Attention Allocation in Decision Making as Optimal Sequential Sampling

Fred Callaway
Princeton University

The 2019 Sloan-Nomis Workshop on the Cognitive Foundations of Economic Behavior

Attentional drift diffusion model

Krajbich, Armel & Rangel (2010)

Expected utility theory

► Take the action with maximal expected utility.

$$\underset{a}{\operatorname{arg\,max}} \mathbb{E}\left[U(a)\right]$$

Expected utility theory

Take the action with maximal expected utility.

$$\underset{a}{\operatorname{arg\,max}} \mathbb{E}\left[U(a)\right]$$

Resource-rationality

► Use the *strategy* that best trades off utility and computational cost.

$$\arg\max_{\pi} \mathbb{E} \left[\max_{a} \mathbb{E} \left[U(a) | B_T \right] - \sum_{t=0}^{T-1} \operatorname{cost}(B_t, C_t) \middle| C_t \sim \pi(B_t) \right]$$

Expected utility theory

Take the action with maximal expected utility.

$$\underset{a}{\operatorname{arg\,max}} \mathbb{E}\left[U(a)\right]$$

"Do the right thing."

Resource-rationality

► Use the *strategy* that best trades off utility and computational cost.

$$\arg\max_{\pi} \mathbb{E} \left[\max_{a} \mathbb{E} \left[U(a) | B_T \right] - \sum_{t=0}^{T-1} \operatorname{cost}(B_t, C_t) \middle| C_t \sim \pi(B_t) \right]$$

Expected utility theory

Take the action with maximal expected utility.

$$\underset{a}{\operatorname{arg\,max}} \mathbb{E}\left[U(a)\right]$$

"Do the right thing."

Resource-rationality

► Use the *strategy* that best trades off utility and computational cost.

$$\arg\max_{\pi} \mathbb{E} \left[\max_{a} \mathbb{E} \left[U(a) | B_T \right] - \sum_{t=0}^{T-1} \cot(B_t, C_t) \mid C_t \sim \pi(B_t) \right]$$

"Do the right thinking."

Key Intuition

Thinking is a sequential decision problem.

$$\max_{\pi} \mathbb{E}\left[\max_{a} \mathbb{E}\left[U(a)|B_{T}\right] - \sum_{t=0}^{T-1} \mathrm{cost}(B_{t}, C_{t}) \mid C_{t} \sim \pi(B_{t})\right]$$
Hay et al. (2012)

Results

Krajbich & Rangel (2011)

- ► Ternary choices between snacks.
- ► No time constraint.
- Eye tracking.
- Each item rated beforehand.

A

Looking forward

Looking forward

Challenges

- Computing a likelihood for parameter estimation.
- ightharpoonup Explaining effects in the n=2 case.

Looking forward

Challenges

- Computing a likelihood for parameter estimation.
- ightharpoonup Explaining effects in the n=2 case.

Takeaways

- ► Some apparent "attentional biases" may actually be the result of the rational allocation of attention.
- Metalevel Markov decision processes provide a principled (and general) way to model cognitive processes in a rational framework.

Thanks!

Antonio Rangel

Tom Griffiths

Relation to drift diffusion models

Similarities

- Decision variables represent the accumulation of evidence over time.
- Accumulators are subject to random walk dynamics.
- Predicts choices and reaction times.

Relation to drift diffusion models

Differences

- Accumulator is a posterior distribution over value.
- ► The variance of the random walk is not constant across time.
- ► Decision rule based on expected value of computation.
- Predicts attention.

