Persuasion with Rational Inattention

Alex Bloedel Ilya Segal Stanford University

February 22, 2019

2019 Sloan-Nomis Workshop (NYU)

・ロト ・ 日 ・ ・ 日 ・ ・

Motivation

"In an information-rich world, most of the cost of information is the cost incurred by the recipient. It is not enough to know how much it costs to produce and transmit information; we must also know how much it costs, in terms of scarce attention, to receive it."

- Herbert Simon (1971)

Leading Examples:

- Info management in organizations: Give the boss "all the details" or just an "executive summary"?
- Advertising in the "attention economy": How to attract consumers' money and eyeballs?

イロト イポト イヨト イヨト

Premise

- Communication is a fundamental economic "transaction"
 - Sender has info, Receiver has decision-making power
- Receiver's limited attention is a primary "transaction cost"
 - ▶ Receiver privately bears a cost to process Sender's messages ⇒ moral hazard
- Information disclosure plays a dual role
 - Persuasion: misaligned preferences over actions
 - Attention manipulation: misaligned preferences over information/attention

Premise

- Communication is a fundamental economic "transaction"
 - Sender has info, Receiver has decision-making power
- Receiver's limited attention is a primary "transaction cost"
 - ▶ Receiver privately bears a cost to process Sender's messages ⇒ moral hazard
- Information disclosure plays a dual role
 - **Opersuasion:** misaligned preferences over **actions**
 - **2** Attention manipulation: misaligned preferences over information/attention

イロト イヨト イヨト イヨ

- Question: What is optimal form of communication in an information-rich world?
 - I How does this depend on preference (mis)alignment?
 - ② ... on Sender's commitment power? (Bayesian persuasion vs. cheap talk)
 - On the second second
- Main Insights:
 - Aligned: simple messages to focus Receiver's attention => minimize mistakes
 Misaligned: detailed messages to exploit Receiver's inattention => induce mistakes
 Both: provide more info in order to attract Receiver's attention
 - Even under aligned preferences, commitment has value b/c Sender will exaggerate
 - Under aligned preferences, attention manipulation driven by multi-tasking aspect of Receiver's attention choice

- Question: What is optimal form of communication in an information-rich world?
 - I How does this depend on preference (mis)alignment?
 - ② ... on Sender's commitment power? (Bayesian persuasion vs. cheap talk)
 - On the second second
- Main Insights:
 - Aligned: simple messages to focus Receiver's attention ⇒ minimize mistakes Misaligned: detailed messages to exploit Receiver's inattention ⇒ induce mistakes Both: provide more info in order to attract Receiver's attention
 - Even under aligned preferences, commitment has value b/c Sender will exaggerate
 - Under aligned preferences, attention manipulation driven by multi-tasking aspect of Receiver's attention choice

- Question: What is optimal form of communication in an information-rich world?
 - I How does this depend on preference (mis)alignment?
 - On the second second
 - On the second second
- Main Insights:
 - Aligned: simple messages to focus Receiver's attention => minimize mistakes
 Misaligned: detailed messages to exploit Receiver's inattention => induce mistakes
 Both: provide more info in order to attract Receiver's attention
 - ② Even under aligned preferences, commitment has value b/c Sender will exaggerate
 - Under aligned preferences, attention manipulation driven by multi-tasking aspect of Receiver's attention choice

- Question: What is optimal form of communication in an information-rich world?
 - I How does this depend on preference (mis)alignment?
 - On the second second
 - On the second second
- Main Insights:
 - Aligned: simple messages to focus Receiver's attention ⇒ minimize mistakes Misaligned: detailed messages to exploit Receiver's inattention ⇒ induce mistakes Both: provide more info in order to attract Receiver's attention
 - **(2)** Even under aligned preferences, commitment has value b/c Sender will exaggerate
 - Under aligned preferences, attention manipulation driven by multi-tasking aspect of Receiver's attention choice

イロト イポト イヨト イヨト

- Question: What is optimal form of communication in an information-rich world?
 - I How does this depend on preference (mis)alignment?
 - ② ... on Sender's commitment power? (Bayesian persuasion vs. cheap talk)
 - On the second second
- Main Insights:
 - Aligned: simple messages to focus Receiver's attention ⇒ minimize mistakes Misaligned: detailed messages to exploit Receiver's inattention ⇒ induce mistakes Both: provide more info in order to attract Receiver's attention
 - **②** Even under aligned preferences, commitment has value b/c Sender will exaggerate
 - Under aligned preferences, attention manipulation driven by multi-tasking aspect of Receiver's attention choice

