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Encoding-decoding of numbers explains biased judgments

• Economic decisions often require the aggregation of 
multiple sources of information, a simple example of 
which is the computation of the average of some 
numbers. 

• Human subjects averaging numbers in a comparison task, 
seem to overweight some numbers in comparison to 
others1.

1B. Spitzer, L. Waschke, and C. Summerfield, “Selective overweighting of larger magnitudes during 
noisy numerical comparison,” Nature Human Behavior 1, art. 0145 (2017).



Encoding-decoding of numbers explains biased judgments

• A possibility is that this selective weighting originates in 
the way the brain encodes and decodes presented 
stimuli. 

• Efficient encoding: should be adapted to the prior 
distribution of stimuli1. 

➡ We design an average-comparison task, in which 
different prior distributions of numbers are used in 
different blocks of trials.

1X.X. Wei and A.A. Stocker, “A Bayesian observer model constrained by efficient coding can explain 
‘anti-Bayesian’ percepts,” Nature Neuroscience 18: 1509 (2015). 



Outline
• Experimental design  

• Behavioral data  
Models of noisy estimation  

• Encoding-decoding models of estimation



Experimental design
• 10 numbers, alternating in color between red and green, 

presented in rapid succession (500ms). 

• Each number is within the range [10.00, 99.99] and has 
two decimal points. 

• Subjects choose whether the red numbers or green 
numbers have the larger average.
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• In different blocks of trials, numbers are sampled from 
different prior distributions.
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Results

• This suggests there is noise in the decision process.
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Results

• Different numbers seem to be weighted differently in the 
decision process.
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• Errors in decision suggest a model of noisy estimation : 

• We consider :

Models of subjective estimates

x ̂x |xrandom



• Errors in decision suggest a model of noisy estimation : 

• We consider :

x̂ |x ∼ N(x, s2) The number is perceived with noise.

Models of subjective estimates

x ̂x |xrandom



• Errors in decision suggest a model of noisy estimation : 

• We consider :

x̂ |x ∼ N(x, s2) The number is perceived with noise.

N(m(x), s2) A transformation of the number is observed with noise. It 
should capture unequal weighting, and improve accuracy1.

Models of subjective estimates

x ̂x |xrandom

1B. Spitzer, L. Waschke, and C. Summerfield, “Selective overweighting of larger magnitudes during noisy numerical 
comparison,” Nature Human Behavior 1, art. 0145 (2017).



• Errors in decision suggest a model of noisy estimation : 

• We consider :

x̂ |x ∼ N(x, s2) The number is perceived with noise.

N(m(x), s2) A transformation of the number is observed with noise. It 
should capture unequal weighting, and improve accuracy1.

N(x, s2(x)) Different numbers are perceived 
with different amounts of noise.

Models of subjective estimates

x ̂x |xrandom

1B. Spitzer, L. Waschke, and C. Summerfield, “Selective overweighting of larger magnitudes during noisy numerical 
comparison,” Nature Human Behavior 1, art. 0145 (2017).



• Errors in decision suggest a model of noisy estimation : 

• We consider :

x̂ |x ∼ N(x, s2) The number is perceived with noise.

N(m(x), s2) A transformation of the number is observed with noise. It 
should capture unequal weighting, and improve accuracy1.

N(x, s2(x)) Different numbers are perceived 
with different amounts of noise.

N(m(x), s2(x)) A transformation of the number is observed,  
with varying noise.

Models of subjective estimates

x ̂x |xrandom

1B. Spitzer, L. Waschke, and C. Summerfield, “Selective overweighting of larger magnitudes during noisy numerical 
comparison,” Nature Human Behavior 1, art. 0145 (2017).



Same parameters Prior-specific parameters
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∆BIC Same parameters Prior-specific parameters

x̂ |x ∼ N(x, s2) 262 212

N(m(x), s2) 140 75

N(x, s2(x)) 262 203

N(m(x), s2(x)) 66 0

Models of subjective estimates
x ̂x |xrandom

∆BIC with best model



Transformation + varying noise
̂x |x ∼ N(m(x), s2(x))
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• What determines the shapes of these curves?

Transformation of the number Varying noise



Inference as a Constraint
• We now present an approach in which assumptions are 

made on how the brain computes the estimates   .
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Inference as a Constraint
• We now present an approach in which assumptions are 

made on how the brain computes the estimates   .

• What constraint does that impose on             ?p( ̂x |x)
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Properties of the MLE
• The MLE is, up to the order      ,  unbiased and efficient.  

• Approximately: 
 
 
 
where       is the Fisher information of            .  

• This corresponds exactly to our ”varying-noise” model

I(x) p(ri |x)

̂xMLE |x ∼ N(x, 1
nI(x) ) .

̂x |x ∼ N(x, s2(x)) .

1
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Properties of the MLE
• The MLE has a bias of order    .  

• For a Gaussian likelihood, we have, approximately:  
 
 
 

• This looks like our best-fitting model  
 
 
 
but our two functions,         and       , are now constrained by 
a single function,       .

1
n

̂xMLE |x ∼ N(x + 1
4

d
dx ( 1

nI(x) ), 1
nI(x) ) .

̂x |x ∼ N(m(x), s2(x)),

m(x) s(x)
I(x)



Properties of the MLE
• This predicts

m(x) = x + 1
4

d
dx (s2(x)) .
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MLE-constrained model
̂x |x ∼ N(x + 1
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∆BIC Same parameters Prior-specific parameters

x̂ |x ∼ N(x, s2) 304 254

N(m(x), s2) 182 117

N(x, s2(x)) 304 245

N(m(x), s2(x)) 108 42

I(x)-based 76 0
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MLE-constrained model
• The fitted Fisher information in comparison with the prior:
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• This suggests an efficient coding of the numbers.



Summary
• In our average-comparison task, subjects seem to unequally 

weight different numbers in their decisions. 

• We introduce a MLE-based model, in which 

(i) an encoding of the number, characterized by       , 

(ii) is followed by a maximum-likelihood estimation of the 
number, based on the encoded evidence. 

• This model makes a specific prediction relating the bias and 
the variance of the estimates, 

• And it best accounts for the behavioral data. 

• Lastly, the encoding Fisher information        seems efficiently 
adapted to the prior.

I(x)

Thank you!

I(x)


