Misperceiving Mechanisms

Daniel Martin and Edwin Muñoz-Rodriguez

• Mechanism: set of complex rules that can be misperceived.

- Mechanism: set of complex rules that can be misperceived.
- Misperception: new design challenges.

- Mechanism: set of complex rules that can be misperceived.
- Misperception: new design challenges.

- Mechanism: set of complex rules that can be misperceived.
- Misperception: new design challenges.

Goal: understand misperception of mechanisms and how to address the resulting design challenges.

Mechanism Design

- Mechanism: set of complex rules that can be misperceived.
- Misperception: new design challenges.

Goal: understand misperception of mechanisms and how to address the resulting design challenges.

Mechanism Imperfect Design Perception

- Mechanism: set of complex rules that can be misperceived.
- Misperception: new design challenges.

Mechanism	Imperfect	Contingent
Design	Perception	Thinking

"Robust to agents' and designer beliefs" (Börgers 2015).

"Robust to agents' and designer beliefs" (Börgers 2015).

- Appealing in applications:
- **NRMP** Provide a **safe** environment for participants to reveal their information (Niederle, Roth, and Sönmez 2008).

"Robust to agents' and designer beliefs" (Börgers 2015).

• Appealing in applications:

NRMP Provide a **safe** environment for participants to reveal their information (Niederle, Roth, and Sönmez 2008).

School choice A level playing field when participants are heterogeneous in their level of sophistication (Pathak and Sönmez 2008).

"Robust to agents' and designer beliefs" (Börgers 2015).

• Appealing in applications:

NRMP Provide a safe environment for participants to reveal their information (Niederle, Roth, and Sönmez 2008).
School choice A level playing field when participants are heterogeneous in their level of sophistication (Pathak and Sönmez 2008).
Auctions It spares "participants the need for elaborate strategic calculations" (Milgrom 2004).

Failures to play dominant strategies in mechanisms:

- Second price auctions (Kagel, Harstad, and Levin 1987).
- DA algorithms (Hassidim et al. 2017).
- BDM mechanism (Cason and Plott 2014).
- Pivotal mechanisms (Chen 2008).

Motivation and Relevance

- Mechanisms can have **complex payoff rules**:
 - Must consider consequences of actions in numerous contingencies.

Motivation and Relevance

- Mechanisms can have **complex payoff rules**:
 - Must consider consequences of actions in numerous contingencies.
- If agents have **cognitive limitations**:
 - Might end up with a **fuzzy perception** of the connection between contingencies and actions.
 - So might not recognize the mechanism's dominant strategy.

Motivation and Relevance

- Mechanisms can have complex payoff rules:
 - Must consider consequences of actions in numerous contingencies.
- If agents have **cognitive limitations**:
 - Might end up with a **fuzzy perception** of the connection between contingencies and actions.
 - So might not recognize the mechanism's dominant strategy.
- Examples: Cason and Plott (2014), Li (2017).

Model of Imperfect Perception

- Imperfect perception:
 - Agents receive a noisy mental signal, then choose an action based on fuzzy mental representation of the environment

Model of Imperfect Perception

- Imperfect perception:
 - Agents receive a noisy mental signal, then choose an action based on fuzzy mental representation of the environment
 - Economic modelling: Woodford (2014), Caplin and Martin (2015), Caplin and Dean (2015), Matejka and McKay (2015), Fudenberg, Strack, and Strzalecki (2017).

Model of Imperfect Perception

- Imperfect perception:
 - Agents receive a noisy mental signal, then choose an action based on fuzzy mental representation of the environment
 - Economic modelling: Woodford (2014), Caplin and Martin (2015), Caplin and Dean (2015), Matejka and McKay (2015), Fudenberg, Strack, and Strzalecki (2017).
- Use to model perception of a mechanism's extensive form:
 - Receive noisy mental signal of mechanisms they think they are facing.

First Step

Apply the model of misperception to a simple mechanism of wide use

• Seller version of the BDM, which is used to elicit the willingness-to-accept of subjects to sell a good.

- Seller version of the BDM, which is used to elicit the willingness-to-accept of subjects to sell a good.
 - The subject competes against a random bidder in a second price procurement auction.

- Seller version of the BDM, which is used to elicit the willingness-to-accept of subjects to sell a good.
 - The subject competes against a random bidder in a second price procurement auction.
 - The optimal bid is the object valuation.

