Deeper Habits and Excess Smoothness

Mel Win Khaw, Oskar Zorrilla

Columbia University

February 21, 2019

э

Outline

2

イロト イヨト イヨト イヨト

Consumption/savings decisions should depend only on expected present value of wealth.

3

(日)

Consumption/savings decisions should depend only on expected present value of wealth.

• Changes wealth \rightarrow changes in consumption.

3

< 🗇 🕨

Consumption/savings decisions should depend only on expected present value of wealth.

- Changes wealth \rightarrow changes in consumption.
- *Excess smoothness*: consumption underreacts to changes in wealth.

Consumption/savings decisions should depend only on expected present value of wealth.

- Changes wealth \rightarrow changes in consumption.
- *Excess smoothness*: consumption underreacts to changes in wealth.

Possible explanations: preferences, imperfect information, consumption commitments.

Consumption/savings decisions should depend only on expected present value of wealth.

- Changes wealth \rightarrow changes in consumption.
- *Excess smoothness*: consumption underreacts to changes in wealth.

Possible explanations: preferences, imperfect information, consumption commitments.

Difficult to distinguish among them using field data.

Consumption/savings decisions should depend only on expected present value of wealth.

- Changes wealth \rightarrow changes in consumption.
- *Excess smoothness*: consumption underreacts to changes in wealth.

Possible explanations: preferences, imperfect information, consumption commitments.

- Difficult to distinguish among them using field data.
- Difficult to establish whether consumption is excessively smooth.

Consumption/savings decisions should depend only on expected present value of wealth.

- Changes wealth \rightarrow changes in consumption.
- *Excess smoothness*: consumption underreacts to changes in wealth.

Possible explanations: preferences, imperfect information, consumption commitments.

- Difficult to distinguish among them using field data.
- Difficult to establish whether consumption is excessively smooth.

Use experimental data to address those difficulties.

Design an experiment analogous to a consumption/savings problem.

< □ > < 同 > < 回 > < 回 > < 回 >

3

Design an experiment analogous to a consumption/savings problem.

Show that our data are *excessively smooth*.

3

Image: A match a ma

Design an experiment analogous to a consumption/savings problem.

Show that our data are *excessively smooth*.

► Show that our subjects condition on past actions: inertia → excess smoothness.

Design an experiment analogous to a consumption/savings problem.

Show that our data are excessively smooth.

► Show that our subjects condition on past actions: inertia → excess smoothness.

 Agents condition on past actions as a way to economize on scarce cognitive resources.

Design an experiment analogous to a consumption/savings problem.

Show that our data are excessively smooth.

Show that our subjects condition on past actions: inertia → excess smoothness.

 Agents condition on past actions as a way to economize on scarce cognitive resources.

Inertia is state-dependent: excess smoothness is increasing in wealth.

< □ > < 同 > < 三 > < 三 >

Outline

4 Model

2

イロト イヨト イヨト イヨト

Frame it as an investment game.

3

• • • • • • • • • • • •

Frame it as an investment game.

► Two instruments: cash and properties.

- Frame it as an investment game.
- Two instruments: cash and properties.
- Binary decision: whether to buy a property on offer with their available cash.

- Frame it as an investment game.
- Two instruments: cash and properties.
- Binary decision: whether to buy a property on offer with their available cash.
- Subjects receive a *one time* rental dividend if they buy the property.

- Frame it as an investment game.
- Two instruments: cash and properties.
- Binary decision: whether to buy a property on offer with their available cash.
- Subjects receive a *one time* rental dividend if they buy the property.
- Rent payments cannot be transformed back into cash.

Start the game with a stock of cash (11,000,000).

3. 3

Image: A match a ma

- Start the game with a stock of cash (11,000,000).
- Each turn you are offered a property.

э

< 4 → < 3

- Start the game with a stock of cash (11,000,000).
- Each turn you are offered a property.
- ► All properties have the same price of 1,000,000 in cash.

