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ABSTRACT

A musical performance can convey both the musicians’
interpretation of the written score as well as emphasize,
or even manipulate, the emotional content of the music
through small variations in timing, dynamics, and tuning.
This paper describes the latest developments in a suite of
automatic software tools for quantitatively analyzing musi-
cal performances for which a corresponding musical score
is available, entitled the Automatic Music Performance Anal-
ysis and Comparison Toolkit (AMPACT). AMPACT uses
a score-informed approach to estimate timing, pitch, and
loudness parameters from both monophonic and, now, poly-
phonic audio. Robust extraction of higher-level timing,
pitch, and loudness performance descriptors requires pre-
cise frame-level estimation of note onsets and offsets, fun-
damental frequency, and power. This paper describes the
score-informed approaches implemented in AMPACT for
this frame-level estimation in polyphonic audio.

1. INTRODUCTION

Precise, frame-level estimation of signal properties is a nec-
essary first step in empirically measuring musical perfor-
mance parameters. While numerous solutions exist for
extracting this type of information from monophonic au-
dio, e.g., [3], estimating it from polyphonic audio remains
an unsolved problem. Score-guided approaches offer a
means of reducing the complexity of the problem that blind
transcription methods face, by providing an indication of
which time-frequency regions of the signal are associated
with each musical note once the score has been aligned
to the audio. This paper describes the score-informed ap-
proaches implemented in the current version of the Auto-
matic Music Performance Analysis and Comparison Toolkit
(AMPACT) 1 [6] for estimating notes onsets and offsets,
fundamental frequency (f0), and power.

1 http://www.ampact.org
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2. PERFORMANCE PARAMETERS

2.1 Timing

AMPACT uses a hybrid dynamic time warping (DTW) /
hidden Markov model (HMM) approach to estimate note
onset and offset locations, includes asynchronies between
notes marked as simultaneities in the musical score. The
use of the DTW alignment removes the need to encode
information about the score in the HMM. Specially, by as-
suming that the DTW alignment is roughly correct, we do
not need to rely excessively on noisy f0 estimates in the
HMM. DTW is used in the first pass to obtain a rough es-
timate of the note locations, but rather than running the
HMM on the entire signal, the HMM polyphonic algorithm
refines the offset-onset transitions between groups of “si-
multaneous” notes in the DTW alignment in order to esti-
mate the location of the onsets and offsets for each voice.
The HMM assumes that the DTW is roughly correct and
only looks at the audio 125 ms before and after the on-
set identified by the DTW alignment, thus it is only able to
correct errors in the DTW alignment by a maximum of that
amount. A visual representation of the DTW alignment al-
lows for detection of gross errors, which can be manually
corrected. The details of the algorithm are available in [4].

2.2 Fundamental Frequency

In order to obtain f0 estimates for each note we first ex-
tract observations close to the expected frequencies of the
harmonics of the fundamental (including the fundamental
itself) based on the initial f0 value from the aligned score.
The simplest approach is to use the central bin values of the
discrete Fourier transform (DFT). In this DFT approach,
we convert these frequencies to the frequency of the corre-
sponding fundamental by dividing by the harmonic num-
ber of the closest harmonic, and then take the mean of
these frequencies weighted by their respective magnitudes.
Mathematically,

f̂0 =

∑
n

∑
ωi∈N (nf0)

ωi

n x(ωi)∑
n

∑
ωi∈N (nf0)

x(ωi)
, (1)

where x(ωi) is the cube root of the magnitude at frequency
ωi and N (nf0) is the set of frequencies in the neighbor-
hood of nf0, the nth harmonic, here five DFT bins. Be-
cause the output of this process is a more refined estimate
of f0, we can use this new estimate as the basis for per-
forming the same procedure again, leading to a further re-
fined estimate. Through experimentation we found that



this process tends to converge to a stable estimate after 5–
10 iterations, so we use 10 iterations in our calculations.

The DFT runs into problems however for signals com-
posed of sinusoids that are spaced farther apart than the
DFT frequency samples. In this case, several consecutive
frequencies will be dominated by a single sinusoid, but
treated by the DFT as separate sinusoids. An instantaneous
frequency (IF) approach, on the other hand, will correctly
identify the frequency of this sinusoid in all of them. In the
IF approach, the frequency values are estimated from the
time derivative of the phase spectrum according to [1, 2],
as implemented in MATLAB by Dan Ellis 2 . The weights
are still the cube root of the DFT magnitudes at the cor-
responding points. The instantaneous frequency provides
a modified estimate of the frequency of the dominant si-
nusoid in each DFT bin, ωi in (1). The IF features use
a neighborhood size, N (nf0) of 27 Hz, the equivalent of
two DFT bins, below and above the predicted frequency.

