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Deluges of data
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• Distributed attention: the more items 
need to be attended to, the lower the 
precision with which each is encoded. 

• Selective attention: for a given number 
of items, those with greater relevance are 
encoded with higher precision. 

• Attention for choice: in deliberate 
choice between goods, attended goods 
are more likely to be chosen.



Models of distributed attention, selective attention, 
and attention for choice are mostly descriptive, 

even when quantitative. 

In the psychology of attention, there is a lack of 
normative models.



Three projects in progress

1. The effects of set size (number of items) on 
encoding precision: a new normative theory for 
existing data 

2. The effects of relevance (priority) on encoding 
precision and confidence: new data and models, 
some normative 

3. The effects of fixation (attention) on choice: a new 
normative theory for existing data



Part 1: The effects of set size (number of items) on 
encoding precision: a new normative theory 

Ronald van den Berg 
University of Uppsala



A very old observation

Sir William Hamilton 
(1788-1856)



Figure 1. An ecologically rational model of set size effects in delayed estimation. (A) Example of a
delayed-estimation experiment. The subject is briefly presented with a set of stimuli and, after a short delay,
reports the value of a randomly chosen target item. (B) Estimation error distributions widen with set size,
suggesting a decrease in encoding precision (data from Experiment DE5 in Table 1; estimated precision
computed in the same way as in Fig. 3A). (C) Stimulus encoding is assumed to be associated with two kinds
of loss: a behavioral loss that decreases with encoding precision and a neural loss that is proportional to
both set size and precision. In the delayed-estimation task, the expected behavioral error loss is independent
of set size. (D) Total expected loss has a unique minimum that depends on the number of remembered
items. The mean precision per item that minimizes expected total loss is referred to as the optimal mean
precision (arrows) and decreases with set size. The parameter values used to produce panels C and D were
λ=0.01, β=2, and τ↓0.
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Precision decreases with increasing set size

Figure 1. An ecologically rational model of set size effects in delayed estimation. (A) Example of a
delayed-estimation experiment. The subject is briefly presented with a set of stimuli and, after a short delay,
reports the value of a randomly chosen target item. (B) Estimation error distributions widen with set size,
suggesting a decrease in encoding precision (data from Experiment DE5 in Table 1; estimated precision
computed in the same way as in Fig. 3A). (C) Stimulus encoding is assumed to be associated with two kinds
of loss: a behavioral loss that decreases with encoding precision and a neural loss that is proportional to
both set size and precision. In the delayed-estimation task, the expected behavioral error loss is independent
of set size. (D) Total expected loss has a unique minimum that depends on the number of remembered
items. The mean precision per item that minimizes expected total loss is referred to as the optimal mean
precision (arrows) and decreases with set size. The parameter values used to produce panels C and D were
λ=0.01, β=2, and τ↓0.
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But why?



Normative idea: two conflicting goals

Expected total loss = Expected behavioral loss + λ · Expected neural loss

“The need for energy management provides an interesting physiological 
perspective on a traditional view of attention as adaptation to the brain’s 
limited capacity to process information: energy limitations require that only 
a small fraction of the machinery can ever be engaged concurrently.” 
— Lennie, The cost of cortical computation, 2003

“In this study we investigated the possibility that covert attention helps to 
control the expenditure of cortical computation by trading contrast 
sensitivity across attended and unattended areas of the visual field, even 
with impoverished displays and simple tasks.” 
— Pestilli and Carrasco, 2005



Implementation
• Stimulus s ∈ [0,2π) 

• Noisy encoding: x ~ VonMises(s,𝜅) 

• Precision J = f(𝜅), f monotonic 

• Variable precision:  

• Estimation error ε between x and s

J ~ Gamma J
τ
,τ⎛

⎝⎜
⎞
⎠⎟

Expected total loss =  Expected behavioral loss + λ ⋅Expected neural loss

= ε β

p ε J( )
+ !λNJ

Model has only three parameters.
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In general not a power law!



Total 56,775 trials from 67 subjects 
Van den Berg, Awh, and Ma, Psych Rev 2014



Model fits

Figure 2. Model fits to data from six delayed-estimation experiments. (A) Maximum-likelihood fits to
raw data of the worst-fitting and best-fitting subjects. Goodness of fit was measured as R2, computed for
each subject by concatenating histograms across set sizes. (B) Subject-averaged fits to the two statistics that
summarize the estimation error distributions (circular variance and kurtosis) as a function of set size, split
by experiment. Here and in subsequent figures, error bars and shaded areas represent 1 s.e.m. of the mean
across subjects.
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Comparison with a maximally flexible model

Figure 3. Estimated encoding precision in the delayed-estimation experiments. (A) Best-fitting
precision values in the rational model scattered against the best-fitting precision values in the unconstrained
model. Each dot represents the estimates for a single subject. (B) Estimated mean encoding precision per
item (red) and total encoding precision (black) plotted against set size.
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Non-monotonicity of total precision

Figure 3. Estimated encoding precision in the delayed-estimation experiments. (A) Best-fitting
precision values in the rational model scattered against the best-fitting precision values in the unconstrained
model. Each dot represents the estimates for a single subject. (B) Estimated mean encoding precision per
item (red) and total encoding precision (black) plotted against set size.
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Conclusions Part 1

• The decrease of precision with set size in attention 
and working memory is usually thought of as a 
cognitive limitation. 

