## Information Choice and Motivated Beliefs

Spencer Y. Kwon, William E. Murdock III & Pierre-Luc Vautrey

February 22, 2019



#### 1 Introduction

- 2 Experimental Design
- **3** Preliminary Results
- **4** Challenges and Questions

## Motivation

- Growing body of (mixed) evidence on the formation of overconfident beliefs through asymmetric updating
- While it's hard to tell whether updating biases are purely automatic or not, in real life people definitely have a lot of agency on the information they choose to receive and pay attention to
- Thus it seems crucial to study the role of these choices in forming motivated beliefs

## An Example

- Think of someone who has to decide which news channel to listen to
- Fox News? CNN?
- Many people have a sense that these news sources are somewhat biased
- How do they choose?
- How to they subsequently form beliefs?
  - Lab evidence: selection neglect

## An Example

- Think of someone who has to decide which news channel to listen to
- Fox News? CNN?
- Many people have a sense that these news sources are somewhat biased
- How do they choose?
- How to they subsequently form beliefs?
  - Lab evidence: selection neglect
- Hypothesis: do people exploit such choices to manufacture preferred beliefs?

## An Example

- Think of someone who has to decide which news channel to listen to
- Fox News? CNN?
- Many people have a sense that these news sources are somewhat biased
- How do they choose?
- How to they subsequently form beliefs?
  - Lab evidence: selection neglect
- Hypothesis: do people exploit such choices to manufacture preferred beliefs?
  - Preview: in our experiment, they do!



#### 1 Introduction

#### **2** Experimental Design

**3** Preliminary Results

**4** Challenges and Questions

## IQ Tests and Beliefs about Ranked Performance

- Participants answer questions commonly found in IQ tests
  Raven's Matrices
- ► For each IQ question, they are ranked in a comparison sample
  - Ranked lexicographically by number of incorrect attempts and then time
- After each IQ question, individuals are incentivized to report their probabilistic beliefs about whether they ranked above a fixed threshold

# **Belief Elicitation**

#### Your performance - Where do you think you rank?

Please use the slider below to report the percent chance you believe your score on this puzzle ranks you in the top 25 respondents. Note that you can also directly type your response into the box. Recall, it pays to honestly report your prediction.



 Participants receive 3 binary signals, drawn from an urn with replacement, and re-report beliefs after each signal

- Urn: 5 truthful signals and 3 lying signals
- Beliefs incentivized using the Lottery Method (Mobius et al. (2014), Coutts (2018)...)
- Narratives and animations used to help with comprehension

### Choice vs. No Choice Treatments

After a practice round, the urn is biased in a positive or negative manner for the remainder of the experiment.



- 2 signals are added to the urn that are always positive OR always negative.
- Choice Treatment: Participants choose which bias they want
- No Choice Treatment: Participants are randomly assigned to a bias

## Pilot Study

- Recruited 135 participants from MTurk
- Randomly assigned them to Choice and No Choice treatments

## Sample

| Summary Statistics by Treatment Arm |                     |           |       |  |
|-------------------------------------|---------------------|-----------|-------|--|
|                                     | Motivated Motivated |           |       |  |
|                                     | Choice              | No Choice | p-val |  |
|                                     | (1)                 | (2)       | (3)   |  |
| Age                                 | 38.507              | 36.476    | 0.264 |  |
| Female                              | 0.423               | 0.419     | 0.971 |  |
| White                               | 0.806               | 0.778     | 0.694 |  |
| College Degree                      | 0.625               | 0.587     | 0.657 |  |
| Income Less Than 50k                | 0.597               | 0.508     | 0.301 |  |
| Democrat                            | 0.451               | 0.476     | 0.770 |  |
| Fox News                            | 0.194               | 0.190     | 0.954 |  |
| NYTimes                             | 0.431               | 0.444     | 0.872 |  |
| Observations                        | 72                  | 63        |       |  |

\*\*\*p < 0.01, \*\*p < 0.05, \*p < 0.1

Raven Performance



#### 1 Introduction

#### 2 Experimental Design

#### **3** Preliminary Results

**4** Challenges and Questions

### **Bias Choice**

|                        | Proportion   |
|------------------------|--------------|
| Yay Sayer<br>Nay Sayer | 0.56<br>0.44 |
| <i>p-val</i>           | 0.144        |
| Num. obs.              | 12           |

P-value calculated using a one-sided test and the binomial CDF.



