Noisy Memory and Asset Price Fluctuations

Yeji Sung

Columbia University

2019 Sloan-Nomis Workshop

Introduction

Why are asset prices so volatile and sensitive to news?

- Shiller (1981), De Bondet and Thaler (1987), Cutler, Poterba, and Summers (1990), and more
- How to model belief formation of asset prices?
 - One extreme: Rational Expectations + Full Info
 - ► The other extreme: Expectations separate from the model
 - e.g. Extrapolative belief based on statistical projection
- A tractable model that lies in between?

What I do

- de Silveira and Woodford (2019)
 - With a limit on the complexity of memory, more reccent news will be given disproportionate weight
 - A simple explanation for why consumption over-reacts to news
- Research question:

Can the theory of noisy memory predict a realistic asset prices dynamics?

I show it can

Compared to perfect memory rational expectations,

- asset prices are more sensitive to news
- asset prices are more volatile and serially correlated
- trade volume is larger

despite assuming a very low dimensional underlying shock

A model of noisy memory

DM observes a realization of

$$m{d}_t \sim \mathcal{N}(\mu, \sigma_{m{d}}^2)$$
 i.i. $m{d}$

 σ_d^2 is known, but μ is not known

• DM has a prior distribution for μ

 $\mu \sim \mathcal{N}(\mathbf{0}, \omega)$

- There's a limit on the precision of memory
 - ▶ DM has imperfect memory of the past *d*_{*t*−*j*}
 - Past observations are accessible only through memory
 - DM optimally chooses a memory state $\{m_t\}$

Storing memory is costly

- Cost of storing a memory
 - $I_t = \theta \times \text{mutual info between } (m_t, d_t) \text{ and } m_{t+1}$

- m_{t+1} is a noisy function of (m_t, d_t)
 - If m_{t+1} is not informative about (m_t, d_t) , $I_t = 0$
 - ▶ If m_{t+1} is completely informative about (m_t, d_t) , $I_t = \infty$

Consumption and portfolio choice

DM maximizes

$$\mathbb{E}\sum_{j=1}^{\infty}\beta^{j}[-\exp\left(-\alpha c_{t}\right)-\theta I_{t}]$$

subject to

$$c_t + p_t \theta_{t+1} + \theta_{t+1}^{rf} = p_t \theta_t + R \theta_t^{rf}, \quad \forall t$$

- *p_t*: price of risky assets
- θ_{t+1} : holdings of risky assets
- θ_{t+1}^{rf} : holdings of risk-free assets

Optimal portfolio choice

More risky assets if high expected returns and low variance

$$\theta_{t+1}^{i} = \frac{E_t^{i} \rho_{t+1} + d_t - R \rho_t}{\kappa V_t^{i} \rho_{t+1}}$$

where $\kappa \equiv \alpha \frac{R-1}{R}$

• DM forms subjective beliefs based on cognitive states (m_t^i, d_t)

• Memory is used to improve an estimate of μ

$$\mu | m_t^i \sim \mathcal{N}(m_t^i, \sigma_\pi^2(t))$$

Optimal memory choice

• Optimal estimate of μ

$$\mathbb{E}[\mu|m_t^i, d_t] = (1 - \gamma(t)) m_t^i + \gamma(t) d_t$$

with gain coefficient $\gamma(t) \equiv \frac{\sigma_{\pi}^2(t)}{\sigma_{\pi}^2(t) + \sigma_d^2}$

• Optimal memory stores a noisy record of $\mathbb{E}[\mu|m_t^i, d_t]$

$$m_{t+1}^i = \lambda(t) \mathbb{E}[\mu | m_t^i, d_t] + \omega_{t+1}$$

where $\omega_{t+1} \sim \mathcal{N}(0, \sigma_\omega^2(t+1))$

• We numerically solve for $\{\gamma(t)\}$, which completely determines $\{\lambda(t)\}$ and $\{\sigma_{\omega}^2(t+1)\}$

Gain coefficient in the long run

▶ When
$$heta = 0$$
, $\gamma(t) o 0$

• Precision $\left(\frac{1}{\sigma_{\pi}^2}\right)$ linearly increases over time

• When
$$\theta > 0$$
, $\gamma(t) \rightarrow \gamma > 0$

Consequences of $\gamma > 0$ on asset prices

Price of risky assets in equilibrium (assuming fixed supply)

$$p_t = p_0(\theta) + p_m(\theta)\bar{m}_t + p_d(\theta)d_t$$

•
$$\bar{m}_t \equiv \int m_t^i di$$

• $p_d(\theta)$ increases in θ

• By backward substitution of $\bar{m}_{t+1} = \lambda[(1 - \gamma)\bar{m}_t + \gamma d_t]$,

$$p_t = p_0(\theta) + p_m(\theta)\lambda\gamma \sum_{j=0}^t \rho^j d_{t-1-j} + p_d(\theta)d_t$$

where $\rho \equiv \lambda (1 - \gamma)$

- When $\theta = 0$, small fluctuations + i.i.d process
- When $\theta > 0$, big fluctuations + long lag!

Asset prices over-react to news of dividend

Dividend forecasts extrapolate news of dividend

Asset prices are more volatile and serially correlated

Excess returns are higher and more volatile

Asset holdings distribution is non-degenerate

Conclusion

- Theory of noisy memory can predict a realistic feature of asset price fluctuations
- Optimal Bayesian Inference is yet to be rejected as a useful modeling tool
- Future work includes
 - Empirically more relevant dividend process
 - Incorporation into a quantitative model

Asset prices are more volatile

Asset prices are more serially correlated

Excess returns are higher

Excess returns are more volatile

Trade volume is larger

Asset holdings distribution is more centered to zero

Go back