イロト イポト イヨト イヨト

Related Literature

- Bayesian persuasion: Rayo-Segal (2010), Kamenica-Gentzkow (2011), Dworczak-Martini (2018)
- Rational inattention:
 - Single agent: Matejka-McKay (2015), Caplin-Dean (2015), Caplin-Dean-Leahy (2018a,b)
 - ▶ Interactive: Matejka-McKay (2012), Matejka (2015), Martin (2017), Ravid (2018), Yang (2018)
- RI & BP: Gentzkow-Kamenica (2014), Matyskova (2018), Lipnowski-Mathevet-Wei (2018)
- Costly communication: Dewatripont-Tirole (2005), Dessein-Galeotti-Santos (2016)

- **9** State of nature $S \sim G \in \Delta(S)$, where $S = [\underline{s}, \overline{s}]$
- Sender commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\blacktriangleright \ \pi: \mathcal{S} \to \Delta(\mathcal{X})$
- **O** Receiver chooses an attention strategy (\mathcal{M}, μ) given (\mathcal{X}, π) , before signal realized
 - $m \in \mathcal{M}$ is a perception
 - $\mu: \mathcal{X} \to \Delta(\mathcal{M})$
 - ▶ Moral hazard: attention cost function of both (X, π) and (M, μ)
- Given perception $m \in \mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$
- Material payoffs realize
 - Receiver has utility $u_R(a,s) := \mathbf{1}_{a=1} \cdot s$
 - Sender has affine utility $u_S(a,s) := \alpha \cdot \mathbf{1}_{a=1} + \beta \cdot u_R(a,s)$

- **9** State of nature $S \sim G \in \Delta(S)$, where $S = [\underline{s}, \overline{s}]$
- **Sender** commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\pi: \mathcal{S} \to \Delta(\mathcal{X})$

ORCEIVER Chooses an attention strategy (\mathcal{M}, μ) — given (\mathcal{X}, π) , before signal realized

- $m \in \mathcal{M}$ is a perception
- $\mu: \mathcal{X} \to \Delta(\mathcal{M})$
- Moral hazard: attention cost function of both (\mathcal{X}, π) and (\mathcal{M}, μ)

• Given perception $m \in \mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$

Material payoffs realize

- Receiver has utility $u_R(a,s):=\mathbf{1}_{a=1}\cdot s$
- Sender has affine utility $u_{S}(a,s) := \alpha \cdot \mathbf{1}_{a=1} + \beta \cdot u_{R}(a,s)$

- **(**) State of nature $S \sim G \in \Delta(S)$, where $S = [\underline{s}, \overline{s}]$
- **Sender** commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\pi: \mathcal{S} \to \Delta(\mathcal{X})$
- **Oracle Receiver** chooses an attention strategy (\mathcal{M}, μ) given (\mathcal{X}, π) , before signal realized
 - $m \in \mathcal{M}$ is a perception
 - $\mu : \mathcal{X} \to \Delta(\mathcal{M})$
 - Moral hazard: attention cost function of both (\mathcal{X}, π) and (\mathcal{M}, μ)

Given perception $m \in \mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$

Material payoffs realize

- Receiver has utility $u_R(a,s):= \mathbf{1}_{a=1}\cdot s$
- Sender has affine utility $u_{S}(a,s) := \alpha \cdot \mathbf{1}_{a=1} + \beta \cdot u_{R}(a,s)$

イロン 不同と イヨン イヨン

- **(**) State of nature $S \sim G \in \Delta(S)$, where $S = [\underline{s}, \overline{s}]$
- **Sender** commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\pi: \mathcal{S} \to \Delta(\mathcal{X})$
- **Or Receiver** chooses an attention strategy (\mathcal{M}, μ) given (\mathcal{X}, π) , before signal realized
 - $m \in \mathcal{M}$ is a perception
 - $\mu : \mathcal{X} \to \Delta(\mathcal{M})$
 - Moral hazard: attention cost function of both (\mathcal{X}, π) and (\mathcal{M}, μ)
- Given perception $m\in\mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a\in\{0,1\}$
- Material payoffs realize
 - Receiver has utility $u_R(a,s) := \mathbf{1}_{a=1} \cdot s$
 - Sender has affine utility $u_S(a,s) := \alpha \cdot \mathbf{1}_{a=1} + \beta \cdot u_R(a,s)$

