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Abstract

People make mistakes. A rationally imprecise decision maker optimally balances
the cost of reducing mistakes against the value of choosing correctly. We provide three
models of rationally imprecise behavior: (1) an information-processing formulation
where the costs of reducing mistakes are modeled as the corresponding reduction in
Shannon entropy; (2) a neural implementation in terms of a stochastic and context-
dependent utility function consistent with how the brain is thought to represent value;
and (3) a choice-rule characterization. Our main result proves an equivalence between
these three models which shows that they are different perspectives on the same be-
havior. The three perspectives answer, respectively, the questions of why rationally
imprecise behavior should arise, how it can be implemented within the brain, and
what such behavior looks like.
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1 Introduction

People make mistakes. Even as seemingly simple a task as packing for a trip can lead to
mistakes, as when important items are left behind. The chances of forgetting something can
be reduced by checking what is in the luggage, but this takes time and effort. This effort
may be smaller or larger depending on what is being packed. Choosing a correct article of
clothing is hard if it is being selected from a drawer of very similar items. Packing a laptop
is easy if it is the only computer around. The cost of such time and effort is, presumably, to
be offset by the benefits of packing well. These benefits will vary. A long international trip
may warrant careful checking and re-checking of a suitcase; an overnight trip may not. In
short, decision makers behave optimally when balancing the benefits of choices they make
against the costs of reducing the chance of error. We will say that such decision makers are
rationally imprecise.

In this paper we provide three different models of a rationally imprecise decision maker:
an information-processing formulation, a neural implementation, and a choice-
rule characterization. The information-processing formulation obtains rationally impre-
cise behavior by balancing the values of potential outcomes against the cost of reducing
stochasticity in choice, formulated entropically. The neural implementation derives ratio-
nal imprecision from a neural computation, called normalization, which has been found to
be involved in choice-related value representation in the brain. The choice-rule character-
ization yields rational imprecision from axioms which include a relaxation of the classical
independence-from-irrelevant-alternatives condition.

Information-processing formulation 

Neural implementation Choice-rule characterization 

Rational imprecision 

p

Figure 1

These three models — information-processing, neural, and choice-rule based — represent
very different perspectives on rationally imprecise behavior. The main result in this paper is
an equivalence theorem which establishes that, despite their different vantage points, the
three models we build are fully equivalent in terms of the behavior they imply. If observed
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behavior fits one of the models, then it must fit all three models. These models can
therefore be seen as offering complementary insights into the phenomenon of imperfectly
precise human behavior. See Figure 1.

We next offer more detail on each of the three perspectives. Our information-processing
formulation views mistakes as resulting from value-reducing stochasticity in choice.1 De-
creasing stochasticity in choices decreases information entropy, which, by the von Neumann-
Landauer Principle (Landauer, 1961), involves an inescapable thermodynamic cost. There-
fore, a rationally imprecise decision maker faces a trade-off between the the costliness of more
mistakes and the — fundamentally energetic — cost of fewer mistakes. In our information-
processing model of choice, we specify the cost of decreasing stochasticity to be proportional
to the associated decrease in Shannon entropy (Shannon, 1948), where the proportionality
factor allows for the possibility that the cost may vary depending on features of the choice
context. In making an optimal choice, this cost must, of course, be weighed against the
expected value of the choice in question.

Our neural implementation of rational imprecision proceeds from the idea that mis-
takes can arise through stochasticity in how the brain represents values. We capitalize on
the discovery that activity in certain regions of the brain acts as a representation of value
across a wide range of choice tasks (see Levy and Glimcher, 2012, for a survey). In work with
primates, Louie, Grattan, and Glimcher (2011) showed that this representation of value is
well described by a computation called (divisive) normalization (Carandini and Heeger,
2012) which is known to describe neural activity in a variety of brain regions and modalities.
More recently, normalization has also been demonstrated to explain a variety of observed
choice behaviors.2 (See Appendix A for additional background on normalization.) The nor-
malization computation involves re-scaling the values of choice alternatives by dividing each
by a factor that depends on the overall choice set faced. A random error term is then added
to the re-scaled values and the alternative with the highest resulting sum is chosen. The
error term accounts for observed neurobiological stochasticity in the representation of value
and allows for the possibility of mistakes. A larger normalization factor decreases the size
of the values relative to the error term and hence increases the chance of a mistake. The
normalization factor therefore captures the aspects of the choice context which would make
errors more or less prevalent.

1Stochastic decision making is routinely observed in behavioral experiments (e.g., Hey and Orme 1994).
At the neuronal level in the brain, stochasticity in response to stimuli is well documented (Shadlen and
Newsome, 1994; Churchland et al., 2011).

2Louie, Khaw, and Glimcher (2013) conduct a choice experiment that confirms several predictions of the
normalization model. Webb, Glimcher, and Louie (2014) show that normalization explains behavior better
than alternative models that allow for IIA violations such as the Multinomial Probit. Glimcher and Tymula
(2016) document how normalization can produce many of the behaviors associated with prospect theory.
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Our choice-rule characterization gives a direct behavioral description of a rationally
imprecise decision maker. Our starting point is the independence-from-irrelevant-alternatives
choice rule (IIA) that characterizes the Luce model of stochastic choice (Luce, 1959). IIA
says that the ratio of the probabilities of choosing one alternative versus a second is the
same in every choice set in which both alternatives appear. IIA allows for mistakes, in that
the highest-value alternative is not always chosen, but it does not allow for the context,
i.e., the particular choice set, to matter. We introduce choice-set specific functions and
relax IIA to require equality of probability ratios across choice sets only after each ratio
has been transformed by its associated function. This modification, together with another
property carried over directly from the classical IIA rule, defines a choice rule which we call
relaxed IIA. We go on to provide two closed-form axioms that characterize our rule, so
that behavioral testing of the rule is possible.

Returning to our equivalence result, we can think of its three components as answering,
respectively, the “why,” the “how,” and the “what” of our notion of rational imprecision.
The information-processing formulation explains why mistakes arise, namely, because of the
fundamental physical cost of reducing stochasticity in choice. The neural implementation
explains how these mistakes can arise from a mechanism understood to be operative in the
brain. The choice-rule characterization says exactly what behavior would be observed.

Our rational imprecision model permits a number of behaviors which are consistent with
experimental evidence and which are not well captured by many of the standard existing
models. The model can accommodate violations of regularity3 and can therefore explain
well-documented behavior such as the compromise effect (Huber, Payne, and Puto, 1982;
Simonson, 1989). This ability to accommodate regularity violations distinguishes our model
from other well-known models of stochastic choice, such as the random utility model (Thur-
stone, 1927; Block and Marschak, 1960), the attribute rule (Gul, Natenzon, and Pesendorfer,
2014), and additive perturbed utility (Fudenberg, Iijima, and Strzalecki, 2015). The empir-
ical evidence on two additional behavioral axioms, called strong and weak stochastic
transitivity, was surveyed by Rieskamp, Busemeyer, and Mellers (2006), who found that
violations of the first are frequent and occur in a wide variety of circumstances, while vio-
lations of the second are rare and occur only in special circumstances. Our model satisfies
weak but not strong stochastic transitivity. Also at the empirical level, we show that our
model generates a ranking of choice sets in terms of how they affect the stochasticity of
choice. This property points to a potential new area for empirical work.

Our equivalence result will work by showing that the three approaches lead to a common
3Regularity violations obtained via the normalization functional form are discussed by Webb, Glimcher,

and Louie (2014).
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formula for the choice probabilities. The mathematics for showing this in the first case, i.e.,
for our information-processing formulation, comes from basic thermodynamics, subject to
reinterpreting some variables. Formally, our information-processing problem is the same as
minimizing (Helmholtz) free energy and our choice probability formula is the same as the
Boltzmann distribution (see, e.g., Schroeder, 2000 for the relevant physics). The equivalence
is obtained by reinterpreting energy as negative value and (absolute) temperature as our
proportionality factor. For our second approach, namely, our neural-normalization imple-
mentation of stochastic choice, the key mathematical argument was found by McFadden
(1978), although again in a different context, namely, that of estimation of choice mod-
els. The mathematics for our third approach, which is our choice-rule characterization of
stochastic choice, is new and represents the main technical contribution of the paper.

Swait and Marley (2013), working in mathematical psychology, previously noted the
equivalence between our first two approaches, although under a very different interpretation.
Instead of an information-processing formulation, they think in terms of an exploitation-
exploration trade-off, and, instead of a neural implementation, they see a variation of the
Multinomial Logit model. Therefore, our discussion of how the brain may implement the
optimal solution to the problem of costly reduction of stochasticity is absent from their work.

The use of Shannon entropy in our information-processing formulation is a point of con-
nection with the rational-inattention literature initiated by Sims (1998, 2003). Recently, the
rational-inattention notion has been applied to stochastic choice settings with uncertain val-
ues for the alternatives (Matějka and McKay, 2014; Caplin and Dean, 2015). This leads to
an information-processing task: Determine the optimal cost to incur in learning about these
uncertain values. By contrast, the information-processing task we consider is efficient reduc-
tion in the intrinsic stochasticity of choosing among alternatives. At the formal level, our
set-dependent proportionality factor distinguishes us from the standard rational-inattention
framework. If the proportionality factor is constant across sets, our model is equivalent to a
special case of rational inattention.

2 Three Perspectives on Rational Imprecision

We now present three models of rationally imprecise behavior: an information-processing
formulation, a neural implementation, and a choice-rule characterization. The main result
in this section is an equivalence theorem uniting the three models in terms of the behavior
they imply, so that each model provides a different perspective on the same rationally impre-
cise behavior. The information-processing formulation explains why mistakes arise, namely,
because of the costliness of reducing stochasticity in choice. The neural implementation
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explains how these mistakes can arise from a mechanism believed to be operative in the
brain. The choice-rule characterization says exactly what behavior can be observed. In this
way, our equivalence theorem allows us to answer the “why,” the “how,” and the “what” of
rationally imprecise behavior.

