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Systems science models use computer-based algorithms to model dynamic interactions between study units
within and across levels and are characterized by nonlinear and feedback processes. They are particularly valu-
able approaches that complement the traditional epidemiologic toolbox in cases in which real data are not available
and in cases in which traditional epidemiologic methods are limited by issues such as interference, spatial depen-
dence, and dynamic feedback processes. In this commentary, we propose 2 key contributions that systems mod-
els can make to epidemiology: 1) the ability to test assumptions about underlying mechanisms that give rise to
population distributions of disease; and 2) help in identifying the types of interventions that have the greatest poten-
tial to reduce population rates of disease in the future or in new sites where they have not yet been implemented.
We discuss central challenges in the application of systems science approaches in epidemiology, propose poten-
tial solutions, and predict future developments in the role that systems science can play in epidemiology.
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Systems science focuses on the study of complex adaptive
systems and includesmethodological approaches, such as systems
dynamics models (1), network models (2, 3), and agent-based
models (ABMs) (4). These approaches are often characterized
by nonlinear relations and feedback processes, such that small
changes can produce emergent properties that are not entirely
predictable by individual components. From a methodologi-
cal perspective, complex systems approaches use computer-
based algorithms tomodel dynamic interactions between units,
or agents, within and across multiple levels. These models
have been extensively developed for modeling infectious dis-
ease transmission (5–8) and are increasingly used in chronic
disease and injury epidemiology (9–15).

HOWDOESSYSTEMSSCIENCE FIT INWITHIN THE
EPIDEMIOLOGYMACHINERY?

The value of systems science models in epidemiology lies in
their ability to complement traditional epidemiologic tools
when real data are not available or able to answer epidemiologic
questions and to answer questions that are ill-suited to tradi-
tional epidemiologic methods (6, 16–21).

First, systems science approaches can be used to test assump-
tions about underlying mechanisms and feedback processes
that give rise to the population distribution of complex health
behaviors and disease. By assigning a set of behavioral and
transition probabilities, we can examine the types of condi-
tions that produce observed disease patterns and provide
quantitative bounds around the plausibility of mechanisms
that explain these patterns. An understanding of these mecha-
nisms can provide insights into why past interventions may
have succeeded or failed. For example, to explain trends in
prescription opioid use, misuse, and overdose,Wakeland et al.
(22) modeled a complex system in which individuals initiated
nonmedical use, transitioned to paying for opioids and tamper-
ing with them, and then further transitioned to heroin use. The
extent to which drug misuse trajectories were influenced by the
availability, accessibility, and physical properties of the prescrip-
tion opioid supply was tested based on the underlying simulated
dynamics that gave rise to historical trends in use and abuse of
nonmedical prescription opioids. This simulation of mecha-
nisms suggested that interventions to reduce informal sharing of
opioids could reduce opioid abuse to a greater extent than could
creating tamper-resistant prescription opioid formulations.
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Second, we can use systems science approaches to iden-
tify the types of interventions that have the greatest potential
to reduce population rates of disease, either in the future or in
new sites where they have not yet been implemented. Sys-
tems science models can complement evaluations of existing
interventions, integrating counterfactual questions with model-
ing strategies that re-weight effect estimates based on concerns
about transportability (23, 24). In this case, systems models
can answer research questions about interdependent causal
effects that are bedeviled by concerns about feedback loops,
interference, and spatial dependence (25). For example, an
ABM was used to describe transmission of human immuno-
deficiency virus (HIV) in a dynamic network of people who
injected drugs, those who used non-injection drugs, and those
who did not use drugs (26). By simulating a series of hypo-
thetical intervention scenarios, the authors found that a sig-
nificant scale-up of multiple prevention programs would be
necessary to reduce rates of new HIV infections in people
who inject drugs over the next decades.

