Learned Impatience? Dispersed Reinforcement and Time Discounting

David Poensgen (Goethe University Frankfurt) February 22, 2019

Sloan-Nomis Workshop on the Cognitive Foundations of Economic Behavior

1. Individuals learn from consequences of past actions.

- 2. Actions often have a series of consequences: some follow soon, some later.
- How does this ordering affect learning?
 Plausibly: Easiest to learn from soonest consequences.
- 4. Then: Immediate consequences will be over-weighted. Behavior biased towards impatience.

- 1. Individuals learn from consequences of past actions.
- 2. Actions often have a series of consequences: some follow soon, some later.
- How does this ordering affect learning?
 Plausibly: Easiest to learn from soonest consequences.
- 4. Then: Immediate consequences will be over-weighted. Behavior biased towards impatience.

DO IT LATER

- 1. Individuals learn from consequences of past actions.
- 2. Actions often have a series of consequences: some follow soon, some later.
- 3. How does this ordering affect learning? Plausibly: Easiest to learn from soonest consequences
- 4. Then: Immediate consequences will be over-weighted. Behavior biased towards impatience.

- 1. Individuals learn from consequences of past actions.
- 2. Actions often have a series of consequences: some follow soon, some later.
- How does this ordering affect learning?
 Plausibly: Easiest to learn from soonest consequences.
- 4. Then: Immediate consequences will be over-weighted. Behavior biased towards impatience.

- 1. Individuals learn from consequences of past actions.
- 2. Actions often have a series of consequences: some follow soon, some later.
- 3. How does this ordering affect learning? Plausibly: Easiest to learn from soonest consequences.
- 4. Then: Immediate consequences will be over-weighted. Behavior biased towards impatience.

- 1. Individuals learn from consequences of past actions.
- 2. Actions often have a series of consequences: some follow soon, some later.
- 3. How does this ordering affect learning? Plausibly: Easiest to learn from soonest consequences.
- 4. Then: Immediate consequences will be over-weighted. Behavior biased towards impatience.

Background

- Decreasing effectiveness of reinforcement with delay (e.g. MAZUR 2002).
 - $\cdot\,$ Typically not connected to time discounting, but speed of learning.
- Explained via accumulation of noise by COMMONS, WOODFORD ET AL. (1982, 1991).
- Feedback delay modulates neural circuitries involved in learning (FOERDE/SHOHAMY 2011, FOERDE ET AL. 2013, ARBEL ET AL. 2017).
 - Associative learning tasks; singular feedback. Performance not affected.
- GABAIX & LAIBSON (2017) also link time discounting and information frictions.
 - Formally applicable here; different interpretation on source of noise.
- Melioration theory: Behavior guided by immediate, not overall reinforcement rate (HERRNSTEIN ET AL.).
 - Important experimental paradigm: "Harvard game" (Review: PRELEC 2014).
 - Critique by SIMS ET AL. (2013): Bayesian algorithms need 1000s of trials for solution. Melioration as rational response to task complexity.

Design: Overview

- 6 abstract options (= colors): { 📰 , 📰 , 📰 , 📰 , 📰 ,
- Subjects faced with sequence of 105 binary choices.
- Payoff and feedback mechanism:
 - Each color x associated with a payoff vector (x_1, x_2)
 - Values initially unknown, but can be learned.
 - Choosing x has 2 consequences:

 $x_1 + \epsilon$ points shown and awarded immediately.

 $\mathbf{x}_2 + \epsilon'$ points shown and awarded with one round delay.

- ϵ, ϵ' are disturbances drawn uniformly from {1, 2, 3, 4}.
- Total value of x is $x_1 + x_2$
- Goal: Collect as many points as possible.
 - · All points rewarded simultaneously after the experiment.
- · All rules and mechanisms clearly communicated to subjects.

- 6 abstract options (= colors): { 📰 , 📰 , 📰 , 📰 , 📰 ,
- Subjects faced with sequence of 105 binary choices.
- Payoff and feedback mechanism:
 - Each color x associated with a payoff vector (x_1, x_2)
 - Values initially unknown, but can be learned.
 - Choosing x has 2 consequences:

 $x_1 + \epsilon$ points shown and awarded immediately.

 $\mathbf{x_2} + \epsilon'$ points shown and awarded with one round delay.

- ϵ, ϵ' are disturbances drawn uniformly from {1, 2, 3, 4}.
- Total value of x is $x_1 + x_2$
- Goal: Collect as many points as possible.
 - · All points rewarded simultaneously after the experiment.
- · All rules and mechanisms clearly communicated to subjects.

- 6 abstract options (= colors): { 📰 , 📰 , 📰 , 📰 , 📰 ,
- Subjects faced with sequence of 105 binary choices.
- Payoff and feedback mechanism:
 - Each color x associated with a payoff vector (x_1, x_2)
 - Values initially unknown, but can be learned.
 - Choosing x has 2 consequences:

 $x_1 + \epsilon$ points shown and awarded immediately.