We begin with the formal framework, which we maintain throughout the paper. Let X

be a finite set consisting of all the alternatives from which the decision maker may be able
to choose. Let A be the collection of all non-empty subsets of X, to be thought of as the
possible choice sets the decision maker may face. The choice behavior of the decision maker
is described by a random choice rule ρ that assigns a full-support probability measure to
every choice set A ∈ A. Formally, a random choice rule is a function ρ : X × A → [0, 1]
such that ρ (x, A) > 0 if and only if x ∈ A and

∑
x∈A

ρ (x, A) = 1 for all A ∈ A.

The interpretation is that ρ (x, A) is the probability that the decision maker chooses alter-
native x when faced with choice set A. (As we will see below, the assumption that ρ is full
support is, in fact, a consequence of our information-processing argument.) We let P denote
the set of all random choice rules (for given X).

2.1 Information-Processing Formulation

In our information-processing formulation of rational imprecision, the decision maker bal-
ances the expected utility of a given choice rule against the costs involved in reducing stochas-
ticity in choices. The value of alternative x is given by v (x) and the expected utility of choice
rule ρ on choice set A is ∑

x∈A

ρ (x, A) v (x) .

The information-processing costs of a particular rule ρ come from the reduction in Shannon
entropy (Shannon, 1948) relative to the fully stochastic case. Shannon entropy measures
the degree of stochasticity in behavior, where a higher degree of stochasticity implies higher
entropy. For a random choice rule ρ, the associated Shannon entropy H (ρ, A) on set A is
given by

H (ρ, A) = − ∑
x∈A

ρ (x, A) ln ρ (x, A) ,

where ln denotes natural log.4 The maximum entropy of ln |A| is achieved when ρ is fully
stochastic and assigns the same probability to each alternative in A. For ease of reference, we

4Log to base 2 appears in the original definition of entropy, but it is often more conveient to use base e.
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write Hmax (A) for this value. To arrive at the cost of choice, we add a proportionality factor
F (A), which may depend on the choice set A, to the entropy reduction involved. Thus, the
total cost of random choice rule ρ on choice set A is given by

F (A) (Hmax (A) − H (ρ, A)) .

Combining this expression with the expected value of a choice rule yields our definition of
optimal behavior with costly information processing.

Definition 1. A random choice rule ρ has an information-processing formulation if
there exist functions v : X → (0, ∞) and F : A → (0, ∞) such that for all A ∈ A:

ρ ∈ arg max
ρ̂∈P

{∑
x∈A

ρ̂ (x, A) v (x) − F (A) (Hmax (A) − H (ρ̂, A))
}

.

Notably, even if we relaxed our definition of a random choice rule to allow for the pos-
sibility of assigning probability zero to an available alternative, this turns out never to be
optimal in the maximization problem we just set up. This is because the derivative of entropy
become infinite as a probability approaches zero, so that the cost of pushing a probability
to zero is always too high. The Appendix contains details.

2.2 Neural-Normalization Implementation

Our neural implementation of rational imprecision comes via the normalization model widely
thought to explain choice-related value representation in the brain. The normalization model
generates a stochastic and set-dependent utility for each alternative, and the highest utility
alternative is then chosen. The utility involves a fixed value v (x) for each alternative x and
a normalization factor F (A) for each choice set A. The utility has a non-random component
equal to v (x) /F (A), which is the fixed value of x re-scaled by the normalization factor
for A. The utility also has a random component, which for each alternative x is a random
variable εx where these random variables are i.i.d. across different alternatives and each εx

follows a Gumbel distribution with location 0 and scale 1. The total utility of alternative x

in set A is then
v (x)
F (A) + εx.

We define our normalization model as all behavior that can generated using this utility
form. (Note that since the εy’s in this definition come from a continuous distribution, there
is a unique maximizer in the arg max with probability one, so that the formula for ρ is well
defined.)
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Definition 2. A random choice rule ρ has a neural-normalization implementation if
there exist functions v : X → (0, ∞) and F : A → (0, ∞) such that for all A in A and x in
A:

ρ (x, A) = Pr
(

x = arg max
y∈A

v (y)
F (A) + εy

)
,

where the εy’s are i.i.d. and Gumbel with location 0 and scale 1.

Our neural model is distinct from random utility. On the one hand, the presence of the
factor F (A) allows a set dependence absent in a standard random utility model. On the
other hand, random utility allows for more general assumptions on the error term. The
Gumbel distribution we assume does arise in a number of settings — in particular, as the
asymptotic distribution of the maximum of a sequence of i.i.d. normal random variables.
See, e.g., David and Nagaraja (2003). Many previous studies of normalization, including
several of the ones cited in the Introduction, take F (A) to be the sum

F (A) = σ +
∑
z∈A

v (z) ,

for some positive constant σ. This functional form is clearly included as a special case of our
model, but we do not limit ourselves to it.

2.3 Choice-Rule Characterization

Our choice-rule characterization of rational imprecision relaxes the well-known independence-
from-irrelevant-alternatives axiom (IIA) which characterizes the classic Luce model (Luce,
1959) of stochastic choice. IIA requires that

ρ (x, A)
ρ (y, A) = ρ (x, B)

ρ (y, B) ,

whenever alternatives x and y are present in both of the sets A and B.
Our relaxation of IIA requires only the following ratio equation

GA

(
ρ (x, A)
ρ (y, A)

)
= GB

(
ρ (x, B)
ρ (y, B)

)
whenever x, y ∈ A ∩ B, (1)

where, for any C ∈ A, the map GC takes (0, ∞) to (0, ∞) and is strictly increasing.
A salient property of IIA is that it imposes restrictions only on behavior across, and not

within, choice sets. In other words, the collection of choice rules obeying IIA is unconstrained
in the sense that, after observing any (non-zero) choice probabilities on a single choice set,
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one can fill in the choice probabilities on other sets in a way that produces a choice rule
obeying IIA. To state this formally, for any finite set Z, let ΔZ denote the set of all full-
support probability measures on Z.

Definition 3. Let P ⊆ P be a collection of random choice rules. We say P is free if for
every A ∈ A and λ ∈ ΔA there exists ρ ∈ P with ρ (·, A) = λ.

We want our relaxation of IIA to work similarly in imposing behavioral restrictions across
and not within choice sets.

Definition 4. A family of functions {GA}A∈A mapping (0, ∞) to (0, ∞) is admissible if
the GA are strictly increasing and the collection of random choice rules that satisfy Equation
(1) for the family {GA}A∈A is free.

An example of an admissible family of functions is obtained by fixing any function F :
A → (0, ∞) and setting GA (t) = tF (A) for all A ∈ A. (This is a corollary of Lemma 2 in
the Appendix.) An example of an inadmissible family is any family such that GA (t) = αt

and GB (t) = βt where α �= β and A and B have at least three elements in common. A
demonstration of the inadmissibility of this class of families can be found in Appendix E.

Definition 5. A random choice rule ρ is a relaxed IIA rule if there exists an admissible
family of functions {GA}A∈A with respect to which ρ obeys Equation (1).

2.4 The Equivalence Result

The main result of the paper establishes a three-way equivalence uniting our three perspec-
tives on rationally imprecise behavior.

Theorem 1. For any random choice rule ρ the following are equivalent:

1. ρ has an information-processing formulation.

2. ρ has a neural-normalization implementation.

3. ρ has a relaxed IIA characterization.

We give a sketch of the proof in the next section. Full details are in the Appendix.
Theorem 1 unites three perspectives on rationally imprecise behavior. The information-
processing formulation explains why mistakes arise, namely, because of the costliness of re-
ducing stochasticity in choice. The neural implementation explains how these mistakes can
arise via a mechanism understood to be operative in the brain. The choice-rule characteri-
zation says exactly what behavior can be observed. The unification of the three perspectives
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comes through the observed behavior. Whenever choice probabilities fit into one of the three
models, they must fit into all three.

The same three-way equivalence as in Theorem 1 can be proved for the classic IIA choice
rule and restrictions of the information-processing and normalization models that involve
constant F (·). The equivalence between classic IIA and the information-processing model
with a constant F (·) was established by Mattsson and Weibull (2002). The normalization
model with a constant F (·) reduces to the classic Logit model, which McFadden (1978)
proved is equivalent to classic IIA. Theorem 1 extends these already-known relationships by
allowing for the inclusion of the empirically-important factor F (·).

We now turn to the uniqueness properties of our representations. In the proof of Theorem
1, it is demonstrated that a pair (v, F ) is an information-processing representation of ρ if and
only if it also serves as neural representation of ρ. Thus, for the purposes of the uniqueness
result, we will simply say “(v, F ) represents ρ” to mean that (v, F ) serves as both kinds of
representations. There is one case when we cannot establish any uniqueness properties for
F , which is when all alternatives in a choice set are chosen with equal probability. For our
next result, we rule this case out.

Definition 6. A random choice rule ρ is non-uniform if for every A ∈ A with |A| ≥ 2
there exist x, y ∈ A with ρ (x, A) �= ρ (y, A).

Theorem 2. Suppose (v, F ) represents a non-uniform random choice rule ρ. Then (v′, F ′)
also represents ρ if and only if there exist α > 0 and β ∈ R such that:

v (x) = αv′ (x) + β for all x ∈ X,

F (A) = αF ′ (A) whenever |A| ≥ 2.