In addition, systems sciencemodels such asABMs that embed
systems dynamics and network models can answer questions
about the impact of interventions given selection into social
networks or spatial contexts, as well as placement of inter-
ventions. For example, Keane et al. (27) predicted what “could”
happen to opioid overdose rates if they varied the number and
spatial location of naloxone distribution sites and the number of
naloxone kits provided in a community, given different assump-
tions about secondary distribution of naloxone within social net-
works and the local dynamics of substance use.

CURRENTCENTRALCHALLENGES IN THEUSEOF
SYSTEMSSCIENCEAPPROACHES

Advances in computational machinery and in the use of “big
data” for public health have made it possible to answer increas-
ingly sophisticated questions with systems science, yet chal-
lenges abound. First, systems science models make strong
assumptions about behavioral and disease probabilities, the
structure and function of networks, and the dynamics of dis-
ease. Hence, model calibration and validation remain a cen-
tral challenge, because such data are often missing and/or
confounded; further, calibration often requires putting together
data elements from multiple, disparate data sets. This issue has
become especially relevant as there has been a push toward
models that replicate a “real-world setting” and rely on multi-
ple assumptions about individuals, their interactions with each
other, and their interactions with their environment. Second,
concerns exist about the risk for bias, especially with increas-
ingly complex models (28). Because systems models often
treat parameters of intervention effects obtained from one
population as causal effects in a different population, biases
arise because of lack of transportability when 2 populations
have different underlying risks for the study outcome or dif-
ferent distributions of unmeasured confounding (29). Fur-
ther, treating parameters of past intervention effects obtained
from one population as causal effects in a different population
gives rise to the potential for collider bias in the context of
time-dependent confounding (28, 29). Third, the central chal-
lenge related to the issues discussed above lies in validation.

In the absence of data to calibrate model parameters, estima-
tion of parameters is often carried out by altering parameter
values untilmodel summarymeasuresmatch those of the observed
data. Unfortunately, there are multiple sets of parameters that
can generate similar model summary measures, making it dif-
ficult to conclude whether the model assumptions are valid.

HOWCANWEOVERCOME THESECHALLENGES?

Triangulation is critical to address concerns about calibra-
tion, bias, and validation in systems science models for pub-
lic health. First, we need to invest in iterative efforts that combine
primary data collection, systems modeling, and implementa-
tion of interventions (30). Specification of a systems dynamic,
network- or agent-based model forces us to be precise about
the source of each model parameter and in that way provides
insight into key gaps in data that need to be collected. An ideal
approach would involve modeling, identifying gaps in key
parameters, investing in primary data collection to fill such
gaps, and re-parameterization of a better-calibrated model. In
addition, in cases in which systems modeling is used to predict
the impact of a specific intervention, such models should form
part of a larger evaluation effort inwhich initial predictions about
intervention effects estimated through systems models can be
tested through the implementation and evaluation of actual inter-
ventions. In turn, this could inform a more well-calibrated and
valid model that could be used to answer new questions about
the mechanisms through which such interventions might work
and their impact on other contexts and time frames.

