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ABSTRACT

Untwist is a new open source toolbox for audio source
separation. The library provides a self-contained object-
oriented framework including common source separation
algorithms as well as input/output functions, data man-
agement utilities and time-frequency transforms. Every-
thing is implemented in Python, facilitating research, ex-
perimentation and prototyping across platforms. The code
is available on github 1 .

1. INTRODUCTION

The availability of software for audio source separation is
not on par with related fields, such as Music Information
Retrieval (MIR). In order to test different approaches, a re-
searcher must often retrieve scripts from different sources,
when available. Most of the available code is implemented
in Matlab. However, following many other disciplines,
research on audio source separation could greatly benefit
from the tools available in scientific Python. In this paper
we introduce a new library focusing on audio source sepa-
ration. The design is inspired in object-oriented data-flow
systems, but using pure Python to facilitate research and
experimentation.

2. RELATED WORK

After many years of MIR and general audio analysis re-
search, a number of libraries for audio analysis are avail-
able [2–4,11,14,15,18,21]. A common approach has been
to implement the basic building blocks in C or C++, and
provide bindings for high level languages. With the devel-
opment of NumPy, Cython and specialized libraries like
Theano, this approach does not seem necessary in many
cases. Pure Python implementations are especially con-
venient for research, since the code for any algorithm can
be consulted and modified without changing the program-
ming language and environment. Some recent libraries

1 https://github.com/IoSR-Surrey/untwist
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like libROSA [15] or MadMom 2 are fully implemented in
Python. Both include some source separation algorithms,
but focus more broadly on MIR.

Libraries specifically focusing on audio source separa-
tion are scarce. Perhaps the most well-known is the Flexi-
ble Audio Source Separation Toolkit (FASST) [19]. FASST
is based on a general mathematical formulation, which fo-
cuses on the local gaussian model [17]. The different op-
tions are specified via configuration. In this sense, FASST
is modular in a mathematical sense, but from the point of
view of software engineering, it is not designed to facili-
tate building new algorithms outside this framework. Our
library focuses specifically on audio source separation, us-
ing modular, object-oriented scripting.

3. DESIGN CONCEPTS

The general design is based on Object-Oriented Program-
ming (OOP), but leveraging the weak encapsulation phi-
losophy in Python. All code and data are available to the
researcher. The library contains mainly data objects, pro-
cessing objects and models.

Our approach for data representation consists in sub-
classing the ndarray class in NumPy, and extend it with
convenience methods for I/O. All data objects can still be
indexed and operated as standard arrays.

Processor ojects are configured in the constructor, and
then process incoming data according to the configured pa-
rameters. Processor objects must be serializable, and the
process method shall not modify the instance state, so
that they can be used in parallel. Models represent algo-
rithms that may take time to train, and so a persistence
mechanism is implemented for their parameters. A spe-
cial consideration is needed for channel layouts since it is
a central topic in audio source separation. We adapt the
notion of “function rank” used in array programming [10]
in order to automatically parallelize process methods
via Python annotations. For the moment, this allows com-
puting time-frequency transforms of multi-channel wave-
forms. A set of common conventions are used with re-
spect to data layout: waveform channels are column vec-
tors, spectrograms are 2D arrays where columns are spec-
tral frames. Models expect data to have one observation
per row, so spectrograms and spectral masks are transposed
when with models.

2 http://madmom.readthedocs.org/en/latest/



1 import numpy as np
2 import matplotlib.pyplot as plt
3 from untwist.data import Wave, RatioMask
4 from untwist.transforms import STFT, ISTFT
5 from untwist.factorizations import RPCA
6
7 stft = STFT()
8 istft = ISTFT()
9 rpca = RPCA(iterations = 100)

10
11 x = Wave.read("mix.wav")
12 X = stft.process(x)
13
14 # this may take some time
15 (L,S) = rpca.process(X.magnitude())
16
17 M = RatioMask(np.abs(S), np.abs(L))
18 v = istft.process(X * M)
19 v.write("vocal_estimate.wav")
20
21 # (...) calls to plotting method in X, L, S, M

Figure 1. Code and resulting output for vocals separation using RobustPCA

4. FUNCTIONALITY

This section describes the different modules currently in-
cluded in untwist.

4.1 I/O

Input and output functionality is implemented in data ob-
jects. Audio buffers can be read and written from/to disk.
Plotting functions using matplotlib [9] are implemented
in most objects. Audio playback is possible using he Python
bindings for portaudio [1] available in pyaudio. A Dataset
class provides basic functionality for building, indexing,
loading, saving, shingling, shuffling and normalizing datasets.
A specialized subclass is available for using memory-mapped
files 3 , beyond available RAM.

4.2 Time-frequency transforms

Most audio source separation algorithms work on time-
frequency representations, mainly the Short-Time Fourier
Transform (STFT). In addition to STFT, the Quadratic ERB
transform [22] is implemented, since it has been used in
several separation and transcription experiments [5, 23].

4.3 Analysis

While analysis is not the goal of the library, some basic
audio features can be useful for separation. For the mo-
ment a few common onset and pitch detection algorithms
are available.

4.4 Factorizations

Non-negative Matrix Factorization (NMF) [12] is probably
the most widely used family of algorithms for audio source
separation. Our implementation is inspired by nmflib 4 .
Many variants are accommodated under a unified interface.

3 http://docs.scipy.org/doc/numpy-1.10.0/
reference/generated/numpy.memmap.html

4 http://www.ee.columbia.edu/˜grindlay/code.
html

Robust Principal Component Analysis (RPCA) is another
decomposition that has been recently used for singing voice
separation [7]. Our implementation is based on the Aug-
mented Lagrange Multiplier (ALM) method [13].

4.5 Neural networks

Deep Neural Networks (DNN) are increasingly used for
audio source separation [8, 16]. These algorithms allow
leveraging existing data in a supervised setting. Our li-
brary includes a generic Multi-Layer Perceptron (MLP)
implementation, allowing the creation of feed-forward net-
works with a simple specification for multiple architectures
and activation functions. The implementation is based on
Theano [20]. Training is perfrormed by a Stochastic Gra-
dient Descent (SGD) wrapper with parameters for momen-
tum, early-stopping and learning rate scheduling.

4.6 HPSS

Harmonic-Percussive Source Separation (HPSS) can be seen
as a general application of source separation, or as a pre-
processing stage. We implemented the simple and popular
HPSS method by Fitzgerald [6] based on median filters.

5. EXAMPLE

The library is primarily targeted at audio source separation
research. In this context, the user is expected to start writ-
ing short scripts and trying things in an interactive con-
sole. Consolidated algorithms can then be implemented
in classes. Our aim is to support brevity and readability
for research code. Figure 1 shows a very short example
of separation using RPCA. All variables defined in lines
11 − 18 correspond to data objects that can be inspected,
plotted and played (in the case of waveforms) in an inter-
active console.
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