This says that in any representation (v, F ), the function v is unique up to an affine
transformation and the function F is unique up to a multiplicative scaling factor. Notice
that the multiplicative factor in the affine transformation of v must be the same as the
scaling factor for F . An implication is that, while the ratios v (·) /F (A) are not unique, the
differences between these ratios, namely,

v (x)
F (A) − v (y)

F (A) ,

must be unique.
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3 Sketch of the Equivalence Proof

The proof of Theorem 1 proceeds by establishing that all three parts are equivalent to the
statement that there exist functions v : X → (0, ∞) and F : A → (0, ∞) such that

ρ (x, A) = ev(x)/F (A)∑
y∈A ev(y)/F (A) for all A ∈ A and x ∈ A. (2)

In the case of the information-processing and neural-normalization models, the functions
v and F in the above equation will be exactly the representation of ρ. This establishes
the claim, made in the uniqueness discussion in the previous section, that (v, F ) serves as
an information-processing representation if and only if it serves as a neural-normalization
representation. We now sketch the argument for how each model in turn is equivalent to
Equation (2).

That the information-processing formulation is equivalent to Equation (2) follows the
standard proof in thermodynamics that minimizing Helmholtz free energy5 yields the Boltz-
mann distribution. That the neural-normalization implementation is equivalent to Equation
(2) is a straightforward extension of the work done by McFadden (1978). Our final, and
novel, argument establishes the equivalence between our relaxed IIA rule and Equation (2).
To show that a random choice rule satisfying Equation (2) must also obey the relaxed IIA
rule, we set GA (t) = tF (A) for each A ∈ A. Details of this direction can be found in the
Appendix.

To prove that any relaxed IIA choice rule ρ must follow Equation (2), start by fixing
an admissible family of functions {GA}A∈A that map (0, ∞) to (0, ∞). Fix, in addition, a
choice set A ∈ A. Define a function HA : (0, ∞) → (0, ∞) by setting

HA (t) = G−1
X (GA (t)) .

Taking any random choice rule ρ satisfying Equation (1) with respect to {GA}A∈A, we have
that for any pair of alternatives x, y ∈ A,

HA

(
ρ (x, A)
ρ (y, A)

)
= ρ (x, X)

ρ (y, X) . (3)

Therefore, for any triplet x, y, z ∈ A, we have

HA

(
ρ (x, A)
ρ (y, A)

)
× HA

(
ρ (y, A)
ρ (z, A)

)
= ρ (x, X)

ρ (z, X) = HA

(
ρ (x, A)
ρ (z, A)

)
.

5Schroeder (2000), pp.247-248.

11



We show in the Appendix that, provided the family of functions {GA}A∈A is admissible,
we can choose ρ to match any full-support distribution on A. Specifically, for any numbers
a, b ∈ (0, ∞), we can choose ρ so that the previous equation becomes

HA (a) × HA (b) = HA (ab) . (4)

The next step involves the Cauchy functional equation in the form: Fix a function H :
R → R which is continuous at one point (or more). Then, if H satisfies Equation (4), there
exists β ∈ R such that H (t) = tβ.6 In our setting, the exponent β must be strictly positive,
and from this we get a function F : A → (0, ∞) such that

HA (t) = tF (A).

Equation (3) then becomes

ρ (x, A)
ρ (y, A) =

(
ρ (x, X)
ρ (y, X)

)1/F (A)

, (5)

from which, by summing over all x ∈ A,

1
ρ (y, A) =

∑
x∈A

(
ρ (x, X)
ρ (y, X)

)1/F (A)

,

which we can invert to get

ρ (y, A) = ρ (y, X)1/F (A)

∑
x∈A ρ (x, X)1/F (A) .

Finally, in order to make the previous equation become Equation (2) simply define v : X →
(0, ∞) as

v (x) = α + ln ρ (x, X)

where
α := 1 − min

z∈X
lnρ(z, A).

The α term serves only to ensure v (·) is positive and factors out when transforming the
expression for ρ (y, A) into Equation (2).

6See Theorem 3, p.41, in Aczél (1966).
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4 Axiomatic Characterization

We now turn to our revealed-preference exercise where we provide two testable axioms which
characterize our relaxed IIA rule. Our first axiom allows for an ordinal ranking of choice
alternatives, while our second axiom captures the type of set dependence allowed in our
relaxed IIA rule. Unlike our choice rule, which requires searching over all possible functions
{GA}A∈A, our axioms are closed-form expressions of the choice probabilities and therefore
fully operational.

Axiom 1 (Order). Let A, B ∈ A and x, y ∈ A ∩ B. Then ρ (x, A) ≥ ρ (y, A) if and only if
ρ (x, B) ≥ ρ (y, B).

In both the information-processing and neural-normalization models, the inequality v (x) ≥
v (y) will hold if and only if x is chosen weakly more often than y in every choice set. This
necessitates Axiom 1. Likewise, in our relaxed IIA rule, the functions {GA}A∈A are strictly
increasing, which implies Axiom 1. To see why this is so, note that if ρ is a relaxed IIA rule,
then

GA

(
ρ (x, A)
ρ (y, A)

)
≥ GA

(
ρ (y, A)
ρ (x, A)

)
implies GB

(
ρ (x, B)
ρ (y, B)

)
≥ GB

(
ρ (y, B)
ρ (x, B)

)
.

To motivate our second axiom we will use the following fact, which follows immediately
from Equation (5) in the previous section.

Fact 1. A random choice rule ρ is a relaxed IIA rule if and only if there is a function
F : A → (0, ∞) such that for all A, B ∈ A and x, y ∈ A ∩ B,

(
ρ (x, A)
ρ (y, A)

)F (A)

=
(

ρ (x, B)
ρ (y, B)

)F (B)

.

This says that, for a relaxed IIA rule, it is without loss of generality to restrict attention
to families of power functions, that is, to families of functions GA (t) = tF (A) for some
F : A → (0, ∞).7

Using Fact 1, we see that a necessary condition for representation by a relaxed IIA rule
is the existence of a function F : A → (0, ∞) such that for any x, y ∈ A ∩ B,

F (A) ln
(

ρ (x, A)
ρ (y, A)

)
= F (B) ln

(
ρ (x, B)
ρ (y, B)

)
.

7However, it is should be noted that not every admissible family {GA}A∈A is a family of power functions.
An example is provided in the Appendix.
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The same equality holds for x′, y′ ∈ A ∩ B, so we must have

F (B) F (A) ln
(

ρ (x, A)
ρ (y, A)

)
ln

(
ρ (x′, B)
ρ (y′, B)

)
= F (A) F (B) ln

(
ρ (x′, A)
ρ (y′, A)

)
ln

(
ρ (x, B)
ρ (y, B)

)
.

Canceling the term F (A) × F (B) from both sides yields our second axiom.

Axiom 2 (Log Ratio). For all {x, y, x′, y′} ⊆ A ∩ B,

ln ρ (x, A)
ρ (y, A) ln ρ (x′, B)

ρ (y′, B) = ln ρ (x′, A)
ρ (y′, A) ln ρ (x, B)

ρ (y, B) . (6)

Axiom 2 is a closed-form condition on the choice probabilities and is therefore directly
testable. Specifically, the arbitrary function F with which we started is not involved in this
formulation. We have just established that Axioms 1 and 2 are necessary for representation
by a relaxed IIA rule. The next result, which is proved in the Appendix, says that they are
also sufficient.

Theorem 3. A random choice rule ρ satisfies relaxed IIA if and only if it obeys Axioms 1
and 2.

Our axioms are independent in that neither implies the other. Consider that Axiom 1
implies that, in Equation (6), the two terms involving x and y must have the same sign.
However, this is not an implication of Axiom 2 alone. Axiom 2 could be satisfied if, for
example, in the terms in Equation (6) involving set A were both positive and the terms
involving set B were both negative. Therefore, Axiom 2 does not imply Axiom 1. The
appendix contains a fully worked-out example demonstrating this fact. That Axiom 1 does
not imply Axiom 2 is clear from inspection.

Axiom 2 appears previously in Marley, Flynn, and Louviere (2008), who use it axiomatize
a model defined by Equation (2) and therefore equivalent to ours. However, the independence
of our two axioms implies both of them are necessary for Theorem 1, and hence the result
in Marley, Flynn, and Louviere (2008) does not go through as stated.8

5 Behavioral Properties

Our axioms in Section 4 fully characterize our relaxed IIA rule, but they do not make explicit
the relationship to such behavioral properties as regularity and stochastic transitivity. (We
define the latter, in weak and strong forms, below.) In this section, we show that, consistent

8This point became clear after a fruitful discussion with Anthony Marley, to whom we are very grateful.
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with evidence from the literature on the compromise effect, our relaxed IIA rule permits
violations of regularity. We also show that our choice rule must satisfy the weak but not the
strong form of stochastic transitivity. This, too, seems broadly in line with the empirical
evidence (Rieskamp, Busemeyer, and Mellers, 2006). Lastly, we provide a novel testable
prediction on the effect of the choice set on stochasticity of choice — a prediction which
suggests a direction for future empirical work.

Ordinality and Stochastic Transitivity

From Axiom 1 we can see that our relaxed IIA rule satisfies ordinality in the sense that
whether one alternative is more or less likely to be chosen over another alternative is answered
the same way across different choice sets. In terms of a representation (v, F ), this relationship
is expressed through the value function v: If v (x) is greater then v (y), then ρ (x, A) is greater
than ρ (y, A) whenever x, y ∈ A. This is immediate from Equation (2) in Section 4.

Closely related to ordinality is the notion of stochastic transitivity (ST), which
comes in two forms. Weak ST says that if ρ (x, {x, y}) ≥ 1

2 and ρ (y, {y, z}) ≥ 1
2 , then

ρ (x, {x, z}) ≥ 1
2 . Strong ST says that if ρ (x, {x, y}) ≥ 1

2 and ρ (y, {y, z}) ≥ 1
2 , then

ρ (x, {x, z}) ≥ max {ρ (x, {x, y}) , ρ (y, {y, z})}. It is easily checked that the classic IIA rule
satisfies both forms of ST. Rieskamp, Busemeyer, and Mellers (2006) survey the empirical
evidence and observe that while violations of weak ST are rare and occur only in special
circumstances, violations of strong ST are frequent and occur in a wide variety of circum-
stances. They conclude that reasonable models of choice should satisfy ST in its weak but
not in its strong form.

