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ABSTRACT

The hallucinatory images of DeepDream [8] opened up the
floodgates for a recent wave of artwork generated by neu-
ral networks. In this work, we take first steps to applying
this to audio. We believe a key to solving this problem
is training a deep neural network to perform a perception
task on raw audio. Consequently, we have followed in the
footsteps of Van den Oord et al [13] and trained a network
to predict embeddings that were themselves the result of a
collaborative filtering model. A key difference is that we
learn features directly from the raw audio, which creates
a chain of differentiable functions from raw audio to high
level features. We then use gradient descent on the net-
work to extract samples of ”dreamed” audio. Examples
are available at http://tiny.cc/78qqdy.

1. INTRODUCTION

The work of Mordvintsev et al [8], widely known as Deep-
Dream, combined three key steps towards getting neural
networks to ”dream” images.

1. A meaningful and challenging perceptual task that
covers a large portion of the stimulus space. [9]

2. The right architecture and training procedure to solve
this task with a deep neural network. [7] [10] [11]

3. Applied constraints on the stimulus space to align
the gradient descent optimization with natural im-
ages.

The first two steps are critical and produce a model with
a hierarchical understanding of perception, which is a key
foundation for more recent style transfer work [2] [6] [12].
The last step is more ad-hoc, but also a novel way to attain
models with interesting generative capabilities.

We believe that all three of these questions are much
further from resolution in audio than in vision, and we
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Figure 1. Architecture of convolutional network. Layers
not illustrated to scale.

are presenting our first attempt at each of them. For our
task, we predicted collaborative filter embeddings from au-
dio. For our network, we used a six-layer convolutional
architecture. And for optimization, we used gradient de-
scent and experimented with some regularization functions
based on the output of the first layer.

2. DETAILS

2.1 Task: Predict collaborative filtering embeddings

We trained a network to predict 100-dimensional collabo-
rative filtering (CF) track embeddings from 30-second clips
of music audio. The audio had a sample rate of 16khz, set
to a mean of zero and then normalized by the maximum
value of each mini-batch.

The target CF embeddings were generated by applying
the Weighted Alternating Least Squares (WALS) [4] fac-
torization algorithm to a sparse matrix containing user mu-
sic listening history. User embeddings were not stored.

One challenge with this task is that the embeddings vary
greatly in scale, which can cause problems for the L2 loss
function. In addition, the norm of each embedding is cor-
related with popularity. Therefore, we decided to divide
each embedding by its L2 norm. Across a wide variety
of networks, we found empirical evidence (R2 coefficient)
that it was better to use normalized embeddings than un-
normalized embeddings.

2.2 Network: six-layer convolutional network with
raw audio input

The architecture of the network we trained is shown in Fig-
ure 1. It’s fairly straightforward, but we found several de-



tails to be important to performance.

• Strided convolution in the first layer. Starting with
raw audio means that there needs to be significant
downscaling. Most of it occurs at the first layer by
applying 50ms filters with 10ms strides.

• Batch normalization [5]: We use batch normaliza-
tion after every layer, a necessary addition.

• Overlapping pooling: We overlap the max pooling
windows after each step, which we found to improve
performance.

• No Logrelu: In contrast with previous work [3], we
did not find any significant boost from applying a
logarithm after the first layer.

• 192 units in the first layer: We found that perfor-
mance suffers when there are not enough filters in
the first layer. Too few filters led to clustering in the
lower end of the spectrum. It may be possible to add
even more.

We used a learning rate of .03, and trained for 300k mini-
batches, each of size 64. Our peak performance on a held
out validation set was an R2 (coefficient of determination)
of .23. We have not yet compared this to previously exist-
ing attempts at this task.

As has been seen in other studies applying feature learn-
ing directly to raw audio [1] [3], the first layer of filters
learned a roughly log-spaced frequency selective bank (See
figure 2).

There is still a large amount of noise in the learned first
layer filters. This can be seen in Figure 3. Audio gener-
ated using this input and output will always contain noise.
Finding a way to produce a network with cleaner filters in
the first layer will be critical in improving upon the audio
we generate.

2.3 Optimization: Gradient descent with tricks

In order to generate sounds, we start from either noise or
silence and then select different targets within the network
to optimize. An example target could be to maximize the
mean output of the last layer. We then use gradient descent
on the input of the network, as in [8]. The output we attain
is not musical, but it is also not purely noise. Here are
some approaches we’ve explored:

• Normalizing gradient by its maximum, then multi-
plying by a learning rate.

• Adding a ”sparsity constraint” by taking the L1 norm
across the entire output of the first layer and adding
it as a regularization term in the optimization.

• Adding a ”continuity cost” where neighboring frames
are penalized for having different first layer outputs.
The total sum of square differences between neigh-
boring frames in the output of the first layer is added
as a regularization term.

Figure 2. Spectra of filters learned in the first layer ar-
ranged by dominant frequency

Figure 3. Filters learned in the first layer arranged by dom-
inant frequency. Placed into row-major order for brevity.

3. CONCLUSION

In this work, we laid out our first attempts at building a
network and procedure for applying DeepDream to audio.
Possible future directions include alternative or additive
perception tasks, better training procedures, and more ad-
vanced constraints in the optimization procedure.

Sample output can be found at http://tiny.cc/78qqdy.
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