- Seller version of the BDM, which is used to elicit the willingness-to-accept of subjects to sell a good.
 - The subject competes against a random bidder in a second price procurement auction.
 - The optimal bid is the object valuation.
- Cason and Plott (2014)
 - Subjects appear to confuse their BDM protocol with a first-price sealed-bid procurement auction (FPA).

- Seller version of the BDM, which is used to elicit the willingness-to-accept of subjects to sell a good.
 - The subject competes against a random bidder in a second price procurement auction.
 - The optimal bid is the object valuation.
- Cason and Plott (2014)
 - Subjects appear to confuse their BDM protocol with a first-price sealed-bid procurement auction (FPA).
 - Model assumption: People could potentially confuse BDM with FPA.

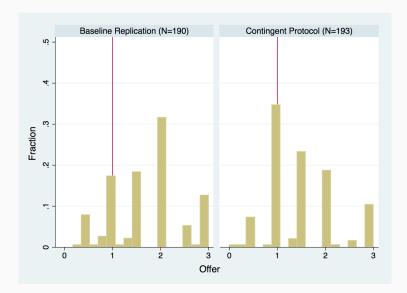
• To generate comparative static predictions, we specialize model to require the optimal choice of mental signals.

- To generate comparative static predictions, we specialize model to require the optimal choice of mental signals.
- Assume more informative mental signals are more costly, as in rational inattention theory.

- To generate comparative static predictions, we specialize model to require the optimal choice of mental signals.
- Assume more informative mental signals are more costly, as in rational inattention theory.
- This specialization offers comparative static predictions.
 - As benefits of perception change.
 - As costs of perception change.

- To generate comparative static predictions, we specialize model to require the optimal choice of mental signals.
- Assume more informative mental signals are more costly, as in rational inattention theory.
- This specialization offers comparative static predictions.
 - As benefits of perception change.
 - As costs of perception change.

Prediction. As cost of processing information decreases, average bid decreases.


• **Experiment**: compare CP BDM protocol with a new protocol.

- **Experiment**: compare CP BDM protocol with a new protocol.
- Our theory is silent about how to lower information cost.

- **Experiment**: compare CP BDM protocol with a new protocol.
- $\cdot\,$ Our theory is silent about how to lower information cost.
- Guidance from literature: cost of **contingent thinking**.

- **Experiment**: compare CP BDM protocol with a new protocol.
- Our theory is silent about how to lower information cost.
- Guidance from literature: cost of contingent thinking.
 - **Computational complexity** of the problem is related to the set of contingencies that need to be considered. (Martinez-Marquina, Niederle, and Vespa 2017).

- **Experiment**: compare CP BDM protocol with a new protocol.
- Our theory is silent about how to lower information cost.
- Guidance from literature: cost of **contingent thinking**.
 - **Computational complexity** of the problem is related to the set of contingencies that need to be considered. (Martinez-Marquina, Niederle, and Vespa 2017).
 - **Contingent protocol**: Payoffs to each action are specified contingency by contingency (Esponda and Vespa 2014).

Misperception and other biases

• Importantly, we **do not change** the extensive form of the mechanism as we vary the protocol.

Misperception and other biases

- Importantly, we **do not change** the extensive form of the mechanism as we vary the protocol.
- Alternative explanations for choice mistakes in the BDM do not provide an answer for the observed reduction.
 - Endowment effect, positive feelings from ownership, anchoring or attraction to the maximum possible payoff, bad deal aversion, and the buy-low sell-high heuristic.

Misperception and other biases

- Importantly, we **do not change** the extensive form of the mechanism as we vary the protocol.
- Alternative explanations for choice mistakes in the BDM do not provide an answer for the observed reduction.
 - Endowment effect, positive feelings from ownership, anchoring or attraction to the maximum possible payoff, bad deal aversion, and the buy-low sell-high heuristic.
- This reduction is plausibly associated with a reduction in misperception.

- Two possible paths to follow:
 - Mechanism Design: abstract, general insights.
 - Market Design: applied, case by case.

- Two possible paths to follow:
 - Mechanism Design: abstract, general insights.
 - Market Design: applied, case by case.
- Two open questions:
 - What are the **alternative game forms** participants regard as possible?

- Two possible paths to follow:
 - Mechanism Design: abstract, general insights.
 - Market Design: applied, case by case.
- Two open questions:
 - What are the **alternative game forms** participants regard as possible?
 - Map the **information cost** to **features** of the mechanism that can be designed.

Thank you!