Encoding-decoding of numbers explains biased judgments

Arthur Prat-Carrabin

2019 Sloan-Nomis Workshop on the Cognitive Foundations of Economic Behavior 02/23/2019

Encoding-decoding of numbers explains biased judgments

- Economic decisions often require the aggregation of multiple sources of information, a simple example of which is the computation of the average of some numbers.
- Human subjects averaging numbers in a comparison task, seem to *overweight* some numbers in comparison to others1.

¹B. Spitzer, L. Waschke, and C. Summerfield, "Selective overweighting of larger magnitudes during *noisy numerical comparison," Nature Human Behavior 1, art. 0145 (2017).*

Encoding-decoding of numbers explains biased judgments

- A possibility is that this selective weighting originates in the way the brain *encodes and decodes* presented stimuli.
- *Efficient* encoding: should be *adapted to the prior distribution of stimuli*1.
- We design an average-comparison task, in which different prior distributions of numbers are used in different blocks of trials.

1X.X. Wei and A.A. Stocker, "A Bayesian observer model constrained by efficient coding can explain 'anti-Bayesian' percepts," Nature Neuroscience 18: 1509 (2015).

Outline

- Experimental design
- Behavioral data Models of noisy estimation
- Encoding-decoding models of estimation

Experimental design

- 10 numbers, alternating in color between red and green, presented in rapid succession (500ms).
- Each number is within the range [10.00, 99.99] and has two decimal points.
- Subjects choose whether the red numbers or green numbers have the larger average.

You gained 60.05 You would have gained 55.91

Experimental design

• In different blocks of trials, numbers are sampled from different prior distributions.

• This suggests there is noise in the decision process.

Results

• Different numbers seem to be weighted differently in the decision process.

• Errors in decision suggest a model of noisy estimation :

• We consider :

• Errors in decision suggest a model of noisy estimation :

• We consider :

 \hat{x} $|x - N(x, s^2)|$ The number is perceived with noise.

• Errors in decision suggest a model of noisy estimation :

• We consider :

 \hat{x} | x ~ $N(x, s^2)$ The number is perceived with noise.

 $N(m(x), s^2)$ A transformation of the number is observed with noise. It should capture unequal weighting, and improve accuracy¹.

1B. Spitzer, L. Waschke, and C. Summerfield, "Selective overweighting of larger magnitudes during noisy numerical comparison," Nature Human Behavior 1, art. 0145 (2017).

• Errors in decision suggest a model of noisy estimation :

• We consider :

 \hat{x} | x ~ $N(x, s^2)$ The number is perceived with noise.

 $N(m(x), s^2)$ A transformation of the number is observed with noise. It should capture unequal weighting, and improve accuracy¹.

 $N(x, s^2(x))$ Different numbers are perceived with different amounts of noise.

1B. Spitzer, L. Waschke, and C. Summerfield, "Selective overweighting of larger magnitudes during noisy numerical *comparison," Nature Human Behavior 1, art. 0145 (2017).*

• Errors in decision suggest a model of noisy estimation :

• We consider :

 \hat{x} | x ~ $N(x, s^2)$ The number is perceived with noise.

 $N(m(x), s^2)$ A transformation of the number is observed with noise. It $N(m(x), s^2)$ should capture unequal weighting, and improve accuracy¹.

 $N(x, s^2(x))$ Different numbers are perceived
with different amounts of poise

with different amounts of noise.

 $N(m(x), s^2(x))$ A transformation of the number is observed,
with varying noise. with varying noise.

1B. Spitzer, L. Waschke, and C. Summerfield, "Selective overweighting of larger magnitudes during noisy numerical *comparison," Nature Human Behavior 1, art. 0145 (2017).*

∆*BIC with best model*

Transformation + varying noise

 \hat{x} | $x \sim N(m(x), s^2(x))$

• What determines the shapes of these curves?

Inference as a Constraint

• We now present an approach in which assumptions are made on how the brain computes the estimates \hat{x} .

$$
\begin{array}{ccc}\n & p(r_i|x) \\
\hline\n\text{random} & & r | x \\
\hline\nr = (r_1, ..., r_n)\n\end{array}
$$

Inference as a Constraint

• We now present an approach in which assumptions are made on how the brain computes the estimates \hat{x} .

$$
\underbrace{\begin{array}{c} p(r_i|x) \\ \text{random} \end{array}}_{r = (r_1, ..., r_n)} \underbrace{\begin{array}{c} MLE \\ \text{deterministic} \end{array}}_{\text{arg max}_x p(r|x)}
$$

Inference as a Constraint

• We now present an approach in which assumptions are made on how the brain computes the estimates \hat{x} .

$$
\begin{array}{ccc}\n\begin{array}{ccc}\np(r_i|x) \\
\hline\n\end{array} & \text{MLE} \\
\text{random} & \text{deterministic} \\
r = (r_1, ..., r_n) & \text{arg max}_x p(r|x)\n\end{array}
$$

• What constraint does that impose on $p(\hat{x} | x)$?

Properties of the MLE

- The MLE is, up to the order $\frac{1}{\sqrt{n}}$, unbiased and *efficient*. 1 *n*
- Approximately:

$$
\hat{x}^{MLE} | x \sim N\left(x, \frac{1}{nI(x)}\right).
$$

where $I(x)$ is the Fisher information of $p(r_i|x)$.

• This corresponds exactly to our "varying-noise" model

$$
\hat{x} | x \sim N(x, s^2(x)).
$$

Properties of the MLE 1

- The MLE has a bias of order $\frac{1}{n}$. *n*
- For a Gaussian likelihood, we have, approximately:

$$
\hat{x}^{MLE} | x \sim N\left(x + \frac{1}{4} \frac{d}{dx} \left(\frac{1}{nI(x)}\right), \frac{1}{nI(x)}\right).
$$

• This looks like our best-fitting model

$$
\hat{x} | x \sim N(m(x), s^2(x)),
$$

but our two functions, $m(x)$ and $s(x)$, are now constrained by a single function, $I(x)$.

Properties of the MLE

• This predicts

$$
m(x) = x + \frac{1}{4} \frac{d}{dx} \left(s^2(x) \right).
$$

MLE-constrained model *x* ̂| *x* ∼ *N*(*x* + 1 4 *d dx* (1 $\frac{1}{nI(x)}$, 1 $\frac{1}{nI(x)}$

MLE-constrained model *x* ̂| *x* ∼ *N*(*x* + 1 4 *d dx* (1 $\frac{1}{nI(x)}$, 1 $\frac{1}{nI(x)}$

∆*BIC with best model*

MLE-constrained model

• The fitted Fisher information in comparison with the prior:

MLE-constrained model

• The fitted Fisher information in comparison with the prior:

• This suggests an *efficient coding* of the numbers.

Summary

- In our average-comparison task, subjects seem to unequally weight different numbers in their decisions.
- We introduce a MLE-based model, in which

(i) an encoding of the number, characterized by $I(x)$,

(ii) is followed by a *maximum-likelihood estimation* of the number, based on the encoded evidence.

- This model makes a specific prediction relating the bias and the variance of the estimates,
- And it best accounts for the behavioral data.
- \bullet Lastly, the encoding Fisher information $I(x)$ seems *efficiently* adapted to the prior.

Thank you!