
PYSOX: LEVERAGING THE AUDIO SIGNAL PROCESSING POWER OF
SOX IN PYTHON

Rachel M. Bittner1,2, Eric Humphrey2, Juan P. Bello1

1 Music and Audio Research Lab, New York University
2 Spotify Inc.

ABSTRACT

SoX is a popular command line tool for sound processing.
Among many other processes, it allows users to perform a
repeated process (e.g. file conversion) over a large batch of
audio files and apply a chains of audio effects (e.g. com-
pression, reverb) in a single line of code. SoX has proven
to be a useful resource for Music Information Retrieval
(MIR) tasks, and in particular for dataset creation. While
the library is powerful and stable, building long strings of
command line arguments can be messy and error prone.
We present pysox, a Python library that provides a sim-
ple interface between Python and SoX, making it easier to
incorporate SoX into MIR workflows.

1. INTRODUCTION

The SoX (Sound exchange) library [3] is a widely used
cross-platform tool for sound processing. The first version
of SoX was first released in 1991 1 , and is still actively
maintained. With over 25 years of development, SoX is
both powerful and stable. Self-branded as “the swiss army
knife of sound processing,” it performs a huge range of
useful operations, such as file format conversions, cut-
ting and splicing, silence removal, and more complex ef-
fects such as reverb and compression. Among many other
projects, it powers the popular open-source audio editing
application Audacity [1]. Unlike most audio processing
software, SoX has a wide array of codec support, and can
thus read and convert between virtually every known audio
file format 2 .

Developing MIR algorithms frequently requires batch
processing of audio files. Tasks like format normalization,
splitting files into small segments, or adding background
noise are tedious and error prone when done by hand, but
can be performed in one line of code with SoX. For ex-
ample, SoX was heavily utilized in the creation of several

1 http://sox.sourceforge.net/SoX/History
2 Available when the appropriate add-ons are installed, such as liblame

support for mp3s or libvorbis for oggs.

© Rachel M. Bittner1,2, Eric Humphrey2, Juan P. Bello1.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Rachel M. Bittner1,2, Eric
Humphrey2, Juan P. Bello1. “pysox: Leveraging the audio signal pro-
cessing power of SoX in Python”, Extended abstracts for the Late-
Breaking Demo Session of the 17th International Society for Music In-
formation Retrieval Conference, 2016.

audio datasets including MedleyDB [4, 5] and the Urban
Sound datasets [11].

While the SoX library is powerful, it requires care-
ful parsing of the documentation and is non-trivial to
master. For example, applying compression to the file
input.wav and save it as output.wav could be
achieved with the following command:

$ sox input.wav output.wav compand \
0.3,0.8 6.0:-70,-70,-60,-20,0,0

Understanding the meanings of each of the numbers fol-
lowing the compand argument requires digging into the
documentation, and the command cannot be used without
the string of numbers, as there is no default setting. Fur-
thermore, when multiple effects are applied, the commands
quickly become long and unreadable. Other command line
audio processing tools such as ffmpeg [2] suffer from
similar challenges.

Building upon SoX, we present pysox, a software li-
brary that provides a user-friendly Python interface to the
command line utility. With many modern MIR workflows
being written in Python, pysox helps bridge the gap be-
tween this powerful utility and research code, providing
additional functionality for argument and improved debug-
ging. Whenever possible, we provide reasonable default
settings for effects and documentation for what each of
the arguments controls. Note that the decision to wrap
the command line interface is motivated by two realities.
While it may be tempting to write a pure-Python library
that has similar functionality to SoX, wrapping compiled
routines is more efficient to develop and execute, and
benefits from the stability and wisdom of the existing li-
brary. Alternatively, the software license of SoX is not con-
ducive to the development of C-bindings, like the OpenCV
project 3 , being released under the GPLv2 licence 4 , which
would otherwise handcuff its widespread usage.

There have recently been a number of python
tools developed for music and audio processing, such
as librosa [8], essentia [6], mir eval [10],
muda [7], or pretty-midi [9], and pysox comple-
ments the functionality of these tools. For example,
pysox can be used for standardizing audio formats for use
with these libraries, or for efficiently applying trimming,
fades, or compression to a collection of audio.

3 http://docs.opencv.org/
4 https://sourceforge.net/directory/os:mac/

license:gpl/

The pysox library is released open-source on github 5

and can be installed with pip:

$ pip install sox

2. FUNCTIONALITY

The functionality supported in pysox includes transfor-
mations of single audio files, combinations of multiple au-
dio files, and retrieval of audio file information.

2.1 Transformers

Transformer objects are used to apply a chain of effects
to an input audio file and save the new file to a specified
output path.

The most basic usage of a Transformer object is to
convert a file to a different format:

>>> tfm = sox.Transformer(
'path/to/input_audio.wav',
'path/to/output/audio.aiff')

>>> tfm.build()

Output files are not created until the build command is
called.