▲ 四 ▶

- Start the game with a stock of cash (11,000,000).
- Each turn you are offered a property.
- All properties have the same price of 1,000,000 in cash.
- Different rental values ranging from 500 to 100,000.

- Start the game with a stock of cash (11,000,000).
- Each turn you are offered a property.
- All properties have the same price of 1,000,000 in cash.
- Different rental values ranging from 500 to 100,000.
- Both the rental value and its associated probability are known to the subject.

- Start the game with a stock of cash (11,000,000).
- Each turn you are offered a property.
- All properties have the same price of 1,000,000 in cash.
- Different rental values ranging from 500 to 100,000.
- Both the rental value and its associated probability are known to the subject.
- Cannot borrow to buy assets.

- Start the game with a stock of cash (11,000,000).
- Each turn you are offered a property.
- All properties have the same price of 1,000,000 in cash.
- Different rental values ranging from 500 to 100,000.
- Both the rental value and its associated probability are known to the subject.
- Cannot borrow to buy assets.
- Cash is replenished through an income of 4,000,000 which arrives each period with ten percent probability.

- Start the game with a stock of cash (11,000,000).
- Each turn you are offered a property.
- All properties have the same price of 1,000,000 in cash.
- Different rental values ranging from 500 to 100,000.
- Both the rental value and its associated probability are known to the subject.
- Cannot borrow to buy assets.
- Cash is replenished through an income of 4,000,000 which arrives each period with ten percent probability.
- Game ends after every turn with probability 0.002

э

ヘロン 人間 とくほとくほど

э

イロト イヨト イヨト イヨト

You have no money! Choose again.

3

イロト イヨト イヨト イヨト

- **Decision Problem:** Whether to purchase the property on offer.
- **• Objective:** Maximize the expected sum of rent payments.

э

• • • • • • • • • •

- **Decision Problem:** Whether to purchase the property on offer.
- **Objective:** Maximize the expected sum of rent payments.
- Cash and properties are different instruments like wealth and consumption in the classic savings problem.

- **Decision Problem:** Whether to purchase the property on offer.
- **Objective:** Maximize the expected sum of rent payments.
- Cash and properties are different instruments like wealth and consumption in the classic savings problem.

- **Decision Problem:** Whether to purchase the property on offer.
- **Objective:** Maximize the expected sum of rent payments.
- Cash and properties are different instruments like wealth and consumption in the classic savings problem.
- Tradeoff between additional rental payment now and the possibility of being unable to purchase a property with higher rents in the future.

- **Decision Problem:** Whether to purchase the property on offer.
- **Objective:** Maximize the expected sum of rent payments.
- Cash and properties are different instruments like wealth and consumption in the classic savings problem.
- Tradeoff between additional rental payment now and the possibility of being unable to purchase a property with higher rents in the future.
- Marginal value of each extra unit of cash wealth is decreasing in wealth.
Policy Function

- Consider a wealth, rents pair (x, r).
- Solution is a threshold policy s(x).
- For any given pair (x, r) agent buys iff $r \ge s(x)$.

3

Image: A matrix and a matrix

Policy Function

- Consider a wealth, rents pair (x, r).
- Solution is a threshold policy s(x).
- For any given pair (x, r) agent buys iff $r \ge s(x)$.

Outline

Introduction

3

< □ > < □ > < □ > < □ > < □ >

Excess Smoothness

Do subjects underreact to changes in x?

$$\hat{\pi}(x) = \alpha_0 + \alpha_1 \pi^{re}(x)$$

where $\hat{\pi}$ denotes empirical $\Pr(buy|x)$ and π^{re} denotes theoretical under (RE).

- Under the null of no excess smoothness $\alpha_1 = 1$.
- Excess smoothness if $\alpha_1 < 1$.

$$\hat{\pi}(x) - \hat{\pi}(x') < \pi^{re}(x) - \pi^{re}(x')$$

•
$$\hat{\alpha}_1 = .83, \ ci = [.73, .92]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Pr(buy|x)

 $\exists \rightarrow$ February 21, 2019 12 / 22

э

< 🗇 🕨

• Our subjects condition on (x, r).