Consistent with this conclusion, our relaxed IIA rule satisfies weak ST but can violate
strong ST. Satisfaction of weak ST is readily checked via Equation (2). The following example
shows how strong ST can be violated. The key to generating a violation is to choose the
set-dependent scaling F ({x, z}) (relative to the scalings F ({x, y}) and F ({y, z})) so as to
reduce the difference between the values v (x) and v (z) (relative to the differences between
v (x) and v (y), and between v (y) and v (z)).

Example 1. Let X = {x, y, z}. Let (v, F ) be a representation with v (x) = 3, v (y) =
2, v (z) = 1, and F ({x, y}) = F ({y, z}) = 1, F ({x, z}) = 10. From Equation (2) we
get ρ (x, {x, y}) = ρ (y, {y, z}) ≈ 0.731 and ρ (x, {x, z}) ≈ 0.550. Thus ρ (x, {x, y}) and
ρ (y, {y, z}) are both greater than 1

2 and also greater than ρ (x, {x, z}), violating strong ST.
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Regularity

A random choice rule ρ obeys regularity if x ∈ A ⊆ B implies ρ (x, A) ≥ ρ (x, B). A
random utility model satisfies regularity, as do previous generalizations of the classic IIA
rule such as ordinal IIA (Fudenberg, Iijima, and Strzalecki, 2015) and the attribute rule
(Gul, Natenzon, and Pesendorfer, 2014). However, violations of regularity have been widely
documented, specifically, in the well-known compromise effect (Busemeyer and Diederich,
2002).

The set-dependent way in which we relax IIA allows our choice rule to accommodate
violations of regularity. In our representational models, the set dependence is expressed
through the function F . In the information-processing case, a higher F increases the cost of
reducing randomness, which therefore favors inferior alternatives. Likewise, in the neural-
normalization case, a higher F re-scales the values of alternatives to be closer together, which
again favors inferior alternatives. Thus, by varying F across choice sets in the right way,
we can add an alternative to a choice set so that the probability of choosing an existing
alternative increases, which is a violation of regularity. The following example illustrates
this effect.

Example 2. Let X={x, y, z} . Fix a representation (v, F ) with v (x) = 3, v (y) = 2, v (z) =
1, and F ({x, z}) = 1, F ({x, y, z}) = 10. From Equation (2) we get ρ (z, {x, z}) ≈ 0.119 and
ρ (z, {x, y, z}) ≈ 0.301, violating regularity.

This example is not a knife-edge or special case. To show this, we consider the question:
Suppose we observe the choice probabilities from a set A. Under what conditions does
a relaxed IIA rule exist that matches the observed probabilities on A, and that creates
a regularity violation when adding or removing an item from A? The next proposition
(which is proved in the Appendix) offers such conditions, and they can be seen to be quite
unrestrictive.

Proposition 1. Fix a choice set A and some λ ∈ ΔA. Then:

1. For any x ∈ A and y /∈ A there is a relaxed IIA rule ρ such that: (i) ρ (·, A) = λ; and
(ii) ρ (x, A) < ρ (x, A ∪ {y}) if and only if ρ is non-uniform on A.

2. For any x, y ∈ A with x �= y, there is a relaxed IIA rule ρ such that: (i) ρ (·, A) = λ;
and (ii) ρ (x, A\ {y}) < ρ (x, A) if and only if λ (x) < maxz∈A\{y} λ (z) or λ (x) > 1

|A|−1 .

The ability of the relaxed IIA rule to accommodate regularity violations is not without
limits. For example, any regularity violation which fails Axiom 1 (Order) cannot arise from
a relaxed IIA rule.
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Relative Stochasticity

A novel prediction of our relaxed IIA rule is that choice sets can be ranked by how they
affect the stochasticity of choice. We will think of choices as more stochastic in a first choice
set as compared with a second choice set if alternatives in common across the two sets are
closer to equiprobable in the first set. Of course, comparing choice sets in this way can be
be done only when the sets share at least two alternatives. (This condition will be assumed
below.)

Definition 7. A random choice rule ρ is more stochastic on choice set A than on choice
set B if for every x, y ∈ A ∩ B with ρ (x, A) ≥ ρ (y, A), we have

ρ (x, A)
ρ (y, A) ≤ ρ (x, B)

ρ (y, B) .

Of course, we always get equality here under the classic IIA rule. That is, a classic IIA
rule is equi-stochastic on any two choice sets. At the other extreme, it is straightforward to
construct examples, involving a general random choice rule, where the choice probabilities
of two alternatives x and y are closer to equiprobable in set A as compared with set B, but
the reverse is true for two other alternatives x′ and y′. In this case, we cannot say whether
the rule is more or less stochastic across the two sets. Our choice rule ρ occupies a middle
ground, in that, for a given such rule ρ and pair of choice sets (with two or more elements
in common), there is an unambiguous ranking of stochasticity across the two sets.

Proposition 2. Let ρ be a relaxed IIA rule. Then, for any two choice sets A and B, either
ρ is more stochastic on A than on B, or ρ is more stochastic on B than on A.

Turning to (v, F ) representations of our relaxed IIA rule, we can link the stochasticity
relationship directly to the function F (·). A larger value for F (·) increases stochasticity,
while a smaller value decreases stochasticity. More precisely, a relaxed IIA rule ρ is more
stochastic on A than on B if and only if F (A) ≥ F (B). (The proofs of Proposition 2 and
this statement can be found in the Appendix.)

As far as we are aware, the prediction that there is an unambiguous ranking of stochas-
ticity across choice sets is new. This suggests a new area for empirical work.

6 Concluding Remarks

In this paper, we examined mistaken-prone or rationally imprecise behavior through three
separate questions. We first asked why such behavior might occur, that is, what factors and
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what trade-offs explain the occurrence of mistakes. We next asked how the behavior might be
implemented in the human brain. Last, we asked what choice rule characterizes the behavior.
Our answers to these three questions came, respectively, in the form of our information-
processing formulation, our neural-normalization implementation, and our relaxed IIA choice
rule. These three seemingly disparate models become united through our equivalence result,
which demonstrates that each model provides a different perspective on the same behavior.

Our information-processing formulation of rational imprecision sits at the intersection of
economics and neuroscience. Not surprisingly, information-theoretic methods have featured
in both fields. In economics, the rational-inattention model of Sims (2003) uses the cost
of information acquisition to explain why a rational decision maker might fail to use all
available signals. In neuroscience, the notion of efficient coding of information has played a
key role in understanding the structure of sensory systems (Schwartz and Simoncelli, 2001).
Likewise, we take an information-theoretic approach — in our case, by taking into account
the information-processing cost of reducing stochasticity in choice behavior to explain why
a rational decision maker might make mistakes.

Our neural-normalization implementation seeks to ground rationally imprecise behavior
in a neural architecture that can generate it. This grounding is done through the normaliza-
tion computation that has been successful at explaining the neural activity associated with
value representation (Louie, Grattan, and Glimcher, 2011). More recently, normalization has
also been used to explain choice behaviors including many of those associated with prospect
theory (see Footnote 2).

Our relaxed IIA choice rule characterizes rationally imprecise behavior, which allows
us both to examine how our model can match empirically observed choice behavior and
to generate new testable predictions. The relaxed IIA rule can accommodate violations
of regularity, including the compromise effect, which is a point of contrast with standard
models such as random utility. Additionally, the relaxed IIA rule allows violations of strong,
but not weak, stochastic transitivity, which is broadly consistent with observed behavior.
We generate closed-form axioms equivalent to our relaxed IIA rule which provide testable
predictions. We also provide a novel prediction that choice sets can be ranked by how they
affect the stochasticity of choice.

We conclude by commenting on the role of the most unusual aspect, relative to the
economics literature, of our three-pronged approach — namely, our neural implementation.
The inclusion of this aspect is motivated, in part, by the argument due to Simon (1955, p.
99) that a theory of decision making should be consistent "with the access to information
and the computational capacities that are actually possessed by the organism." At the time
of Simon’s writing, the development of such a theory was hindered by a lack of empirical
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knowledge about precisely such information and computational capacities — a fact which
Simon himself noted (Simon 1955, p. 100).

In the decades since then, advances in neuroscience have taught us a lot about the ac-
tual decisional processes of various organisms, humans included. By capitalizing on these
advances, we have been able to build a theory of decision-making consistent with how the hu-
man brain actually makes choices, and, in this way, advance Simon’s argument. In doing so,
we hope to have taken a step towards reconciling traditional approaches to decision-making
with the fact that all behavior making must, ultimately, have a physical implementation.
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Appendix

A Background on the Normalization Computation

The neural-implementation model in this paper is based on the canonical normalization com-
putation identified by neurobiologists over the past two decades. This appendix is intended
to supply the interested reader with a brief overview of the origins and ubiquity of the nor-
malization forms in the neuroscientific literature. A more detailed review can be found in
Glimcher (2014).

Inspired by earlier arguments of Barlow (1961) and Attneave (1954) that neural pro-
cesses should be efficiency-promoting, Heeger, Simoncelli, and Movshon (1996) proposed a
normalization computation in which the visual stimulus observed at one point in the visual
field is re-scaled in a way that depends on other points in the field. Thus, letting Xi, for
i = 1, ..., n, be the luminance of point i in the set constituting the currently viewed image,
normalization computes the firing rate of the neuron responsible for encoding Xi to be

FRi := Xi

σ + ∑n
j=1 ωi,jXj

+ εi. (7)

Here, the ωi,j’s are fixed weights indicating how much each point j should influence the
computation for point i, the constant σ is a fixed parameter, and εi is a stochastic error
term that describes noise in the visual system.

Experimental biologists brought this functional form to the study of the parts of the
mammalian brain that are involved in the representation of visual stimuli. They found, al-
most without exception, that the normalization formula was more successful than previous
functional forms in modeling the visual representation function. Subsequent research demon-
strated that essentially all parts of the mammalian brain that represent external states of the
world — what a neuroscientist calls “sensory representations” — are successfully described
by normalization-like functional forms. Carandini and Heeger (2012) is a useful survey of
the evidence supporting the presence of normalization in the various sensory domains.