 $\mathbf{x_2} + \epsilon'$ points shown and awarded with one round delay.

- ϵ, ϵ' are disturbances drawn uniformly from {1, 2, 3, 4}.
- Total value of x is $x_1 + x_2$
- Goal: Collect as many points as possible.
 - · All points rewarded simultaneously after the experiment.
- All rules and mechanisms clearly communicated to subjects.

Design: Payoff Vectors

Option		Payoff Vectors		
color e.g.	(total value)	(immediat	(immediate, delayed)	
		Group A	Group B	
	(18)	(11,7) _A	(7, 11) _B	
	(16)	(6,10) _A	(10,6) _B	
	(14)	(9,5) _A	(5,9) _B	
	(12)	(4,8) _A	(8,4) _B	
	(10)	(7,3) _A	(3,7) _B	
	(8)	(2,6) _A	(6,2) _B	

Hypotheses: $(11, 7)_A$ chosen more often than $(7, 11)_B$; $(10, 6)_B$ more than $(6, 10)_A$; ... $(11, 7)_A$ and $(6, 10)_A$ further apart than $(6, 10)_A$ and $(9, 5)_A$. Potentially even: $(9, 5)_A$ preferred to $(6, 10)_A$.

Design: Payoff Vectors

Option		Payoff Vectors		
color e.g.	(total value)	(immediat	(immediate, delayed)	
		Group A	Group B	
	(18)	(11,7) _A	(7, 11) _B	
	(16)	(6,10) _A	(10,6) _B	
	(14)	(9,5) _A	(5,9) _B	
	(12)	(4,8) _A	(8,4) _B	
	(10)	(7,3) _A	(3,7) _B	
	(8)	(2,6) _A	(6,2) _B	

Hypotheses: $(11, 7)_A$ chosen more often than $(7, 11)_B$; $(10, 6)_B$ more than $(6, 10)_A$; ... $(11, 7)_A$ and $(6, 10)_A$ further apart than $(6, 10)_A$ and $(9, 5)_A$. Potentially even: $(9, 5)_A$ preferred to $(6, 10)_A$.

 $Pr(x \text{ chosen} | x \in C)$

 $Pr(x \text{ chosen} | x \in C)$

 $\Pr(x \text{ chosen} \mid x \in C)$

 $Pr(x \text{ chosen} | x \in C)$

 $Pr(x \text{ chosen} \mid x \in C)$

Results: Bias over time

Summary: Further Results

- Estimated latent utility function: $u(x) = x_1 + 0.4x_2$
- Elicited beliefs are in accordance with choice behavior.
- Considerable heterogeneity in degree of biasedness.
 - · Correlated to impatience in hypothetical intertemporal choice.
 - (To do: Incentivized choice or field measures of impatience.)
- Treatment: Learning by observation
 - · Subjects passively presented with feedback for 63 rounds.
 - Directly afterwards: 42 own decisions.
 - Bias attenuated; low right after the learning phase, then gradually increasing.
 - Suggests emergence of bias is connected to active decision making.

- Estimated latent utility function: $u(x) = x_1 + 0.4x_2$
- Elicited beliefs are in accordance with choice behavior.
- Considerable heterogeneity in degree of biasedness.
 - · Correlated to impatience in hypothetical intertemporal choice.
 - (To do: Incentivized choice or field measures of impatience.)
- Treatment: Learning by observation
 - Subjects passively presented with feedback for 63 rounds.
 - Directly afterwards: 42 own decisions.
 - Bias attenuated; low right after the learning phase, then gradually increasing.
 - Suggests emergence of bias is connected to active decision making.

- Estimated latent utility function: $u(x) = x_1 + 0.4x_2$
- Elicited beliefs are in accordance with choice behavior.
- Considerable heterogeneity in degree of biasedness.
 - · Correlated to impatience in hypothetical intertemporal choice.
 - (To do: Incentivized choice or field measures of impatience.)
- Treatment: Learning by observation
 - · Subjects passively presented with feedback for 63 rounds.
 - Directly afterwards: 42 own decisions.
 - Bias attenuated; low right after the learning phase, then gradually increasing.
 - Suggests emergence of bias is connected to active decision making.

- Estimated latent utility function: $u(x) = x_1 + 0.4x_2$
- Elicited beliefs are in accordance with choice behavior.
- Considerable heterogeneity in degree of biasedness.
 - · Correlated to impatience in hypothetical intertemporal choice.
 - (To do: Incentivized choice or field measures of impatience.)
- Treatment: Learning by observation
 - Subjects passively presented with feedback for 63 rounds.
 - Directly afterwards: 42 own decisions.
 - Bias attenuated; low right after the learning phase, then gradually increasing.
 - Suggests emergence of bias is connected to active decision making.

- Relation to actual reward discounting ideally with field measure
- Relation to working memory
 - known to affect reward discounting (WESLEY/BICKEL 2014)
- Potential explanation: Differential precision in memory
- Investigate this using...
 - response time data
 - more fine-grained belief data
 - variations in timing, payoff vectors