Self-consistent inference in
perception and cognition

Alan Stocker

Department of Psychology
University of Pennsylvania

computational perception
and cognition lab









Perception can be biased ...
... and almost always is!
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Bayesian observer hypothesis
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... and thousand others by now.



Bayesian observer hypothesis
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Being biased is the computational
consequence of being rational under
uncertainty - optimal combination of prior
and stimulus information.

Contextual (fast established) biases?



Context by subjective category commitment

1) Apple or orange? _ ?

2) Perceived color? )



Seqguential inference
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Task 1: categorical judgment
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Task 2: orientation estimate
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Choice-induced biases in perceived orientation
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Hierarchical generative model
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Independent inference
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“Self-consistent” inference
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Self-consistent observer

Category
(decision
variable)

Choice feedback!

Stimulus
variable

w
o

Sensory
signal

Estimated orientation (deQ)

20 10 0 10 20 -20 10 O 10 20 -20 -10 O 10 20

Memory Stimulus orientation (deg)




Fits
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Individual subjects
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Fit parameter values
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Experiment 2: influence of the stimulus prior

remind subjects of stimulus distribution (prior)

Prior cue

Discrimination
task

Estimation
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Results
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Experiment 3: self-inferred vs. given choice

Given correct
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Results
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Experiment 2
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Numerosity (humber sense)

Time

Symbolic representation:

low-level features have
minimal influence on
numerical percept.
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Choice-induced biases in number stimulus

Data (combined subject, N=6)
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Trial-by-trial predictions
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Prediction errors of the different models

|| Sample average
|_] Independent Bayes

= [_] Self-consistent Bayes

©

S 4} ) +/-1 SEM

s o

§ o '

S of

o

o

S

D)

a 1T

c

S

O

= oL — —
1 2 3 4 S 6 avg

Subject



Value-based inference

How attractive
are these kitchen appliances?

Score: 4 6.5

6.5

Brehm 1956



Discrimination: pick the more attractive

Item from two possible choices. Brehm 1956

Score: 4 6.5 6.5



Estimation: re-evaluate the

attractiveness Brehm 1956

Score: X4 68 7.5 68 5.5

Cognitive dissonance



Summary and conclusions

Humans show choice-induced biases in sequential
perceptual inference tasks.

Self-consistent bayesian observer model

* full account of data.
* subjects treat their own decisions as if they were correct.

General behavior/model (perceptual, cognitive, and
value-based inference tasks).




Open questions

Does self-consistent inference intrinsically happen in
perception/cognition or only when forced to commit to
an outcome? (e.g. object recognition)
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Open questions

Does self-consistent inference intrinsically happen in
perception/cognition or only when forced to commit to

an outcome? (e.g. object recognition)

Self-consistent inference is sub-optimal behavior (in
terms of plain performance): can we find a guantitative
formulation for its rationality?

Are reported decision-feedback signals in the brain there
to ensure self-consistency? Nienborg/Cumming 2009, Siegel et al

2015



thank you and ...

5th year graduate
student, UPenn