Any number of effects can be chained together. For
example, the following code changes the sample rate to
8000 Hz, normalizes it to -3 dB, removes any long silences,
trims the file to be 30 seconds long, adds reverb, applies a
fade in/out, and saves the output as an mp3 file.

initialize transformer
>>> tfm = sox.Transformer(

'path/to/input_audio.wav',
'path/to/output/audio.mp3')

change sample rate to 8000 Hz
>>> tfm.rate(samplerate=8000)
normalize to -3 dB
>>> tfm.norm(db_level=-3)
remove any long silences
>>> tfm.silence()
trim the audio to the first 30 seconds
>>> tfm.trim(0, 30)
add reverb with default parameters
>>> tfm.reverb()
apply a fade in and fade out
>>> tfm.fade(fade_in_len=1.0,

fade_out_len=0.5)
create the output file.
>>> tfm.build()

If incompatible arguments are passed to one of the ef-
fects, pysox throws an error. This is an advantage over
the command line version of SoX, where errors are only
thrown when attempting to execute the command; often-
times files are still created, making it difficult to tell when
something went wrong and what was responsible for it.

Transformer objects additionally have a play
method, which allows the user to preview the audio ren-
dered with the current set of effects without actually creat-
ing the audio file.

5 https://github.com/rabitt/pysox

2.2 Combiners

Combiner objects are used to combine multiple audio
files in the manner specified (e.g. mixing), optionally apply
effects, and save the output file to a specified path. Multi-
ple audio files may be combined by (1) concatenating (2)
stacking into multiple channels (3) mixing (sum or power
sum) or (4) multiplying. Optionally, volume adjustments
can be applied to each input file before combining.

For example, AM modulation could be applied to a car-
rier by multiplying:

>>> cbn = sox.Combiner(
['modulator.aiff', 'carrier.mp3'],
'AM_modulated.wav',
combine_type='multiply')

>>> cbn.build()

All effects that can be applied to single files can be ap-
plied to the output of the Combiner:

initialize Combiner. Mixes file2.wav
at half its original volume.
>>> input_files = [

'file1.wav', 'file2.wav', 'file3.mp3']
>>> cbn = sox.Combiner(

input_files, 'output.wav',
combine_type='mix',
input_volumes=[1, 0.5, 1])

low pass filter the mixed audio
>>> cbn.lowpass(frequency=2000)
reverse the audio
>>> cbn.reverse()
create the output file
>>> cbn.build()

2.3 File Information

In addition to manipulating files, SoX can also look up in-
formation about a given audio file. pysox provides this
in the sox.file info module. Information such as the
duration, number of channels, sample encoding, and sam-
ple statistics can be extracted.

from sox import file_info
>>> file_info.duration('72sec_file.mp3')
72.0
>>> file_info.channels('stereo_file.wav')
2
>>> file_info.sample_encoding('music.ogg')
Vorbis
>>> file_info.silent('silent_file.aiff')
True

These methods are particularly useful for performing trans-
formations when the state of the source audio is unknown.

3. FUTURE WORK

The core functionality of SoX is included in pysox, how-
ever there are common operations, such as crossfading,
that are possible in the existing framework but tedious. We
would like to expand pysox to include cookbook-style
utility methods.

4. REFERENCES

[1] Audacity, (accessed July 31, 2016). http://www.
audacityteam.org/.

[2] FFmpeg, (accessed July 31, 2016). http://
ffmpeg.org/.

[3] SoX Sound eXchange, (accessed July 31, 2016).
http://sox.sourceforge.net/.

[4] Rachel M Bittner, Justin Salamon, Mike Tierney,
Matthias Mauch, Chris Cannam, and Juan Pablo
Bello. MedleyDB: A multitrack dataset for annotation-
intensive mir research. In ISMIR ’14 (Taipei, Taiwan),
pages 155–160, 2014.

[5] Rachel M. Bittner, Julia Wilkins, Hanna Yip, and
Juan P. Bello. MedleyDB 2.0: New data and a sys-
tem for sustainable data collection. In Proceedings of
the 17th International Society for Music Information
Retrieval Conference Late Breaking and Demo Papers,
2016.

[6] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez,
Sankalp Gulati, Perfecto Herrera, Oscar Mayor, Ger-
ard Roma, Justin Salamon, José R Zapata, and Xavier
Serra. Essentia: An audio analysis library for music in-
formation retrieval. In In Proceedings of the 14th Inter-
national Society for Music Information Retrieval Con-
ference, ISMIR, pages 493–498. Citeseer, 2013.

[7] B. McFee, E.J. Humphrey, and J.P. Bello. A software
framework for musical data augmentation. In 16th In-
ternational Society for Music Information Retrieval
Conference, ISMIR, 2015.

[8] B. McFee, C. Raffel, D. Liang, D.P.W. Ellis,
M. McVicar, E. Battenberg, and O. Nieto. librosa: Au-
dio and music signal analysis in python. In 14th annual
Scientific Computing with Python conference, SciPy,
July 2015.

[9] Colin Raffel and Daniel PW Ellis. Intuitive anal-
ysis, creation and manipulation of midi data with
pretty midi. In Proceedings of the 15th International
Society for Music Information Retrieval Conference
Late Breaking and Demo Papers, 2014.

[10] Colin Raffel, Brian McFee, Eric J Humphrey, Justin
Salamon, Oriol Nieto, Dawen Liang, Daniel PW Ellis,
and C Colin Raffel. mir eval: A transparent implemen-
tation of common mir metrics. In In Proceedings of the
15th International Society for Music Information Re-
trieval Conference, ISMIR. Citeseer, 2014.

[11] J. Salamon, C. Jacoby, and J. P. Bello. A dataset and
taxonomy for urban sound research. In 22st ACM In-
ternational Conference on Multimedia (ACM-MM’14),
Orlando, FL, USA, Nov. 2014.

