Encoding-decoding of numbers explains biased judgments

Encoding-decoding of numbers explains biased judgments

- Economic decisions often require the aggregation of multiple sources of information, a simple example of which is the computation of the average of some numbers.
- Human subjects averaging numbers in a comparison task, seem to overweight some numbers in comparison to others¹.

¹B. Spitzer, L. Waschke, and C. Summerfield, "Selective overweighting of larger magnitudes during noisy numerical comparison," Nature Human Behavior 1, art. 0145 (2017).

Encoding-decoding of numbers explains biased judgments

- A possibility is that this selective weighting originates in the way the brain encodes and decodes presented stimuli.
- Efficient encoding: should be adapted to the prior distribution of stimuli¹.
- → We design an average-comparison task, in which different prior distributions of numbers are used in different blocks of trials.

¹X.X. Wei and A.A. Stocker, "A Bayesian observer model constrained by efficient coding can explain 'anti-Bayesian' percepts," Nature Neuroscience 18: 1509 (2015).

Outline

Experimental design

Behavioral data
Models of noisy estimation

Encoding-decoding models of estimation

Experimental design

- 10 numbers, alternating in color between red and green, presented in rapid succession (500ms).
- Each number is within the range [10.00, 99.99] and has two decimal points.
- Subjects choose whether the red numbers or green numbers have the larger average.

R

G

You gained 60.05

You would have gained 55.91

Experimental design

• In different blocks of trials, numbers are sampled from different prior distributions.

Results

• This suggests there is noise in the decision process.

Results

DecisionWeight(x_R) = $|P(\text{choose Red }|x_R) - 0.5|$

• Different numbers seem to be weighted differently in the decision process.

• Errors in decision suggest a model of noisy estimation :

• We consider :

• Errors in decision suggest a model of noisy estimation :

• We consider:

$$\hat{x} \mid x \sim N(x, s^2)$$

The number is perceived with noise.

• Errors in decision suggest a model of noisy estimation :

• We consider :

$$\hat{x} \mid x \sim N(x, s^2)$$

The number is perceived with noise.

$$N(m(x), s^2)$$

A transformation of the number is observed with noise. It should capture unequal weighting, and improve accuracy¹.

¹B. Spitzer, L. Waschke, and C. Summerfield, "Selective overweighting of larger magnitudes during noisy numerical comparison," Nature Human Behavior 1, art. 0145 (2017).

• Errors in decision suggest a model of noisy estimation :

• We consider :

$\hat{x} \mid x \sim N(x, s^2)$	The number is perceived with noise.
$N(m(x), s^2)$	A transformation of the number is observed with noise. It should capture unequal weighting, and improve accuracy ¹ .
$N(x, s^2(x))$	Different numbers are perceived with different amounts of noise.

¹B. Spitzer, L. Waschke, and C. Summerfield, "Selective overweighting of larger magnitudes during noisy numerical comparison," Nature Human Behavior 1, art. 0145 (2017).

Errors in decision suggest a model of noisy estimation :

• We consider:

$$\hat{x} \mid x \sim N(x, s^2)$$

The number is perceived with noise.

$$N(m(x), s^2)$$

A transformation of the number is observed with noise. It should capture unequal weighting, and improve accuracy¹.

$$N(x, s^2(x))$$

Different numbers are perceived with different amounts of noise.

$$N(m(x), s^2(x))$$

A transformation of the number is observed, with varying noise.

¹B. Spitzer, L. Waschke, and C. Summerfield, "Selective overweighting of larger magnitudes during noisy numerical comparison," Nature Human Behavior 1, art. 0145 (2017).

	Same parameters	Prior-specific parameters
$\hat{x} \mid x \sim N(x, s^2)$		
$N(m(x), s^2)$		
$N(x, s^2(x))$		
$N(m(x), s^2(x))$		

$\Delta \mathrm{BIC}$	Same parameters	Prior-specific parameters
$\hat{x} \mid x \sim N(x, s^2)$	262	212
$N(m(x), s^2)$	140	75
$N(x, s^2(x))$	262	203
$N(m(x), s^2(x))$	66	0

ΔBIC with best model

Transformation + varying noise

$$\hat{x} \mid x \sim N(m(x), s^2(x))$$

Transformation of the number

Varying noise

• What determines the shapes of these curves?

Inference as a Constraint

• We now present an approach in which assumptions are made on how the brain computes the estimates \hat{x} .

Inference as a Constraint

• We now present an approach in which assumptions are made on how the brain computes the estimates \hat{x} .

Inference as a Constraint

• We now present an approach in which assumptions are made on how the brain computes the estimates \hat{x} .

• What constraint does that impose on $p(\hat{x} \mid x)$?

Properties of the MLE

- The MLE is, up to the order $\frac{1}{\sqrt{n}}$, unbiased and efficient.
- Approximately:

$$\hat{x}^{MLE} \mid x \sim N\left(x, \frac{1}{nI(x)}\right).$$

where I(x) is the Fisher information of $p(r_i|x)$.

This corresponds exactly to our "varying-noise" model

$$\hat{x} \mid x \sim N(x, s^2(x))$$
.

Properties of the MLE

• The MLE has a bias of order $\frac{1}{n}$.

• For a Gaussian likelihood, we have, approximately:

$$\hat{x}^{MLE} \mid x \sim N\left(x + \frac{1}{4} \frac{d}{dx} \left(\frac{1}{nI(x)}\right), \frac{1}{nI(x)}\right).$$

This looks like our best-fitting model

$$\hat{x} \mid x \sim N(m(x), s^2(x)),$$

but our two functions, m(x) and s(x), are now constrained by a single function, I(x).

Properties of the MLE

This predicts

$$m(x) = x + \frac{1}{4} \frac{d}{dx} \left(s^2(x) \right).$$

$$\hat{x} \mid x \sim N\left(x + \frac{1}{4} \frac{d}{dx} \left(\frac{1}{nI(x)}\right), \frac{1}{nI(x)}\right)$$

$$\hat{x} \mid x \sim N\left(x + \frac{1}{4} \frac{d}{dx} \left(\frac{1}{nI(x)}\right), \frac{1}{nI(x)}\right)$$

$\Delta \mathrm{BIC}$	Same parameters	Prior-specific parameters
$\hat{x} \mid x \sim N(x, s^2)$	304	254
$N(m(x),\ s^2)$	182	117
$N(x, s^2(x))$	304	245
$N(m(x), s^2(x))$	108	42
I(x)-based	76	0

ΔBIC with best model

• The fitted Fisher information in comparison with the prior:

• The fitted Fisher information in comparison with the prior:

• This suggests an efficient coding of the numbers.

Summary

- In our average-comparison task, subjects seem to unequally weight different numbers in their decisions.
- We introduce a MLE-based model, in which
 - (i) an encoding of the number, characterized by I(x),
 - (ii) is followed by a *maximum-likelihood estimation* of the number, based on the encoded evidence.
- This model makes a specific prediction relating the bias and the variance of the estimates,
- And it best accounts for the behavioral data.
- Lastly, the encoding Fisher information I(x) seems efficiently adapted to the prior.

Thank you!