2.3 Power

The power estimates were derived from the same data that
were used for the f0 estimates in (1), except that instead of
using cube root compressed magnitudes, they used squared
magnitudes, designated x̃(ωi). In particular, for a given
estimated f0, the power was estimated as

p̂(f0) =
∑
n

∑
ωi∈N (nf0)

x̃(ωi). (2)

By using a neighborhood larger than a single observation,
this method is very unlikely to miss any target energy, but
could include additional energy from simultaneous notes.

3. VALIDATION OF f0 AND POWER ESTIMATES

3.1 Test Data

We validated this approach using the Bach 10 dataset, which
contains 10 four-part Bach chorales recorded by violin,
clarinet, saxophone and bassoon for a 330 seconds of an-
notated multi-part audio [7], and a 40 second excerpt from
the opening of “Kyrie” from Machaut’s four-part Messe de
Notre Dame recorded by soprano, alto, tenor, and bass [5].
The Bach10 dataset consists of hand annotated onset es-
timates for each notated simultaneity, while the Machaut
recordings consist of hand annotated onsets and offsets for
each individual monophonic line (thus accounting for tim-
ing asynchronies between musical lines). In the experi-
ment, the available hand annotated timings were used in-
stead of MIDI alignment to avoid propagating error from
the onset/offset estimation step to the f0 and power esti-
mation. In order to account for discrepancies in the tempo-
ral annotations, particularly the absence of offsets in the
Bach10 dataset, only the central 80% of the frames for
each note were used in the evaluation. MIDI note informa-
tion corresponding to each onset was also provided in both
datasets. The combination of timing and MIDI note infor-
mation was used to specify time-frequency regions of in-
terest in the signal used by the algorithms described above.

2 http://labrosa.ee.columbia.edu/projects/coversongs/ifgram.m.html

3.2 Ground Truth

The score-guided estimates of frame-wise f0 from the poly-
phonic mixture of four voices were evaluated against the
frame-wise f0 estimates calculated on the original mono-
phonic tracks using a MATLAB implementation 3 of the
YIN algorithm [3]. The window size was set adaptively by
dividing the sampling rate (sr) by the minimum f0 speci-
fied. Both a minimum and maximum f0 estimate were set
adaptively to the expected frequency of the note minus and
plus two semitones. The hop size was set to 32/sr. The
error between the estimates and the ground truth was mea-
sured in cents. To combine these errors across all of the
frames of a note, a weighted sum was computed

E =

√√√√∑n

(
f̂0(n)− f0(n)

)2
wn∑

n wn
(3)

where wn is the weighting applied to the nth frame. This
weighting was computed from YIN’s estimate of the mag-
nitude of the pitched component of the monophonic signal.
Specifically, for a given time frame, YIN computes the to-
tal power at that frame, pn and and estimate of the propor-
tion of that power that is due to aperiodic components, an.
We compute the weights as

wn =
√
(1− an)pn. (4)

The main motivation for using a weighting like this was
to decrease the importance of low-energy regions, such as
breaths and transitions between notes, where there is no
true f0 to speak of and all estimates are noisy.

3.3 Results

Overall the DFT and the IF approaches performed compa-
rably against the YIN estimates for f0 and power. Both
approaches ran about 3x slower than YIN (2.82x for the
DFT approach and 2.99x for the IF approach). For the
f0 estimates, the median error was 23 cents for the DFT
approach and 21 cents for the IF approach, and for both
100% of thef0 estimates were within 50 cents of the YIN
estimates. The IF approach had an advantage, however,
as it had both the lowest variability (as measured by the
spread between the 25th and 75th percentiles) and did not
smooth vibrato sections as the DFT approach did. In the
power estimates, th IF marginally outperforms the DFT in
terms of having a lower median error (2.2 dB vs 2.3 dB)
against the YIN estimates and a smaller spread in its 25th
and 75th percentiles.

4. CONCLUSIONS

These approaches to extracting the lower-level frame-wise
descriptors of note onsets and offsets, f0, and power from
polyphonic audio have been implemented in the current
version of AMPACT and integrated into the existing algo-
rithms in AMPACT for describing higher-level note-wise
descriptors of timing, pitch, and loudness.

3 http://audition.ens.fr/adc/sw/yin.zip
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