3

< □ > < □ > < □ > < □ > < □ >

- Our subjects condition on (x, r).
- ▶ They do not *only* condition on (*x*, *r*).

< □ > < 同 > < 回 > < 回 > < 回 >

- Our subjects condition on (x, r).
- ▶ They do not *only* condition on (*x*, *r*).
- Display inertia: condition on previous choices.

- 20

< □ > < 同 > < 回 > < 回 > < 回 >

- Our subjects condition on (x, r).
- ▶ They do not *only* condition on (*x*, *r*).
- Display inertia: condition on previous choices.
- Consider the odds ratio:

$$\rho(x,r) \equiv \frac{\Pr(\mathsf{buy}|x,r)}{\Pr(\mathsf{pass}|x,r)}$$

3

4 E b

< 4[™] ▶

- Our subjects condition on (x, r).
- ▶ They do not *only* condition on (*x*, *r*).
- Display inertia: condition on previous choices.
- Consider the odds ratio:

$$\rho(x, r) \equiv \frac{\Pr(\mathsf{buy}|x, r)}{\Pr(\mathsf{pass}|x, r)}$$

•
$$\rho$$
 should be *independent* of past actions.

3

- Our subjects condition on (x, r).
- ▶ They do not *only* condition on (*x*, *r*).
- Display inertia: condition on previous choices.
- Consider the odds ratio:

$$\rho(x, r) \equiv \frac{\Pr(\mathsf{buy}|x, r)}{\Pr(\mathsf{pass}|x, r)}$$

- ρ should be *independent* of past actions.
- Yet ρ goes up by 50 percent if subjects bought in the previous period.

(日) (四) (日) (日) (日)

Increase in Odds of Buying

Conditional On Buying in the Previous Period

We test this formally using the linear probability model with random effects:

We test this formally using the linear probability model with random effects:

$$c = \beta_0 + \beta_1 r + \beta_2 x + \beta_3 x^2 \tag{1}$$

r is the rental offer:

10.329 (.4203)***

Allow for a nonlinear function of x: 0.0142 (0.0028)*** -0.0001 (.00004)***

We test this formally using the linear probability model with random effects:

$$c = \beta_0 + \beta_1 r + \beta_2 x + \beta_3 x^2 + \beta_4 c_{-1}$$
 (1)

- ▶ r is the rental offer: 10.329 (.4203)***
- Allow for a nonlinear function of x: 0.0142 (0.0028)*** -0.0001 (.00004)***
- c_{-1} is the previous action: 0.0967 (0.0295)***

(4 何) トイヨト イヨト

We test this formally using the linear probability model with random effects:

$$c = \beta_0 + \beta_1 r + \beta_2 x + \beta_3 x^2 + \beta_4 c_{-1} + controls$$
(1)

- r is the rental offer: $10.329 (.4203)^{***}$
- Allow for a nonlinear function of x: 0.0142 (0.0028)*** -0.0001 (.00004)***
- c_{-1} is the previous action: 0.0967 (0.0295)***
- Random Effects and Turn Polynomial.

Why would agents condition on past choices?

3

- Why would agents condition on past choices?
- Agents do not simply process information continuously.

< A I

- Why would agents condition on past choices?
- Agents do not simply process information continuously.
- Deliberation has a cognitive cost.

- Why would agents condition on past choices?
- Agents do not simply process information continuously.
- Deliberation has a cognitive cost.
- So agents choose first whether to deliberate.

- Why would agents condition on past choices?
- Agents do not simply process information continuously.
- Deliberation has a cognitive cost.
- So agents choose first *whether to deliberate*.
- Test reaction times:

$$rt = \gamma_0 + \gamma_1 |(1 - L)c|$$

- Why would agents condition on past choices?
- Agents do not simply process information continuously.
- Deliberation has a cognitive cost.
- So agents choose first *whether to deliberate*.
- Test reaction times:

$$rt = \gamma_0 + \gamma_1 |(1 - L)c|$$

 $\hat{\gamma}_1 = .075 \ (.019)^{***}$

Decisions that lead to different actions are *slower*.