## Updating in each Treatment

|                | Choice Yay | Choice Nay | Forced Yay | Forced Nay |
|----------------|------------|------------|------------|------------|
| Prior          |            |            | 0.90       | 0.90       |
|                |            |            | (0.04)     | (0.04)     |
| Yay-Yes        |            |            | 1.02       |            |
|                |            |            | (0.16)     |            |
| ¥ау-імо        |            |            | 0.04       |            |
| Nov Vez        |            |            | (0.15)     | 0.74       |
| ivay- res      |            |            |            | 0.74       |
|                |            |            |            | (0.16)     |
| Nay-No         |            |            |            | 1.09       |
|                |            |            |            | (0.13)     |
| R <sup>2</sup> | 0.86       | 0.89       | 0.83       | 0.86       |
| Num. obs.      | 588        | 456        | 568        | 316        |

Regression Specification Asymmetric Updating Bias Neglect

## Updating in each Treatment

|                | Choice Yay | Choice Nay | Forced Yay | Forced Nay |
|----------------|------------|------------|------------|------------|
| Prior          | 0.89       | 0.94       | 0.90       | 0.90       |
|                | (0.02)     | (0.02)     | (0.04)     | (0.04)     |
| Yay-Yes        | 1.05       |            | 1.02       |            |
|                | (0.14)     |            | (0.16)     |            |
| Yay-No         | 0.69       |            | 0.64       |            |
|                | (0.12)     |            | (0.13)     |            |
| Nay-Yes        |            | 0.79       |            | 0.74       |
|                |            | (0.12)     |            | (0.16)     |
| Nay-No         |            | 0.69       |            | 1.09       |
|                |            | (0.17)     |            | (0.13)     |
| R <sup>2</sup> | 0.86       | 0.89       | 0.83       | 0.86       |
| Num. obs.      | 588        | 456        | 568        | 316        |

Regression Specification Asymmetric Updating Bias Neglect

## **Biased Beliefs**

|        | Mean Bias |        |                   |
|--------|-----------|--------|-------------------|
|        | Choice    | Forced | Pr(Choice=Forced) |
| Yay    | 0.22      | 0.21   | 0.49              |
| Nay    | 0.14      | -0.15  | 0.01              |
| Pooled | 0.18      | 0.05   | 0.12              |



#### 1 Introduction

- 2 Experimental Design
- **3** Preliminary Results



## Challenges and Questions

- Non-motivated Control Arm
- Meta-cognition
- Strategy method for belief?
- Real-world extensions

### Raven's Matrices

0 0 0 7

## Peformance on Raven's Matrices

| Matrix                        | # Incorrect | Time (Sec.) | Payment (\$) |
|-------------------------------|-------------|-------------|--------------|
| Prac. Easy                    | 0.246       | 13.093      | 0.446        |
| Prac. Hard                    | 0.875       | 27.206      | 0.338        |
| 34                            | 1.153       | 21.534      | 0.331        |
| 45                            | 0.912       | 20.245      | 0.376        |
| 47                            | 2.277       | 34.975      | 0.215        |
| 50                            | 0.956       | 20.519      | 0.367        |
| 55                            | 1.781       | 31.216      | 0.267        |
| 59                            | 4.307       | 47.458      | 0.102        |
| PE PH M34 M45 M47 M50 M55 M59 |             |             |              |



## Practice Matrix (Easy)





## Practice Matrix (Hard)





## Gremlins

Truth Teller: This type of gremlin will look at all 100 60 responses and will always honestly report to you whether you are ranked in the top 25 respondents or not. Liar: This type of gremlin will look at all 100 responses and will always report to you the opposite of what they observe. For example, if you are truly ranked in the top 25 respondents, this type of gremlin would tell you that you are not ranked in the top 25. Yay Sayer: This type of gremlin will always answer "ves", regardless of whether it is true or not. They are lazy and positive — they won't even look at the data and just tell you that you are ranked in the top 25 respondents. Nay Sayer: This type of gremlin will always answer "no", regardless of whether it is true or not. They are lazy and negative — they won't even look at the data and just tell you that you are not ranked in the top 25 respondents.

