
MADMOM: A NEW PYTHON AUDIO AND MUSIC SIGNAL PROCESSING
LIBRARY

Sebastian Böck†, Filip Korzeniowski†, Jan Schlüter‡, Florian Krebs†, Gerhard Widmer†‡
† Department of Computational Perception, Johannes Kepler University Linz, Austria

‡ Austrian Research Institute for Artificial Intelligence (OFAI), Vienna, Austria

ABSTRACT

In this paper, we present madmom, an open-source audio
processing and music information retrieval (MIR) library
written in Python. madmom features a concise, NumPy-
compatible, object oriented design with simple calling con-
ventions and sensible default values for all parameters, fa-
cilitating fast prototyping of MIR applications. Prototypes
can be seamlessly converted into callable processing pipe-
lines through madmom’s concept of Processors, callable
objects that run transparently on multiple cores. Proces-
sors can also be serialised, saved, and re-run to allow re-
sults to be easily reproduced anywhere.

Apart from low-level audio processing, madmom puts
emphasis on musically meaningful features. Many of these
incorporate machine learning techniques and madmom pro-
vides a module that implements some methods commonly
used in MIR such as hidden Markov models and neural net-
works. Additionally, madmom comes with several state-of-
the-art MIR algorithms for onset detection, beat, downbeat
and meter tracking, tempo estimation, and chord recogni-
tion. These can easily be incorporated into bigger MIR
systems or run as stand-alone programs.

1. INTRODUCTION

Music information retrieval (MIR) has become an emerg-
ing research area over the last 15 years. Especially audio-
based MIR has become more and more important, since the
amount of available audio data in the last years exploded
beyond being manageable manually.

Most state-of-the-art audio-based MIR algorithms con-
sist of two components: first, low-level features are ex-
tracted from the audio signal (feature extraction stage), and
then the features are analysed (feature analysis stage) to
retrieve the desired information. Most current MIR sys-
tems incorporate machine learning algorithms in the fea-
ture analysis stage, with neural networks currently being
the most popular and successful ones [2, 3, 10, 18].

c© Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Flo-
rian Krebs, Gerhard Widmer. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Sebastian
Böck, Filip Korzeniowski, Jan Schlüter, Florian Krebs, Gerhard Widmer.
“MADMOM: A NEW PYTHON AUDIO AND MUSIC SIGNAL PRO-
CESSING LIBRARY”, Extended abstracts for the Late-Breaking Demo
Session of the 17th International Society for Music Information Retrieval
Conference, 2016.

Numerous software libraries have been proposed over
the years to facilitate research and development of applica-
tions in MIR. Some libraries concentrate on low-level fea-
ture extraction from audio signals, such as Marsyas [20],
YAAFE [15] and openSMILE [8]. Others also include higher
level feature extraction such as onset and beat detection
as for example in the MIRtoolbox [14], Essentia [6] and
LibROSA [16]. However, to our knowledge, there exist
no library that also includes machine learning components
(except Marsyas [20], which contains two classifiers), al-
though machine learning components are crucial in current
MIR applications.

Therefore, we propose madmom, a library that incor-
porates low-level feature extraction and high-level feature
analysis based on machine learning methods. This allows
the construction of the full processing chain within a single
software framework, making it possible to build standalone
programs without any dependency on other machine learn-
ing frameworks. Moreover, madmom comes with several
state-of-the-art systems including their trained models, for
example for onset detection [7, 18, 19], tempo estimation
[3], beat [2, 10] and downbeat tracking [4, 13], and chord
recognition [11, 12].

madmom is written in Python, which has become the
language of choice for scientific computing for many peo-
ple due to its free availability and its simplicity of use. The
code is released under BSD license and pre-trained models
are released under the CC BY-NC-SA 4.0 license.

1.1 Design and Functionality

1.1.1 Object-oriented programming

madmom follows an object-oriented programming (OOP)
approach. We encapsulate everything in objects that are
often designed as subclasses of NumPy’s ndarray, offer-
ing all array handling routines inherited from NumPy [21]
with additional functionality. This compactly bundles data
and meta-data (e.g. a Spectrogram and its frame rate) and
simplifies meta-data handling for the user.

1.1.2 Rapid prototyping

madmom aims at minimising the turnaround time from a
research idea to a software prototype. Thus, object instan-
tiation is made as simple as possible: e.g., a Spectrogram
object can be instantiated with a single line of code by only
providing the path to an audio file. madmom automatically
creates all objects in between using sensible default values.