Second, we can incorporate epidemiologic causal inference
methods to address sources of bias in the estimation of sys-
tems science models. Some have suggested that methods such
as parametric g-computation can be used instead of systems
science approaches to examine complex systems (28, 29), as
they can handle interdependent causal effects and feedback
loops but rely on a single data set to calibrate simulations and
are more robust to threats of time-dependent confounding and
transportability violations (29). Although such methods are
quite valuable, they cannot be used, in isolation, to answer
precisely the types of questions that systems science models
are best suited to answer, particularly questions that require
explicit modeling of the role that space and social networks
could play in shaping the impact of new interventions. Yet, they
can play a key role in strengthening the validity of systems
science models. For example, an ABM could use parametric
g-computation to estimate specific causal effects of well-
defined interventions within a broader system, adding layers to
the model to test how processes of social interaction, interfer-
ence, and space modify the impact of the intervention. Indeed,
g-computation methods excel at identifying causal effects,
whereas ABMs require causal effects for valid estimation and
can export such effects to illuminate the bounds of potential
future intervention and prevention effects. Both are necessary
and complementary rather than alternatives (31). Further, we
could draw from existing efforts in epidemiology and statistics
to develop transportability estimates, devising new ways to
incorporate such estimates into systems sciencemodels in order
to predict the potential impact of new interventions in new con-
texts (32).
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Third, all systems science modeling efforts require careful
calibration and validation efforts. This includes standard ap-
proaches such as conducting period-by-period calibration-
test-recalibration processes, including testingwhether themodel
can forecast study outcomes at a later time point for which
there are available data; iteratively excluding study units and
testing whether the model can accurately predict the outcome
of interventions adopted in the excluded units; and testing how
robust the model is to variations in key assumptions about
model dynamics (33). Uncertainty analysis approaches, such
as Latin hypercube sampling of the space of plausible param-
eter values, can be used to efficiently test the sensitivity of re-
sults to the choice of multiple input parameters at the same
time without having to consider all the possible permutations
(34). Finally, methods have been applied in infectious disease
epidemiology to strengthen the reliability and validity of pre-
dictions made from systems science models. These methods
include the use of Bayesian Markov chain Monte Carlo and
approximate Bayesian computation methods to estimate para-
meters (8). These methods allow us to conduct statistical infer-
ence by searching parameter space to obtain maximum
likelihood estimates and 95% credible intervals for parameters
of interest (35) and to use deviance information criteria to assist
in model selection (36, 37). Because systems science approaches
are increasingly used infields of epidemiology beyond infectious
disease, uncertainty analyses and empirical validation meth-
ods such as these need to form an integral part of the model-
ing process.

AVISION FORTHE FUTURE

We predict that 3 key developments will shape the future
of systems sciencemodeling in epidemiology. First, the quality
and complexity of systems science models will likely advance
at an exponential pace because of the acceleration of big data
(38) initiatives that provide access to detailed data on indivi-
duals, their health histories, andwhere they live, work, and attend
school. One example is the Framework for Reconstructing Epi-
demiological Dynamics, an open-source agent-based modeling
simulation platform (39) that uses census-based synthetic po-
pulations that are statistically equivalent to the population in
any state or county (40, 41), and that simulates age-appropriate
daily activities and interactions of millions of people. Increas-
ingly sophisticated approaches to combine highly detailed
location data with health histories (e.g., electronic health re-
cords, Medicaid/Medicare data) in user-friendly platforms
will make systems modeling approaches more accessible to
epidemiologists and will provide the means to base models
on higher-quality inputs. Second, machine-learning approaches
that incorporate high-dimensional sets of covariates and com-
plex interactions for individual and place-based risk predic-
tion could substantially improve the predictive power of
systems science model inputs (42), especially as learning al-
gorithms are increasingly sensitive to real-time data inputs
for continuous adaptive learning. They can be used for risk
prediction, to account for complex sets of confounders and effect
modifiers (42), to predict future hotspots of disease risk (43), and
to predict transportability of interventions across sites (32).
We envision a scenario where constantly updated sets of big

data would inform machine-learning algorithms used for indi-
vidual and place-based risk prediction, which would in turn
serve as inputs into a systems model. Third, the integration of
standard validation approaches into systems science model-
ing will be critical. Although the use of methods such as Latin
hypercube sampling for uncertainty analysis andMarkov chain
Monte Carlo methods for parameter estimation have been used
in infectious disease modeling, they are relatively underex-
plored in the application of systems modeling in other areas
of epidemiology.

As data become increasingly “big” andmachine-learning sys-
tems for predictive modeling become more sophisticated, we
can use systems modeling to test assumptions about the types of
conditions that give rise to population distributions of disease, as
well as the types of interventions that can reduce the population
rates of disease, in ways we cannot yet with real data. By com-
bining publicly accessible central data repositories with area-
and person-level prediction and causal frameworks, applying
careful and systematic validationmethods, and integrating systems
science modeling into the broader epidemiologic armamen-
tarium through an iterative data collection—modeling—data
collection—modeling—intervention—evaluation—modeling pro-
cess, we can develop valid and reliable systems models that
can inform policy priorities.
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