A D F A B F A B F A B F

- **9** State of nature $S \sim G \in \Delta(S)$, where $S = [\underline{s}, \overline{s}]$
- **Sender** commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\pi: \mathcal{S} \to \Delta(\mathcal{X})$
- **Or Receiver** chooses an attention strategy (\mathcal{M}, μ) given (\mathcal{X}, π) , before signal realized
 - $m \in \mathcal{M}$ is a perception
 - $\mu : \mathcal{X} \to \Delta(\mathcal{M})$
 - Moral hazard: attention cost function of both (\mathcal{X}, π) and (\mathcal{M}, μ)
- Given perception $m \in \mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$
- Material payoffs realize
 - Receiver has utility $u_R(a,s) := \mathbf{1}_{a=1} \cdot s$
 - Sender has affine utility $u_S(a, s) := \alpha \cdot \mathbf{1}_{a=1} + \beta \cdot u_R(a, s)$

A D F A B F A B F A B F

Assumption: RI Cost Function

- $S \to X \to M$ forms Markov chain
- Attention cost \propto **mutual information** between X and M:

$$I(X; M) = \underbrace{I(S; M)}_{\text{direct learning about state}} + \underbrace{I(X; M|S)}_{\text{tracking additional noise in signal}}$$

• Sender chooses "state space" and "prior" for Receiver's RI problem

Lemma ("Revelation Principle")

It is WLOG to identify signals with their induced posterior means about state, i.e.,

 $\mathcal{X} := \mathcal{S}$ $x := \mathbb{E}\left[s \mid x\right]$

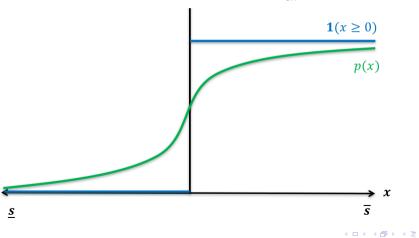
A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assumption: RI Cost Function

- $S \to X \to M$ forms Markov chain
- Attention cost \propto **mutual information** between X and M:

$$I(X; M) = \underbrace{I(S; M)}_{\text{direct learning about state}} + \underbrace{I(X; M|S)}_{\text{tracking additional noise in signal}}$$

• Sender chooses "state space" and "prior" for Receiver's RI problem

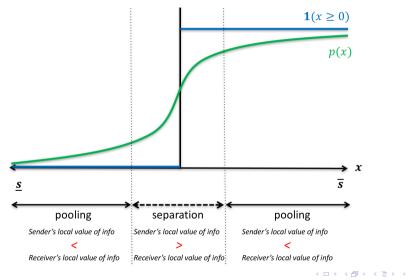

Lemma ("Revelation Principle")

It is WLOG to identify signals with their induced posterior means about state, i.e.,

$$\mathcal{X} := \mathcal{S}$$
$$x := \mathbb{E}\left[s \mid x\right]$$

Stochastic Choice (for *fixed* persuasion strategy)

- Receiver makes mistakes: 0 < p(x) < 1
- **2** Local Attention Intensity is single-peaked & smoothed: $\frac{\partial p(x)}{\partial x} \propto \mathbb{V}(a \mid x) > 0$



Aligned Preferences

- Same material preferences: $u_S(a,s) = u_R(a,s) = \mathbf{1}_{a=1} \cdot s$
- Leading Example: Should you give the boss "all the details" or just an "executive summary"?
- Competing intuitions:
 - **Q** Fully disclose the state to (i) give Receiver "largest feasible set" and (ii) attract his attention
 - Ø Make direct recommendation to make "processing" easier for Receiver

Aligned Preferences: Continuous State

Key feature: simple messages focus Receiver's attention on the "right aspects" and minimize mistakes

Bloedel and Segal

-

Aligned Preferences: Benchmarks

General model with state space S and action space A compact metric, utility functions continuous.

- Receiver faces pure capacity constraint: $I(X; M) \leq C$
 - **Fact:** Full disclosure always optimal.
 - "Proof:" Receiver has free disposal of information, so give him largest feasible set
 - > Intuition: attention manipulation hinges on extensive margin of Receiver's attention choice

(a) State is binary: |S| = 2

- ▶ Theorem (partial): If |S| = 2, then full disclosure is always optimal. If $|S| \ge 3$, there are examples with two actions s.t. full disclosure strictly suboptimal.
- > Intuition: attention manipulation hinges on multi-tasking aspect of Receiver's attention choice

イロト イポト イヨト イヨト

Aligned Preferences: Benchmarks

General model with state space S and action space A compact metric, utility functions continuous.