Around the same time, a separate literature identified in primates a discrete set of brain
areas apparently dedicated to representing a quantity that functions much like an economic
utility representation (e.g., Platt and Glimcher 1999; Dorris and Glimcher 2004; Barraclough,
Conroy, and Lee 2004). Specifically, these brain areas assign different levels of activity to
different choice alternatives, where higher associated activity indicates a higher probability
that the alternative in question is chosen. Subsequent fMRI brain-scanning studies demon-
strated that these same representations arise in human brains (e.g., Knutson et al. 2001;
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Delgado et al. 2000; Elliott et al. 2000; Kable and Glimcher 2007).
Given the ubiquity of normalization computations in the sensory systems, one might

hypothesize that utility representation in the brain also operates via normalization. Relative
to Equation (7), normalization in the choice domain replaces luminance and the visual field
with the value of each alternative and the choice set, respectively. Each alternative y is
assigned a value v (y), and the utility of alternative x in choice set A is given by

Ux := v (x)
σ + ∑

y∈A v (y) + εx. (8)

A direct study of brain activity in primates by Louie, Grattan, and Glimcher (2011) (subse-
quently, Louie et al. (2014) and Hunt, Dolan, and Behrens (2014)) showed that Equation (8)
is effective in describing the utility-like mechanisms in the brain. A utility function following
Equation (8) has even been successful in explaining human behavior in choice experiments
(e.g., Louie, Khaw, and Glimcher 2013).

The neural-normalization implementation in the present paper generalizes Equation (8)
by allowing the denominator to be any function of the choice set. Our generalization is aimed,
in part, at allowing analogs to the weights in the visual normalization formula (Equation 7),
since these are missing from the value normalization formula (Equation 8). We also make
specific distribution assumptions on the error term εx.

The preceding discussion implicitly assumes that neural studies on primates and other
mammals are relevant and insightful in the case of human neural architecture. This assump-
tion is justified by the remarkable consistency with which, over the past 150 years, studies
of various neural systems in animals have reliably revealed the structures of the analogous
systems in humans.9 Of course, this consistency is, at bottom, a consequence of evolution.
But, importantly, it has been confirmed in repeated specific cases. Thus, thirty years ago,
studies of spatial navigation in rodents revealed the mechanism of human spatial navigation
(see Best, White, and Minai 2001). Twenty years ago, studies of visual and acoustic process-
ing centers in monkeys revealed the foundations of human perceptual experience (Franklin
and Hubel, 2004). More recently, studies of social interactions in monkeys have revealed the
biological foundations of trust and empathy in humans (Bernhardt and Singer, 2012).

B Proof of Theorem 1

As in the proof sketch in Section 3, we prove that each part of Theorem 1 is equivalent to
the statement that ρ has a representation in the form of Equation (2).

9Kandel, Schwartz, and Jessel (2000) is a standard reference.
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Proof for Theorem 1.1: We will solve a relaxed version of the maximization problem,
which allows choice probabilities to be 0. But we will find that the solution does not involve
setting any probabilities equal to 0, so that this also solves the actual maximization problem.

Suppose ρ has an information-processing formulation (v, F ), so that, for every A ∈ A,
the rule ρ maximizes

∑
x∈A

{ρ (x, A) v (x) − F (A) ρ (x, A) ln (ρ (x, A))}

subject to

∑
x∈A

ρ (x, A) = 1,

ρ (x, A) ≥ 0.

By the Kuhn-Tucker theorem, the necessary first-order condition is that there exist λ ∈ R

and ηx ∈ R, for every x ∈ X, such that for each ρ (A, x) we have

v (x) − F (A) (ln (ρ (x, A)) + 1) + λ + ηx = 0.

Notice that limx→0 ln (x) = −∞, so the first-order condition can never be satisfied when
ρ (A, x) = 0. (This can also be understood in terms of the behavior of the entropy. As
ρ (A, x) → 0, the derivative of H (ρ (A, ·)) with respect to ρ (A, x) goes to −∞, even though H

is itself uniformly bounded.) Thus, it is never optimal to set ρ (A, x) = 0. By Complementary
Slackness, it follows that ηx = 0 for all x ∈ A and we can solve the first-order condition to
get

ρ (x, A) = exp
(

v (x) + λ

F (A) − 1
)

.

We can then divide through to get

ρ (x, A)
ρ (y, A) = exp

(
v (x) − v (y)

F (A)

)
.

Next note that

∑
x∈A

ρ (x, A)
ρ (y, A) =

∑
x∈A ρ (A, x)
ρ (y, A) = 1

ρ (y, A) =
∑

x∈A exp
(

v(x)
F (A)

)
exp

(
v(y)
F (A)

)
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which implies

ρ (y, A) =
exp

(
v(y)
F (A)

)
∑

x∈A exp
(

v(x)
F (A)

) ,

establishing that ρ obeys Equation (2).
To prove the other direction, notice that Equation (2) is both a necessary condition

for the information-processing problem and fully pins down the solution. Moreover, by the
Weierstrass theorem, the maximization problem has at least one solution.

Proof for Theorem 1.2: Proving the equivalence of our neural-normalization imple-
mentation and Equation (2) follows the lines of well-known arguments in McFadden (1978).
To begin, suppose ρ has a neural-normalization implementation (v, F ), so that

ρ (x, A) = Pr
(

x = arg max v (y)
F (A) + εy

)
,

where εy’s are i.i.d. and Gumbel with location 0 and scale 1. Let g(t) = exp (−t − exp (−t))
and G(t) = exp (− exp (−t)) be the pdf and cdf of a Gumbel (0, 1) random variable. We
then have

ρ (x, A) =
ˆ +∞

−∞

⎧⎨
⎩

∏
y∈A\{x}

G

(
v (x) − v (y)

F (A) + t

)⎫⎬
⎭ g (t) dt =

ˆ +∞

−∞

⎧⎨
⎩

∏
y∈A\{x}

exp
(

− exp
(

−v (x) − v (y)
F (A) − t

))⎫⎬
⎭ exp (−t − exp (−t)) dt,

which we can rearrange to give

ρ (x, A) =
ˆ +∞

−∞

⎧⎨
⎩exp

⎛
⎝− exp (−t)

⎛
⎝1 +

∑
y∈A\{x}

exp
(

−v (x) − v (y)
F (A)

)⎞
⎠

⎞
⎠

⎫⎬
⎭ exp (−t) dt,

which can be integrated to obtain

ρ (x, A) = 1(
1 + ∑

y∈A\{x} exp
(
−v(x)−v(y)

F (A)

))×

exp
⎛
⎝− exp (−t)

⎛
⎝1 +

∑
y∈A\{x}

exp
(

−v (x) − v (y)
F (A)

)⎞
⎠

⎞
⎠

∣∣∣∣∣∣
t=+∞

t=−∞
.
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Evaluating at the limits yields

ρ (x, A) = 1
1 + ∑

y∈A\{x} exp
(
−v(x)−v(y)

F (A)

) (1 − 0) ,

which can be rearranged to give

ρ (x, A) =
exp

(
v(x)
F (A)

)
∑

y∈A exp
(

v(y)
F (A)

) ,

as desired. This argument can be run backwards to prove the reverse implication.

Proof for Theorem 1.3: Suppose that ρ obeys Equation (2) for some v : X → (0, ∞)
and F : A → (0, ∞). Define GA : (0, ∞) → (0, ∞) by setting GA (t) = tF (A). Lemma 2
(established later in the Appendix) tells us that {GA}A∈A is admissible. Now, for A ∈ A
and x, y ∈ A, we can write

GA

(
ρ (x, A)
ρ (y, A)

)
= GA

(
exp

(
v (x) − v (y)

F (A)

))
= exp (v (x) − v (y)) ,

and, since the right-hand side is independent of A, we see that ρ obeys Equation (1) and is
therefore a relaxed IIA rule.

For the reverse direction, we prove that if ρ is a relaxed IIA rule, then there exists
F : A → (0, ∞) such that F (X) = 1 and ρ obeys Equation (1) where GA (t) = tF (A).
Proving this claim will be sufficient to establish that ρ obeys Equation (2). To see this, note
that for any A ∈ A and x, y ∈ A, we then get

ρ (y, A)
ρ (x, A) =

(
ρ (y, X)
ρ (x, X)

)1/F (A)

.

Summing over y ∈ A yields

1
ρ (x, A) =

∑
y∈A ρ (y, X)1/F (A)

ρ (x, X)1/F (A) ,

from which,

ρ (x, A) = ρ (x, X)1/F (A)

∑
y∈A ρ (y, X)1/F (A) .

Next define v : X → (0, ∞) by

v (x) = α + ln ρ (x, X)
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where
α := 1 − min

y∈X
ρ (y, X)

so that we get

ρ (x, A) =
exp

(
v(x)
F (A)

)
∑

y∈A exp
(

v(y)
F (A)

) ,

as desired.
We now turn to the proof of our claim. We need a preliminary step.

Lemma 1. For any |A| ≥ 3 and a, b ∈ (0, ∞), there exist λ ∈ ΔA and x, y, z ∈ A such that
λ (x) /λ (y) = a and λ (y) /λ (z) = b.

Proof. If |A| = 3 set c = 1, otherwise set c = 1
2 . Let x, y, z be three distinct elements in A.

Now define λ ∈ ΔA by

λ (x) = cba

1 + b + ba
,

λ (y) = cb

1 + b + ba
,

λ (z) = c

1 + b + ba
,

and, if |A| > 3, by λ (w) = 1
2(|A|−3) for all w /∈ {x, y, z}. It is easy to see that that λ has full

support and that λ (x) /λ (y) = a and λ (y) /λ (z) = b. Finally, if |A| = 3, then

∑
w∈A

λ (w) = cba + cb + c

1 + b + ba
= c = 1,

and if |A| > 3, then

∑
w∈A

λ (w) =
∑

w∈A\{x,y,z}

1
2 (|A| − 3) + cba + cb + c

1 + b + ba
= 1

2 + c = 1.