1.1.3 Simple conversion into runnable programs

Once an audio processing algorithm is prototyped, the com-
plete workflow should be easily transformable into a run-
nable standalone program with a consistent calling inter-
face. This is implemented using madmom’s concept of
Processors.

1.1.4 Machine learning integration

We aim at a seamless integration of machine learning meth-
ods without the need of any third party modules. We limit
ourselves to testing capabilities (applying pre-trained mod-
els), since it is impossible to keep up with newly emerging
training methods in the various machine learning domains.
Models that have been trained in an external library should
be easily be convertible to an internal madmom model for-
mat.

1.1.5 State-of-the-art features

Many existing libraries provide a huge variety of low-level
features, but few musically meaningful high-level features.
madmom tries to close this gap by offering high-quality
state-of-the-art feature extractors for onsets, beats, down-
beats, chords, tempo, etc.

1.1.6 Reproducible research

In order to foster reproducible research, we want to be able
to save and load the specific settings used to obtain the
results for a certain experiment. In madmom this is im-
plemented using Python’s own pickle functionality which
allows to save an entire processing chain (including all set-
tings) to a file.

1.1.7 Few dependencies

madmom is built on top of three excellent and wide-spread
libraries: NumPy [21] provides all the array handling sub-
routines for madmom’s data classes. SciPy [9] provides
optimised routines for the fast Fourier transform (FFT),
linear algebra operations and sparse matrix representations.
Finally, Cython [1] is used to speed up time critical parts
of the library by automatically generating C code from a
Python-like syntax and then compiling and linking it into
extensions which can be transparently used from within
Python. These libraries are the only installation and run-
time dependencies of madmom besides the Python stan-
dard library itself, supported in version 2.7 as well as 3.3
and newer.

1.1.8 Multi-core capability

We designed madmom to be able to exploit the multi-core
capabilities of modern computer architectures, by provid-
ing functionality to run several programs or Processors in
parallel.

1.1.9 Extensive documentation

All source code files contain thorough documentation fol-
lowing the NumPy format. The complete API reference,
instruction on how to build and install the library, as well
as interactive Jupyter [17] notebooks can be found online

at http://madmom.readthedocs.io. The documenta-
tion is built automatically with Sphinx.

1.1.10 Open development process

We follow an open development process and the source
code and documentation of our project is publicly available
on GitHub: http://github.com/CPJKU/madmom. To
maintain high code quality, we use continuous integration
testing via TravisCI, code quality tests via QuantifiedCode,
and test coverage via Coveralls.

2. LIBRARY DESCRIPTION

In this section, we will describe the overall architecture of
madmom, its packages as well as the provided standalone
programs.

madmom’s main API is composed of classes, but much
of the functionality is implemented as functions (in turn
used internally by the classes). This way, madmom of-
fers the ‘best of both worlds’: concise interfaces exposed
through classes, and detailed access to functionality through
functions. In general, the classes can be split in two differ-
ent types: the so called data classes and processor classes.

Data classes represent data entities such as audio sig-
nals or spectrograms. They are implemented as subclasses
of NumPy’s ndarray, and thus offer all array handling rou-
tines inherited directly from NumPy (e.g., transposing or
saving the data to file in either binary or human readable
format). These classes are enriched by additional attributes
and expose additional functionality via methods.

Processor classes exclusively store information on how
to process data, i.e. how to transform one data class into
another (e.g., from an (audio-)Signal into a Spectrogram).
In order to build chains of transformations, each data class
has its corresponding processor class, which implements
this transformation. This enables a simple and fast conver-
sion of algorithm prototypes to callable processing pipelines.

2.1 Standalone Programs

madmom comes with a set of standalone programs, cover-
ing many areas of MIR. The outstanding results in Table 1
highlight the state-of-the-art features madmom provides.

Table 1. Ranks of the programs included in madmom for
the MIREX evaluations, results aggregated over all years
(2006-2016).

Program Task Year Rank
CNNOnsetDetector [18] onset 2016 1
OnsetDetector [7] onset 2013 2
BeatTracker [5] beat MCK 2015 1
DBNBeatTracker [2] beat SMC 2015 1
CRFBeatDetector [10] beat MAZ 2015 1
DBNDownBeatTracker [4] downbeat 2016 1
TempoDetector [3] tempo 2015 1
CNNChordRecognition [12] chord 2016 1



3. ACKNOWLEDGMENTS

This work is supported by the European Union Seventh
Framework Programme FP7 / 2007-2013 through the
GiantSteps project (grant agreement no. 610591) and the
Austrian Science Fund (FWF) project Z159.