- Receiver faces pure capacity constraint: $I(X; M) \leq C$
 - **Fact:** Full disclosure always optimal.
 - ▶ "Proof:" Receiver has free disposal of information, so give him largest feasible set
 - > Intuition: attention manipulation hinges on extensive margin of Receiver's attention choice
- **2** State is binary: |S| = 2
 - ▶ Theorem (partial): If |S| = 2, then full disclosure is always optimal. If $|S| \ge 3$, there are examples with two actions s.t. full disclosure strictly suboptimal.
 - Intuition: attention manipulation hinges on multi-tasking aspect of Receiver's attention choice

イロト イポト イヨト イヨト

Remarks and Next Steps

- Not in talk:
 - Proof ideas mostly based on LP & first-order approach
 - Misaligned preferences
 - Limited commitment/cheap talk communication
 - Comparative statics
- Work in progress:
 - Multiple Senders who compete for Receiver's attention (joint with Dong Wei)
 - Oynamic information disclosure (no restriction to one-shot communication)
- Open questions:
 - In Further extensions and applications of model?
 - In Message space design (beyond mutual info cost)?
 - In the section of the section of

Remarks and Next Steps

- Not in talk:
 - Proof ideas mostly based on LP & first-order approach
 - Misaligned preferences
 - Limited commitment/cheap talk communication
 - Comparative statics
- Work in progress:
 - Multiple Senders who compete for Receiver's attention (joint with Dong Wei)
 - Oynamic information disclosure (no restriction to one-shot communication)
- Open questions:
 - In Further extensions and applications of model?
 - Message space design (beyond mutual info cost)?
 - In the section of the section of

Remarks and Next Steps

- Not in talk:
 - Proof ideas mostly based on LP & first-order approach
 - Misaligned preferences
 - Limited commitment/cheap talk communication
 - Comparative statics
- Work in progress:
 - Multiple Senders who compete for Receiver's attention (joint with Dong Wei)
 - Oynamic information disclosure (no restriction to one-shot communication)
- Open questions:
 - In Further extensions and applications of model?
 - Message space design (beyond mutual info cost)?
 - Mechanism/market design for RI agents (multiple Receivers, other instruments)?

Appendix

Bloedel and Segal

▶ < ≣ ▶ ≣ ∽ < <> February 22, 2019 14 / 19

イロト イヨト イヨト イヨト

- Sender cares only about probability of action: $u_S(a, s) = \mathbf{1}_{a=1}$
- Leading Example: profit-maximizing seller advertises a good with fixed price (e.g., Amazon's product recommendations)

State-Independent Preferences: Binary State (1/2)

Key feature #1: provide more info than free-attention solution to attract Receiver's attention

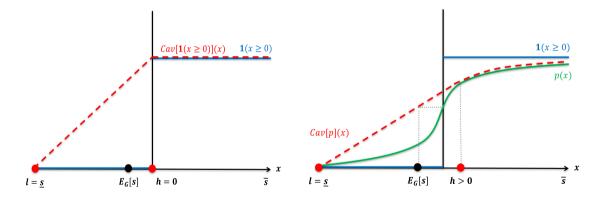


Figure: Optimum when attention is free (left) and when it is costly (right).

State-Independent Preferences: Binary State (2/2)

Key feature #2: Receiver's entire best-response curve is endogenous to Sender's persuasion strategy

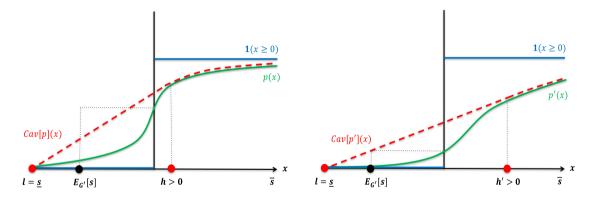


Figure: Optimum against fixed SCR (left) and incorporating IC constraint (right).

State-Independent Preferences: Continuous State

Key feature: detailed messages to exploit Receiver's inattention and induce mistakes

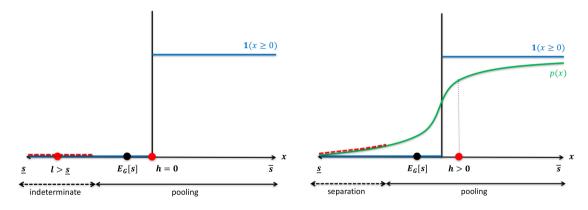
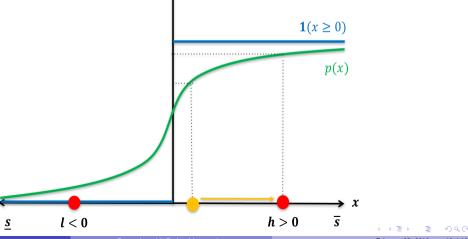



Figure: Optimum when attention is free (left) and when it is costly (right).

• • • • • • • • • • • • •

Aligned Preferences: No Commitment (cheap talk)

- $\bullet\,$ Sender can, at most, truthfully convey the sign of the state
 - Endogenous restriction to direct recommendation
 - Driving force: incentive to exaggerate always hindrance to communication