• Instead, it might result from an optimal trade-off 
between behavioral and neural loss. 

• Monetary incentives should increase attentional/
working memory precision in a specific manner. 
• Surprising if you come from classic working 

memory.



Part 2: The effects of relevance (priority) 
on encoding precision and confidence: 
new data and models (some normative)

Aspen Yoo Zuzanna Klyszejko Clay Curtis



Different items have different relevance

• Behavioral and neural evidence for allocation of 
resources based on relevance.  

• Does attentional allocation optimally adjust to 
differences in relevance?



Experiment 1

Probe probability is 0.6, 0.3, or 0.1.
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Effects of the relevance manipulation
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Models for attentional allocation

Ji = piJ total

Mean precision allocated to the ith item  

• Proportional model: allocates attention in proportion to 
the probe probability (2 pars) 

• Flexible model: proportions allocated can be anything 
(4 pars) 

• Normative model: allocates attention to minimize 
expected behavioral loss (3 pars) - “rational inattention”

Expected total loss =  Expected behavioral loss J1, J2, J3( )  + !λNJ total

now constant!



Model fits
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Attentional distribution in Flexible model
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Model fits
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Model comparison
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Attentional allocation minimizes error-based 
behavioral loss. 



Extension: effects of selective attention on 
confidence / metacognition



Experiment 2: post-decision wager
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Effects of relevance
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Effects of relevance
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Model for post-decision wager

Low uncertainty
High uncertainty

How to set the circle radius for given uncertainty?



Model for post-decision wager
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Model for post-decision wager

Reported circle radius: softmax read-out of EU

Low uncertainty
High uncertainty

=

How to set the circle radius for given uncertainty?

Requires access to trial-to-trial representation of uncertainty!



Models for attentional allocation 
(estimate and confidence)

• Proportional model: allocates attention in proportion to the 
probe probability (4 pars) 

• Flexible model: proportions allocated can be anything (6 pars) 
• Normative model (type 1): allocates attention to minimize 

expected behavioral loss, wager is an afterthought (5 pars) 
• Normative model (type 2): allocates attention to maximize 

expected point gain from wager (4 pars)



Model fits
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Model comparison
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Attentional allocation minimizes expected error-based 
loss, and not point gain from a post-decision wager. 



Attentional distribution in the Flexible model
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Conclusions Part 2

• Observers allocate more resources to items with higher 
relevance 
• Not proportional: overallocation to low, underallocation to 

high relevance 
• Apparently to minimize error-based expected loss. 

• Allocation strategy did not change when a post-decision 
wager was introduced, 
• but wager decision itself might be maximizing expected 

utility. 
• Working memory stores uncertainty on a trial-by-trial basis.



Part 3: The effects of fixation on choice: a new normative 
theory for Krajbich & Rangel data

Zhiwei Li



In value-based decision-making, do people build belief distributions 
over world states like in perceptual decision-making?

outcome50% $10
50% $0

100% 
$5 decision

Uncertainty about outcome

measured
world state

outcome
sensory 

decision

Uncertainty about outcome derived from uncertainty about world state

belief about 
outcome



Krajbich, Armel, Rangel 2010

free viewing, 
eye tracked

People more often chose 
the item they fixated on 
for longer.

Can an inference model 
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Value inference model (VIM)

Step 1: From observations to posterior 
Step 2: From posterior to utility 
Step 3: From utility to choice 



VIM Step 1: From observations to posterior

longer 
fixation
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longer 
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Uncertainty decreases over time
In part due to retrieval of memories 
(Shadlen and Shohamy 2016)

Internal belief distribution, not 
histogram of experienced outcomes!



VIM Step 2: From posterior to utility
P

os
te

rio
r p

ro
ba

bi
lit

y

Hypothesized value

agent prefers higher posterior 
mean and lower uncertainty



VIM Step 3: From utility to choice

DV = U(left) - U(right)
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Decision is made when DV reaches a collapsing boundary

Decision variable:

Hawkins et al. 2015



Model comparison

AICc BIC

VIM-aDDM -903 (-1376, -473) -634 (-1125, -226)

acbDDM-aDDM -876 (-1318, -518) -607 (-1040, -237)
VIM-acbDDM -27 (-198, 147) -27 (-196, 144)

VIM: value inference model 
aDDM: attention drift-diffusion model (Krajbich and Rangel) 
acbDDM: aDDM with collapsing bound

(median and bootstrapped 95% confidence interval)



Bayesian model selection for groups

VIM-var
(VIM+ variance 

term)

VIM-std
(value inference model + 

std utility term)

aDDM

acbDDM 

Stephan et al. 2009; Rigoux et al. 2014
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Conclusion Part 3

• Value inference combined with uncertainty 
aversion might underlie fixation-based choice 
biases. 

• Strong evidence for collapsing bound (regardless 
of VIM or aDDM) 

• All models we tested show systematic deviations 
from the data.



David Teniers the Younger,  
Archduke Leopold Wilhelm in his gallery in Brussels (around 1651)

Towards normative models of attention
• Distributed attention: minimize expected 

error-based loss while minimizing neural 
loss 

• Selective attention: minimize expected 
error-based loss (neural loss fixed) 

• Attention for choice: maximize posterior 
mean while minimizing posterior uncertainty