4. REFERENCES
[1] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn,

and K. Smith. Cython: The Best of Both Worlds. Computing
in Science Engineering, 13(2), 2011.

[2] S. Böck, F. Krebs, and G. Widmer. A Multi-model Approach
to Beat Tracking considering Heterogeneous Music Styles. In
Proc. of the 15th Int. Society for Music Information Retrieval
Conf. (ISMIR), 2014.

[3] S. Böck, F. Krebs, and G. Widmer. Accurate Tempo Esti-
mation based on Recurrent Neural Networks and Resonating
Comb Filters. In Proc. of the 16th Int. Society for Music In-
formation Retrieval Conf. (ISMIR), 2015.

[4] S. Böck, F. Krebs, and G. Widmer. Joint Beat and Down-
beat Tracking with Recurrent Neural Networks. In Proc. of
the 17th Int. Society for Music Information Retrieval Conf.
(ISMIR), 2016.

[5] S. Böck and M. Schedl. Enhanced Beat Tracking with
Context-Aware Neural Networks. In Proc. of the 14th Int.
Conf. on Digital Audio Effects (DAFx), 2011.

[6] D. Bogdanov, N. Wack, E. Gómez, S. Gulati, P. Herrera,
O. Mayor, G. Roma, J. Salamon, J. Zapata, and X. Serra. Es-
sentia: an open source library for sound and music analysis.
In In Proc. of ACM Multimedia, 2013.

[7] F. Eyben, S. Böck, B. Schuller, and A. Graves. Universal On-
set Detection with Bidirectional Long Short-Term Memory
Neural Networks. In Proc. of the 11th Int. Society for Music
Information Retrieval Conf. (ISMIR), 2010.

[8] F. Eyben, F. Weninger, F. Gross, and B. Schuller. Recent De-
velopments in openSMILE, the Munich Open-Source Mul-
timedia Feature Extractor. In In Proc. of ACM Multimedia,
Barcelona, Spain, 2013.

[9] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed 2016-
05-20].

[10] F. Korzeniowski, S. Böck, and G. Widmer. Probabilistic Ex-
traction of Beat Positions from a Beat Activation Function. In
Proc. of the 15th Int. Society for Music Information Retrieval
Conf. (ISMIR), 2014.

[11] F. Korzeniowski and G. Widmer. Feature learning for chord
recognition: The deep chroma extractor. In Proc. of the 17th
Int. Society for Music Information Retrieval Conf. (ISMIR),
2016.

[12] F. Korzeniowski and G. Widmer. A fully convolutional deep
auditory model for musical chord recognition. In Proc. of the
IEEE Int. Workshop on Machine Learning for Signal Process-
ing (MLSP), 2016.

[13] F. Krebs, S. Böck, and G. Widmer. Rhythmic Pattern Mod-
eling for Beat and Downbeat Tracking in Musical Audio. In
Proc. of the 14th Int. Society for Music Information Retrieval
Conf. (ISMIR), 2013.

[14] O. Lartillot and P. Toiviainen. A Matlab toolbox for musical
feature extraction from audio. In Proc. of the 10th Int. Conf.
on Digital Audio Effects (DAFx), 2007.

[15] B. Mathieu, S. Essid, T. Fillon, and J. Prado. YAAFE, an easy
to use and efficient audio feature extraction software. In Proc.
of the 11th Int. Society for Music Information Retrieval Conf.
(ISMIR), 2010.

[16] B. McFee, C. Raffel, D. Liang, D. Ellis, M. McVicar, E. Bat-
tenberg, and O. Nieto. librosa: Audio and Music Signal Anal-
ysis in Python. In Proc. of the 14th Python in Science Conf.
(SCIPY), 2015.

[17] F. Pérez and B. E. Granger. IPython: A System for Interac-
tive Scientific Computing. Computing in Science Engineer-
ing, 9(3), 2007.

[18] J. Schlüter and S. Böck. Musical Onset Detection with Con-
volutional Neural Networks. In Proceedings of the 6th Inter-
national Workshop on Machine Learning and Music, Prague,
Czech Republic, 2013.

[19] J. Schlüter and S. Böck. Improved musical onset detection
with convolutional neural networks. In Proc. of the 39th Int.
Conf. on Acoustics, Speech and Signal Processing (ICASSP),
2014.

[20] G. Tzanetakis and P. Cook. MARSYAS: a framework for au-
dio analysis. Organised Sound, 4, 2000.

[21] S. van der Walt, S. C. Colbert, and G. Varoquaux. The NumPy
Array: A Structure for Efficient Numerical Computation.
Computing in Science Engineering, 13(2), 2011.