Thus λ is a well-defined element of ΔA.

We now proceed with the proof of our claim. Let ρ be a relaxed IIA rule, so that there is
an admissible family {GA}A∈A under which ρ obeys Equation (1). We suppose that |X| ≥ 3.
(The cases |X| = 2 and |X| = 1 are trivial and omitted.) Since GA is strictly increasing, it
is invertible. For any A ∈ A, define HA : (0, ∞) → (0, ∞) by

HA (a) = G−1
X (GA (a)) .
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Fix any A ∈ A with |A| ≥ 3. By Lemma 1, for any a, b ∈ (0, ∞), we can find three distinct
elements x, y, z ∈ A, and λ ∈ ΔA, such that

λ (x)
λ (y) = a and λ (y)

λ (z) = b.

Since {GA}A∈A is admissible there exists a random choice rule ρ̃ which obeys Equation (1)
under {GA}A∈A and satisfies ρ̃ (·, A) = λ. We have that for any x′, y′ ∈ {x, y, z},

GA

(
ρ̃ (x′, A)
ρ̃ (y′, A)

)
= GX

(
ρ̃ (x′, X)
ρ̃ (y′, X)

)
,

which implies that

HA

(
ρ̃ (x′, A)
ρ̃ (y′, A)

)
= ρ̃ (x′, X)

ρ̃ (y′, X) .

From this we get

HA

(
ρ̃ (x, A)
ρ̃ (y, A)

)
× HA

(
ρ̃ (y, A)
ρ̃ (z, A)

)
= ρ̃ (x, X)

ρ̃ (y, X) × ρ̃ (y, X)
ρ̃ (z, X) = ρ̃ (x, X)

ρ̃ (z, X) ,

and also
HA

(
ρ̃ (x, A)
ρ̃ (z, A)

)
= ρ̃ (x, X)

ρ̃ (z, X) .

Combining the previous two equations yields

HA

(
ρ̃ (x, A)
ρ̃ (y, A)

)
× HA

(
ρ̃ (y, A)
ρ̃ (z, A)

)
= HA

(
ρ̃ (x, A)
ρ̃ (z, A)

)
,

from which, using ρ̃ (A, ·) = λ, we get

HA (a) × HA (b) = HA (ab)

for any a, b ∈ (0, ∞). Moreover, the functions GA and GX are increasing and therefore
have at most a countable number of discontinuities. Thus, the map HA can have at most a
countable number of discontinuities. By a version of the Cauchy functional theorem (refer
back to the proof sketch in Section 3), there exists F̃ : A≥3 → R, where A≥3 is the set of all
A ∈ A with |A| ≥ 3, such that

HA (t) = tF̃ (A).

Clearly F̃ (X) = 1. Recalling the definition of HA, we get

GA (t) = GX(tF̃ (A)).
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Since GA and GX are both strictly increasing, it follows that F̃ (A) > 0 for all A ∈ A≥3. We
can also write

GA(t
1

F̃ (A) ) = GX (t) .

Thus, for any A, B ∈ A≥3,
GA(t

1
F̃ (A) ) = GB(t

1
F̃ (B) ),

from which,
GA (t) = GB(t

F̃ (A)
F̃ (B) ).

Since GA, GB are strictly increasing, we know that GA (t) = GB (u) if and only if u = t
F̃ (A)
F̃ (B) ,

which is true if and only if tF̃ (A) = uF̃ (B). Since ρ obeys Equation (1) under {GA}A∈A, we
conclude that for any A, B ∈ A≥3 and x, y ∈ A ∩ B,

(
ρ (x, A)
ρ (y, A)

)F̃ (A)

=
(

ρ (x, B)
ρ (y, B)

)F̃ (B)

,

as desired.
We still have to deal with the case |A| = 2. Set A = {x, y} and let αA ∈ R solve

(
ρ (x, A)
ρ (y, A)

)αA

=
(

ρ (x, X)
ρ (y, X)

)F̃ (X)

= ρ (x, X)
ρ (y, X) .

Since GA is strictly increasing, we have ρ(x,A)
ρ(y,A) ≥ 1 if and only if GA

(
ρ(x,A)
ρ(y,A)

)
≥ GA

(
ρ(y,A)
ρ(x,A)

)
.

Since ρ obeys Equation (1) under {GA}A∈A, we get ρ(x,A)
ρ(y,A) ≥ 1 if and only if GX

(
ρ(x,A)
ρ(y,A)

)
≥

GX

(
ρ(y,A)
ρ(x,A)

)
. Since GX is strictly increasing, we then have ρ(x,A)

ρ(y,A) ≥ 1 if and only if ρ(x,X)
ρ(y,X) ≥ 1.

It follows that we can choose αA ∈ (0, ∞).
Now define F : A → (0, ∞) by

F (A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F̃ (A) if |A| ≥ 3,

αA if |A| = 2,

1 if |A| = 1.

It can easily be verified that for all A, B ∈ A and x, y ∈ A ∩ B, we have

(
ρ (y, A)
ρ (x, A)

)F (A)

=
(

ρ (y, B)
ρ (x, B)

)F (B)

,

as desired.
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C Proof of Theorem 2

Suppose ρ is non-uniform and has representations (v, F ) and (v′, F ′). Since ρ is non-uniform
there exists x̄, x such that ρ (x̄, X) > ρ (x, X). Equation (2) implies that for any y ∈ X,

v (x̄) − v (x)
v (x̄) − v (y) =

(
ln ρ (x̄, X)

ρ (x, X)

) (
ln ρ (x̄, X)

ρ (y, X)

)−1

= v′ (x̄) − v′ (x)
v′ (x̄) − v′ (y) .

Rearranging gives

(v (x̄) − v (x)) (v′ (x̄) − v′ (y)) = (v (x̄) − v (y)) (v′ (x̄) − v′ (x)) ,

which can be further rearranged to give

v (y) = v (x̄) − (v (x̄) − v (x))
(v′ (x̄) − v′ (x)) (v′ (x̄) − v′ (y)) ,

from which, finally,

v (y) = v′ (y) v (x̄) − v (x)
v′ (x̄) − v′ (x) + v (x̄) − v (x̄) − v (x)

v′ (x̄) − v′ (x)v′ (x̄) .

Now set
α = v (x̄) − v (x)

v′ (x̄) − v′ (x) and β = v (x̄) − v (x̄) − v (x)
v′ (x̄) − v′ (x)v′ (x̄) .

Since ρ (x̄, X) > ρ (x, X), it is clear that α > 0. Fix any A ∈ A with |A| ≥ 2. Since ρ is
non-uniform, there exists ˙x, y ∈ A with ρ (x, A) �= ρ (y, A). We can write

ln
(

ρ (x, A)
ρ (y, A)

)
= v (x) − v (y)

F (A) = v′ (x) − v′ (y)
F ′ (A) ,

from which, using the relationship between v and v′, we get

αv′ (x) − αv′ (y)
F (A) = v′ (x) − v′ (y)

F ′ (A) .

Since ρ (x, A) �= ρ (y, A), we know that v′ (x) �= v′ (y), so we conclude which implies that
F (A) = αF ′(A), as desired.

For the reverse direction, suppose that (v, F ) represents ρ and let α > 0 and β ∈ R.
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Equation (2) then yields, for every A ∈ A,

ρ (x, A) =
exp

(
v(x)
F (A)

)
∑

y∈A exp
(

v(y)
F (A)

) =
exp

(
αv(x)
αF (A)

)
∑

y∈A exp
(

αv(y)
αF (A)

) =
exp

(
β

αF (A)

) (
exp

(
αv(x)
αF (A)

))
exp

(
β

αF (A)

) ∑
y∈A exp

(
αv(y)
αF (A)

)

=

(
exp

(
αv(x)+β
αF (A)

))
∑

y∈A exp
(

αv(y)+β
αF (A)

) .

Therefore, the pair (αv + β, αF ) also represents ρ, as required.
For uniqueness properties, first suppose (v, F ) and (v′, F ′) both represent ρ. By Theorem

2, there exist α > 0 and β ∈ R such that

v = αv′ + β,

F = αF ′.

Thus, we have for any x, y ∈ A,

v (x)
F (A) − v (y)

F (A) = αv′ (x) + β

αF ′ (A) − αv′ (y) + β

αF ′ (A) = v′ (x)
F ′ (A) − v′ (y)

F ′ (A) ,

as desired. Next, suppose (v, F ) represents ρ and there exists (v′, F ′) such that

v (x)
F (A) − v (y)

F (A) = v′ (x)
F ′ (A) − v′ (y)

F ′ (A) .

This says that for any set A, there is a γA ∈ R such that

v′ (x)
F ′ (A) = v (x)

F (A) + γA.

It follows that

exp
(

v′(x)
F ′(A)

)
∑

y∈A exp
(

v′(y)
F ′(A)

) =
exp

(
v(x)
F (A) + γA

)
∑

y∈A exp
(

v(y)
F (A) + γA

) =
exp (γA) exp

(
v(x)
F (A)

)
exp (γA) ∑

y∈A exp
(

v(y)
F (A)

)

=
exp

(
v(x)
F (A)

)
∑

y∈A exp
(

v(y)
F (A)

) = ρ (a, A) .

This establishes that (v′, F ′) represents ρ.
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D Proof of Theorem 3

First suppose that ρ is a relaxed IIA rule. From Equation (2) we see that for any x, y ∈ A,
ρ (x, A) ≥ ρ (y, A) holds if and only if v (x) ≥ v (y). Since v does not depend on A, this
proves Axiom 1. To prove Axiom 2, observe that for x, y ∈ A,

ln ρ (x, A)
ρ (y, A) = v (x) − v (y)

F (A) .