# Receiving Signals (Before)



I now believe with % chance that my score on this puzzle ranks me in the top 25 respondents:



# Receiving Signals (After)



Back









.











## Gremlin Comprehension Check

#### **Gremlin Example**

Suppose your performance on the puzzle ranks you 80 out of 100. What would each type gremlin report to you after looking at the 100 responses? Remember, they are answering the question "are you ranked in the top 25 respondents?"

You must submit the correct answer to proceed.



Check Answer

That's correct!

### **Bias Choice Screen**

Would you prefer the other 2 gremlins to be always negative Nay Sayers or always positive Yay Sayers?



Please click on the type of gremlin you would like for the other 2 gremlins and then click the "Next" button.



### What a Bayesian Would Do



prior



## Choose to Maximize Expected Monetary Gains?

|                                                | Chose Yay |  |
|------------------------------------------------|-----------|--|
| Intercept                                      | 0.13      |  |
|                                                | (0.15)    |  |
| Monetary Edge                                  | 467.24    |  |
|                                                | (503.02)  |  |
| Num. obs.                                      | 72        |  |
| *** $p < 0.001$ , ** $p < 0.01$ , * $p < 0.05$ |           |  |

Back

## **Optimal Bayesian Choice?**

|           | Optimal Bayes |           |  |
|-----------|---------------|-----------|--|
|           | Yay-Sayer     | Nay-Sayer |  |
| Yay Sayer | 23            | 14        |  |
| Nay Sayer | 15            | 12        |  |

Notes: Participants who reported a prior belief of 50 were dropped.

Back

## Updating Specification

We use similar specifications as in Mobius et al. (2014) and Coutts (2018):

In sequential updating problems, Bayes' rule can be written as

$$\frac{\mu_t}{1 - \mu_t} = \frac{\mu_{t-1}}{1 - \mu_{t-1}} \cdot LR_k$$

where  $\mu_t$  is the posterior,  $\mu_{t-1}$  is the prior, and  $LR_k$  is the likelihood ratio of observing signal  $s_t = k \in \{0, 1\}$ . In our case, a signal of 0 corresponds to a gremlin saying "No" and a signal of 1 corresponds to a gremlin saying "Yes".

Taking logs, this motivates the following regression:

$$\ln\left(\frac{\mu_{it}}{1-\mu_{it}}\right) = \delta \ln\left(\frac{\mu_{i,t-1}}{1-\mu_{i,t-1}}\right) + \beta_1 I(s_{it}=1) \ln(LR_1) + \beta_0 I(s_{it}=0) \ln(LR_0) + \epsilon_{it}$$

• Where, for a Bayesian,  $\delta = \beta_1 = \beta_0 = 1$ .

## Asymmetric Updating

|                | Pooled | Choice | Forced<br>(Balanced) |
|----------------|--------|--------|----------------------|
| Prior          | 0.91   | 0.92   | 0.91                 |
|                | (0.01) | (0.01) | (0.02)               |
| Good Signal    | 0.90   | 0.91   | 0.84                 |
|                | (0.05) | (0.06) | (0.09)               |
| Bad Signal     | 0.72   | 0.69   | 0.85                 |
|                | (0.05) | (0.07) | (0.10)               |
| R <sup>2</sup> | 0.86   | 0.87   | 0.85                 |
| Num. obs.      | 1928   | 1044   | 632                  |
| Pr(Good=Bad)   | 0.011  | 0.014  | 0.941                |

## **Bias Neglect**

| Pooled |
|--------|
| 0.91   |
| (0.01) |
| 0.97   |
| (0.06) |
| 0.71   |
| (0.05) |
| 0.86   |
| 1928   |
| 0.000  |
|        |

Back