature ¢o2(n,v) = apv(n) is set to be the alternating
path value (apv) of the note n, which is 0 if » is not on an
alternating path, 1 if it is in the lower part of an alternating
path, and 2 if it is in the upper part of an alternating path.
Similarly, we define ¢o3(n,v) = apv(v.last) to be the al-
ternating path value of the note v.last. The third feature is
set to 1 if both n and v.last have the same alternating path
value, i.e. ¢a4(n,v) = l{apv(n) = apv(v.last)].

6. EXPERIMENTAL EVALUATION

We implemented the neural greedy model as a neural net-
work with one hidden layer, an input layer consisting of
the feature vector ®(n, v), and an output sigmoid unit that
computes the assignment probability p(n,v|f). The net-
work was trained to optimize a regularized version of the
likelihood objective shown in Equation 1 using gradient
descent and backpropagation. The model was trained and
tested using 10-fold cross-validation. For evaluation, we
considered pairs of consecutive notes from the voices ex-
tracted by the system and compared them with pairs of
consecutive notes from the manually annotated voices. Ta-
ble 2 shows results on the two datasets in terms of the Jac-
card similarity between the system pairs and the true pairs,
precision, recall, and micro-averaged F-measure. Preci-
sion and recall are equivalent to the soundness and com-
pleteness measures used in [6, 11]. We also report results
for which pairs of notes separated by rests are ignored.
The results show that the newly proposed neural model
performs significantly better than the envelope baseline,

[ Dataset [ Model [ Precision [ Recall | F-measure |
10 Fugues [6] 94.07 93.42 93.74
& NGModel 95.56 92.24 93.87
[14] 95.94 70.11 81.01
30 Inv. 48 F.
0 Inv NGModel 95.91 93.83 94.87

Table 3. Comparative results on Bach datasets.

especially on popular music. When pairs of notes sepa-
rated by rests are excluded from evaluation, the baseline
performance increases considerably, likely due to the ex-
clusion of pseudo-polyphonic passages.

Close to our model is the data-driven approach from [6]
for voice separation in lute tablature. Whereas we adopt
a ranking approach and use as input both the note and the
candidate active voice, [6] use only the note as input and
associate voices with the output nodes. Therefore, while
our ranking approach can label music with a variable num-
ber of voices, the classification model from [6] can extract
only a fixed number of voices. Table 3 shows that our neu-
ral ranking model, although not specifically designed for
music with a fixed number of voices, performs compet-
itively with [6] when evaluated on the same datasets of
10 Fugues by Bach. We also compare the neural rank-
ing model with the the approach from [14] on a different
dataset containing 30 inventions and 48 fugues ! .

7. CONCLUSION AND FUTURE WORK

We presented a neural model for voice separation in sym-
bolic music that assigns notes to active voices using a
greedy ranking approach. The neural network is trained
on a manually annotated dataset, using a perceptually-
informed definition of voice that also conforms to the mu-
sicological notion of voice as a monophonic sequence of
notes. When used with a rich set of note-voice features,
the neural greedy model outperforms a newly introduced
strong baseline using iterative envelope extraction. In fu-
ture work we plan to evaluate the model in the more gen-
eral multi-label classification setting that allows notes to
belong to multiple voices.

We would like to thank the anonymous reviewers for
their helpful remarks and Mohamed Behairy for insightful
discussions on music cognition.

"In [14] it is stated that soundness and completeness “as suggested
by Kirlin [11]” were used for evaluation; however, the textual definitions
given in [14] are not consistent with [11]. As was done in [6], for lack of
an answer to this inconsistency, we present the metrics exactly as in [14].
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