From which it follows that if x, y, x′, y′ ∈ A ∩ B we have

ln ρ (x, A)
ρ (y, A) ln ρ (x′, B)

ρ (y′, B) = (v (x′) − v (y′)) (v (x) − v (y))
F (A) F (B)

and similarly
ln ρ (x, B)

ρ (y, B) ln ρ (x′, A)
ρ (y′, A) = (v (x′) − v (y′)) (v (x) − v (y))

F (A) F (B) ,

which proves Axiom 2. This establishes the necessity of the axioms.
Now suppose ρ is a random choice rule that obeys Axioms 1 and 2. We will define

v : X → (0, ∞) and F : A → (0, ∞) so that Equation (2) holds, from which it follows that
ρ is a relaxed IIA rule. We first define

α := 1 − min
z∈X

lnρ(z, A).

Since ρ (z, A) ∈ (0, 1) whenever z ∈ A, it follows that α ∈ (1, ∞). Now define v by

v (x) = α + ln ρ (x, X) .

Using α ∈ (1, ∞), we see that v (x) ∈ (0, ∞) for all x ∈ X. It remains to define F . Start
with A ∈ A for which there exist x′, y′ ∈ A with ρ (x′, A) �= ρ (y′, A). By Axiom 1, we have
ρ (x′, X) �= ρ (y′, X), so that v (x′) �= v (y′). Now define F by

F (A) = ln
(

ρ (x′, X)
ρ (y′, X)

) (
ln

(
ρ (x′, A)
ρ (y′, A)

))−1

.

We see that F (X) = 1. Also, by Axiom 2, the value of F (A) is invariant to which x′, y′ are
chosen, provided ρ (x′, A) �= ρ (y′, A) holds. Hence, for any x, y ∈ A with ρ (x, A) �= ρ (y, A),
we have

ln ρ (x, A)
ρ (y, A) = 1

F (A) ln ρ (x, X)
ρ (y, X) = (v (x) − α) − (v (y) − α)

F (A) = v (x) − v (y)
F (A) .
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This equation also holds whenever ρ (x, A) = ρ (y, A), since both sides are then 1. Exponen-
tiating and summing over all x ∈ A we get

∑
x∈A

ρ (x, A)
ρ (y, A) =

∑
x∈A

exp
(

v (x) − v (y)
F (A)

)
,

so that
1

ρ (y, A) =
∑

x∈A exp
(

v(x)
F (A)

)
exp

(
v(y)
F (A)

) ,

from which, inverting both sides, we get Equation (2) for any A on which ρ is non-uniform.
For a set A on which ρ is uniform, Axiom 1 tells us that v is constant on A. In this case,
Equation (2) holds for any non-zero value of F (A), and we can simply set F (A) = 1.

E Examples

We now provide various examples promised in the text. Example 3 gives a class of an
inadmissible family of functions. Example 4 demonstrates that Axiom 2 does not imply
Axiom 1. And Example 5 shows that the power form is not the only kind of relaxed IIA
rule.

Example 3. Let B, C ∈ A with |B ∩ C| ≥ 3. Suppose {GA}A∈A is a family of strictly
increasing functions mapping (0, ∞) to (0, ∞). Further suppose that GB (t) = αt and
GC (t) = βt with α �= β. In order for {GA}A∈A to be admissible there must be at least one
random choice rule ρ that satisfies Equation (1) using {GA}A∈A. Let ρ be such a random
choice rule. Let x, y, z be three distinct elements of B ∩ C. Then for any w, w′ ∈ {x, y, z}
we have

α
ρ (w, B)
ρ (w′, B) = β

ρ (w, C)
ρ (w′, C) .

Since α �= β, and ρ is full support, it is immediate that neither α nor β can be zero. Therefore
for any w, w′ ∈ {x, y, z}

ρ (w, B)
ρ (w′, B) = β

α

ρ (w, C)
ρ (w′, C) . (9)

Applying the above equation we can derive that

ρ (x, B)
ρ (z, B) = ρ (x, B)

ρ (y, B)
ρ (y, B)
ρ (z, B) =

(
β

α

)
ρ (x, C)
ρ (y, C)

(
β

α

)
ρ (y, C)
ρ (z, C) =

(
β

α

)2
ρ (x, C)
ρ (z, C) .

And since β �= α, that contradicts Equation (9) when w = x and w′ = z. Therefore, we have
shown there exists no ρ that satisfies Equation (1) using {GA}A∈A, and hence {GA}A∈A is
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inadmissible.

Example 4. Let X = {x, y, z} and consider a random choice rule ρ defined as follows:

ρ (x, {x, y, z}) = 0.5, ρ (y, {x, y, z}) = 0.3, ρ (z, {x, y, z}) = 0.2,
ρ (x, {x, y}) = 0.4, ρ (y, {x, y}) = 0.6,
ρ (y, {y, z}) = 0.6, ρ (z, {y, z}) = 0.4,
ρ (x, {x, z}) = 0.6, ρ (z, {x, z}) = 0.4.

ρ does not obey Axiom 1 since ρ (x, X) > ρ (y, X) and ρ (x, {x, y}) < ρ (y, {x, y}). We now
want to show that ρ obeys Axiom 2. Let A, B ∈ A and suppose that w, z, w′, z′ ∈ A ∩ B.
We want to show that

ln ρ (w, A)
ρ (z, A) ln ρ (w′, B)

ρ (z′, B) = ln ρ (w′, A)
ρ (z′, A) ln ρ (w, B)

ρ (z, B) (10)

If A = B, then Equation (10) holds immediately. If w′ = z′ or w = z the above equation
again holds since both sides would be zero. From here on suppose A �= B, w′ �= z′ and
w �= z. These conditions imply that either A or B contains exactly two alternatives. Since
all four of w, z, w′, z′ must all be contained in a set with two alternatives, either (i) w = w′,
z = z′ or (ii) w = z′, z = w′. In case (i) it is again immediately clear that Equation (10)
holds. In case (ii) we have that

ln ρ (w, A)
ρ (z, A) ln ρ (w′, B)

ρ (z′, B) = ln ρ (w, A)
ρ (z, A) ln ρ (z, B)

ρ (w, B)

=
(

− ln ρ (z, A)
ρ (w, A)

) (
− ln ρ (w, B)

ρ (z, B)

)

=
(

ln ρ (w′, A)
ρ (z′, A)

) (
ln ρ (w, B)

ρ (z, B)

)
,

which establishes Equation (10).

Example 5. Let X = {x, y, z}. Define GX : (0, ∞) → (0, ∞) by

GX (t) =
⎧⎨
⎩ 2t − 1 if t ≥ 1,

t
2−t

if t < 1,

and define GA (t) = t for all A �= X. It is clear that {GA}A∈A is not a power form. So,
we have only to check that {GA}A∈A is admissible. Fix any λ ∈ ΔX. We now construct a
random choice rule ρ which satisfies Equation (1) under {GA}A∈A and which agrees with λ
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on X. Set ρ (x′, X) = λ (x′) for all x′ ∈ X. Choose any two-element set A = {y′, z′} and
without loss of generality suppose λ (y′) > λ (z′). Let

ρ (y′, A) = 1 − 1
2 · λ (z′)

λ (y′) and ρ (z′, A) = 1
2 · λ (z′)

λ (y′) .

It can be checked that ρ defined this way satisfies Equation (1) under {GA}A∈A. Moreover,
by varying λ (y′) and λ (z′), all possible (non-zero) probabilities can be generated on A. This
means that we could have similarly constructed ρ by starting with any two-element choice
set B and arbitrary probabilities on B. This establishes that {GA}A∈A is admissible.

F Proof of Proposition 1

We will need a preliminary result.

Lemma 2. Fix some A ∈ A, λ ∈ ΔA, and F : A → (0, ∞). For any random choice rule ρ

with ρ (·, A) = λ, the following are equivalent:

1. For all B, C ∈ A,

(
ρ (x, B)
ρ (y, B)

)F (B)

=
(

ρ (x, C)
ρ (y, C)

)F (C)

for all x, y ∈ B ∩ C.

2. There exists w : X\A → (−∞, +∞) such that for any B ∈ A and x ∈ A ∩ B,

ρ (x, B) = λ (x)F (A)/F (B)

∑
y∈A∩B λ (y)F (A)/F (B) + ∑

y∈B\A exp
(

w(y)
F (B)

) ,

and for any B ∈ A and x ∈ B\A,

ρ (x, B) =
exp

(
w(x)
F (B)

)
∑

y∈A∩B λ (y)F (A)/F (B) + ∑
y∈B\A exp

(
w(y)
F (B)

) .

Note that 0 < ρ (x, B) ≤ 1 and ∑
x∈B ρ (x, B) = 1 for all B ∈ A, so that ρ defined in

Part 2. of the lemma is a well-defined random choice rule.

Proof. We will first show 2 ⇒ 1. Extend w to all of X by defining, for every x ∈ A,

w (x) = F (A) ln λ (x) .
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This implies that for any B ∈ A and x ∈ B,

ρ (x, B) =
exp

(
w(x)
F (B)

)
∑

y∈B exp
(

w(y)
F (B)

) .

Therefore, for all x, y ∈ B we get

(
ρ (x, B)
ρ (y, B)

)F (B)

= exp (w (x) − w (y)) ,

and since the right-hand side of this equation does not depend on B, we get the equation in
Part 1.

We next show that 1 ⇒ 2. Fix any z ∈ A and define w : X\A → (−∞, +∞) by setting,
for each x ∈ X\A,

w (x) = F (X) ln
(

ρ (x, X)
ρ (z, X) × ρ (z, A)

F (A)
F (X)

)
.