Outline

1 Introduction

3 Results

3

<ロト < 四ト < 三ト < 三ト

Introduce an interim choice: whether to reconsider.

- Take same action as before.
- Pay a cost and reconsider action.

Introduce an interim choice: whether to reconsider.

- Take same action as before.
- Pay a cost and reconsider action.

Reconsideration choice is subject to an inattention cost.

 $\tilde{V}(x,r,c_{-1}) =$

3

Introduce an interim choice: whether to reconsider.

- Take same action as before.
- Pay a cost and reconsider action.

$$ilde{V}(x,r,c_{-1}) = \ \max_{\mu} \ (1-\mu)[c_{-1}r + \delta V(x-c_{-1},c_{-1})]$$

•
$$\mu(x, r, c)$$
 is the prob of reconsideration.

Introduce an interim choice: whether to reconsider.

- Take same action as before.
- Pay a cost and reconsider action.

$$\tilde{V}(x, r, c_{-1}) = \max_{\mu} (1 - \mu) [c_{-1}r + \delta V(x - c_{-1}, c_{-1})] + \mu \bar{V}(x, r)$$

- $\mu(x, r, c)$ is the prob of reconsideration.
- $\bar{V}(x,r)$ is the value of reconsidering.

Introduce an interim choice: whether to reconsider.

- Take same action as before.
- Pay a cost and reconsider action.

$$\begin{split} \tilde{V}(x,r,c_{-1}) &= \\ \max_{\mu} \ (1-\mu)[c_{-1}r + \delta V(x-c_{-1},c_{-1})] + \mu \bar{V}(x,r) - \frac{1}{\phi} I(\mu) \end{split}$$

- $\mu(x, r, c)$ is the prob of reconsideration.
- $\overline{V}(x,r)$ is the value of reconsidering.
- $I(\cdot)$ is the information cost function.

What is the value of reconsideration?

Choice whether to buy subject to information cost

< 47 ▶

What is the value of reconsideration?

Choice whether to buy subject to information cost \rightarrow Just like choice whether to reconsider.

What is the value of reconsideration?

Choice whether to buy subject to information cost \rightarrow Just like choice whether to reconsider.

$$\bar{V}(x,r) =$$

What is the value of reconsideration?

Choice whether to buy subject to information cost \rightarrow Just like choice whether to reconsider.

$$ar{V}(x,r) = \max_{\pi} \pi(r+\delta V(x-1,c^1))$$

• $\pi(x, r)$ probability of buying.

What is the value of reconsideration?

Choice whether to buy subject to information cost \rightarrow Just like choice whether to reconsider.

$$ar{V}(x,r)=\max_{\pi}\ \pi(r+\delta V(x-1,c^1))+(1-\pi)\delta V(x,c^0)$$

• $\pi(x, r)$ probability of buying.

What is the value of reconsideration?

Choice whether to buy subject to information cost \rightarrow Just like choice whether to reconsider.

$$ar{V}(x,r) = \max_{\pi} \pi(r+\delta V(x-1,c^1)) + (1-\pi)\delta V(x,c^0) \ - rac{1}{ heta} I(\pi) - \gamma^{ extsf{rec}} - \pi \gamma^{ extsf{buy}}$$

- $\pi(x, r)$ probability of buying.
- $I(\cdot)$ information cost function.
- γ^{rec} fixed cost of reconsidering.
- γ^{buy} behavioral bias toward choosing "buy" or "not buy."

э

э
Inertia

æ

イロト イヨト イヨト

Excess Smoothness

February 21, 2019 20 / 22

< 1[™] >

Probability of Reconsideration

< 1[™] >

Conclusion

Design an experiment analogous to a consumption/savings problem.

- Sharp test of excess smoothness.
- Cognitive costs \rightarrow Inertia \rightarrow excess smoothness.
- Implication: inertia is state-dependent.
- Future Research: what about excess sensitivity?