By construction we have w (x) ∈ (−∞, +∞) for all x ∈ X\A. Now choose any B ∈ A and
x ∈ B. We know that for all y ∈ B,

ρ (y, B)
ρ (x, B) = ρ (y, X)

ρ (x, X)

F (X)
F (B)

,

which implies
∑
y∈B

ρ (y, B)
ρ (x, B) =

∑
y∈B

ρ (y, X)
ρ (x, X)

F (X)
F (B)

.

From this we can write

ρ (x, B) = ρ (x, X)
F (X)
F (B)

∑
y∈B (ρ (y, X))

F (X)
F (B)

= ρ (x, X)
F (X)
F (B)

∑
y∈A∩B (ρ (y, X))

F (X)
F (B) + ∑

y∈B\A (ρ (y, X))
F (X)
F (B)

.

The ratio equation in Part 1. implies that for all y ∈ A,

ρ (y, X) = ρ (z, X)
(

ρ (y, A)
ρ (z, A)

) F (A)
F (X)

.
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From this and the definition of w we get

ρ (x, B) = ρ (x, X)
F (X)
F (B)

∑
y∈A∩B ρ (y, A)

F (A)
F (B) × ρ(z,X)

F (X)
F (B)

ρ(z,A)
F (A)
F (B)

+ ∑
y∈B\A exp

(
w(y)
F (B)

)
× ρ(z,X)

F (X)
F (B)

ρ(z,A)
F (A)
F (B)

.

If x ∈ A, we can rewrite this equation as

ρ (x, B) =
ρ (x, A)

F (A)
F (B) × ρ(z,X)

F (X)
F (B)

ρ(z,A)
F (A)
F (B)

∑
y∈A∩B ρ (y, A)

F (A)
F (B) × ρ(z,X)

F (X)
F (B)

ρ(z,A)
F (A)
F (B)

+ ∑
y∈B\A exp

(
w(y)
F (B)

)
× ρ(z,X)

F (X)
F (B)

ρ(z,A)
F (A)
F (B)

= ρ (x, A)
F (A)
F (B)

∑
y∈A∩B ρ (y, A)

F (A)
F (B) + ∑

y∈B\A exp
(

w(y)
F (B)

) .

If x /∈ A, we can write

ρ (x, B) =
exp

(
w(x)
F (B)

)
× ρ(z,X)

F (X)
F (B)

ρ(z,A)
F (A)
F (B)

∑
y∈A∩B ρ (y, A)

F (A)
F (B) × ρ(z,X)

F (X)
F (B)

ρ(z,A)
F (A)
F (B)

+ ∑
y∈B\A exp

(
w(y)
F (B)

)
× ρ(z,X)

F (X)
F (B)

ρ(z,A)
F (A)
F (B)

=
exp

(
w(x)
F (B)

)
∑

y∈A∩B ρ (y, A)
F (A)
F (B) + ∑

y∈B\A exp
(

w(y)
F (B)

) ,

as desired.

We can now complete the proof of Proposition 1.1. Fix A ∈ A, λ ∈ ΔA, and x ∈ A, y /∈
A. First suppose that λ (z) = λ (z′) for all z, z′ ∈ A. Let ρ be a relaxed IIA rule with
ρ (·, A) = λ. We want to show that ρ (x, A) ≥ ρ (x, A ∪ {y}). By Axiom 1, we know that
ρ (z, A ∪ {y}) = ρ (x, A ∪ {y}) for any z ∈ A, from which,

1 =
∑

z∈A∪{y}
ρ (z, A ∪ {y}) ≥ |A|ρ (x, A ∪ {y}) ,

39



and therefore
ρ (x, A ∪ {y}) ≤ 1

|A| = ρ (x, A) ,

as desired.
Now suppose there exist z, z′ ∈ A with λ (z) �= λ(z′). Fix any F : A → (0, ∞), with

F (A) = 1, and any wy ∈ (−∞, +∞). By Lemma 2, we know there exists a relaxed IIA rule
ρ with ρ (·, A) = λ and

ρ (x, A ∪ {y}) = ρ (x, A)1/F (A∪{y})

∑
z∈A ρ (z, A)1/F (A∪{y}) + exp

(
wy

F (A∪{y})

) . (11)

Suppose ρ (x, A) < 1
|A| . Then we can take limits to get

lim
F (A∪{y})→+∞

lim
wy→−∞ ρ (x, A ∪ {y}) = ρ (x, A)1/F (A∪{y})

∑
z∈A ρ (z, A)1/F (A∪{y}) = 1

|A| .

Thus, we can choose F (A ∪ {y}) and wy so that ρ (x, A ∪ {y}) > ρ (x, A), as desired.
Next suppose that ρ (x, A) ≥ 1

|A| . We first show that if this is true, then there exists
F̃ ∈ (0, ∞) with

ρ (x, A)1/F̃

∑
z∈A ρ (z, A)1/F̃

> ρ (x, A) . (12)

To see why this holds, note that if F̃ = 1, then

ρ (x, A)1/F̃

∑
z∈A ρ (z, A)1/F̃

= ρ (x, A) .

Since the left-hand side of this equality is continuously differentiable in F̃ , it suffices to
prove that the derivative of the left-hand side with respect to F̃ is non-zero at F̃ = 1. This
derivative is readily calculated to be

−ρ (x, A)1/F̃

F̃ 2

(∑
z∈A

ρ (z, A)1/F̃

)2 (∑
z∈A

ρ (z, A)1/F̃ (ln ρ (x, A) − ln ρ (z, A))
)

,

which, evaluated at F̃ = 1, is

−ρ (x, A)
(∑

z∈A

ρ (z, A)
)2 (∑

z∈A

ρ (z, A) (ln ρ (x, A) − ln ρ (z, A))
)

.
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The sign of this expression is the same as the sign of

∑
z∈A

ρ (z, A) ln ρ (z, A) − ln ρ (x, A) .

Thus, the derivative is zero exactly when

∑
z∈A

ρ (z, A) ln ρ (z, A) = ln ρ (x, A) ≥ ln 1
|A| ,

where the inequality uses our assumption that ρ (x, A) ≥ 1
|A| . But ∑

z∈A ρ (z, A) ln ρ (z, A) is
the negative of the entropy of ρ on set A, and ln |A| is the maximum possible entropy of ρ

on set A. The maximum entropy is obtained only when ρ (z, A) = 1
|A| for all z ∈ A, which

contradicts our assumption of non-uniformity of ρ on A. This establishes Equation (7).
We can now finish the case ρ (x, A) ≥ 1

|A| . Setting F (A ∪ {y}) = F̃ in Equation (6) gives

ρ (x, A ∪ {y}) = ρ (x, A)1/F̃

∑
z∈A ρ (z, A)1/F̃ + exp

(
wy

F̃

) .

Using Equation (7), we see that, by choosing wy sufficiently negative, we can then arrange
ρ (x, A ∪ {y}) > ρ (x, A), as desired.

We turn, finally, to the proof of Proposition 1.2. Fix any A ∈ A, λ ∈ ΔA, and distinct
elements x, y ∈ A. Choose F : A → (0, ∞) with F (A) = 1. From Lemma 2, we know there
is a relaxed IIA rule ρ with ρ (·, A) = λ and

ρ (x, A\ {y}) = ρ (x, A)1/F (A\{y})

∑
z∈A\{y} ρ (z, A)1/F (A\{y}) .

Suppose λ (x) < maxz∈A\{y} λ (z), that is, there exists z ∈ A\ {y} with ρ (z, A) > ρ (x, A). If
we take F (A\ {y}) → 0, we get ρ (x, A\ {y}) → 0. But we know that ρ (x, A) = λ (x) > 0, so
there must be a sufficiently small value for F (A\ {y}) > 0 for which ρ (x, A) > ρ (x, A\ {y}),
as desired. Next suppose λ (x) > 1

|A|−1 . Taking F (A\ {y}) → +∞, we get ρ (x, A\ {y}) →
1

|A|−1 . Thus, there must be a sufficiently large value for F (A ∪ {y}) for which ρ (x, A\ {y}) <

ρ (x, A), as desired.
We now prove the reverse direction. Suppose λ (x) ≥ maxz∈A\{y} λ (z) and λ (x) ≤ 1

|A|−1 .
This gives ρ (x, A) ≥ ρ (z, A) for all z ∈ A\ {y}, from which, by Axiom 1,

ρ (x, A\ {y}) ≥ ρ (z, A\ {y})
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for all z ∈ A\ {y}. Summing over z yields

(|A| − 1) ρ (x, A\ {y}) ≥ ∑
z∈A\{y}

ρ (z, A\ {y}) = 1,

and therefore
ρ (x, A\ {y}) ≥ 1

|A| − 1 ≥ ρ (x, A) ,

as desired.

G Proof of Proposition 2

Let ρ be a relaxed IIA rule, then there must exist v : X → (0, ∞) and F : A → (0, ∞) such
that for all A ∈ A and x ∈ A, Equation (2) holds. Now let A, B ∈ A with F (A) ≥ F (B). We
will show A is more stochastic than B. Choose any x, y ∈ A∩B such that ρ (x, A) ≥ ρ (y, A).
It is clear from Equation (2) that ρ (x, A) ≥ ρ (y, A) implies v (x) ≥ v (y). Again employing
Equation (2),

ρ (x, A)
ρ (y, A) =

exp
(

v(x)
F (A)

)
exp

(
v(y)
F (A)

) = exp
(

v (x) − v (y)
F (A)

)

and
ρ (x, B)
ρ (y, B) =

exp
(

v(x)
F (B)

)
exp

(
v(y)
F (B)

) = exp
(

v (x) − v (y)
F (B)

)
.

Since F (A) ≥ F (B) and v (x) − v (y) > 0 we know that

ρ (x, A)
ρ (y, A) ≤ ρ (x, B)

ρ (y, B) .

This establishes that F (A) ≥ F (B) implies that A is more stochastic than B. The statement
of Proposition 2 follows since for any A, B ∈ A, either F (A) ≥ F (B) or F (B) ≥ F (A)
must hold.
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