Noisy Integration of Value Differences

Silvio Ravaioli Columbia University

Sloan-Nomis Workshop on the Cognitive Foundations of Economic Behavior

February 23, 2019

A souvenir from NY

Price \$9

Size 11 ounces

- ▶ Evaluate alternatives that differ across multiple dimensions
- We always make comparisons across available alternatives
- ▶ Integration of separate values, differences, or "both"?

A souvenir from NY

Price

Size

- ▶ Evaluate alternatives that differ across multiple dimensions
- We always make comparisons across available alternatives
- ► Integration of separate values, differences, or "both"?

A souvenir from NY

- ▶ Evaluate alternatives that differ across multiple dimensions
- We always make comparisons across available alternatives
- ▶ Integration of separate values, differences, or "both"?

Motivation and Context

Noisy integration of decision information

- Choice across multi-dimension alternatives
- Averaging task: equally relevant dimensions should be integrated with the same weight
- ► Humans deviate systematically: overweight of extreme values under early noise (Spitzer, Waschke, and Summerfield 2017), robust averaging under late noise (Li et al. 2018)

► Context effect and Violation of stochastic transitivity

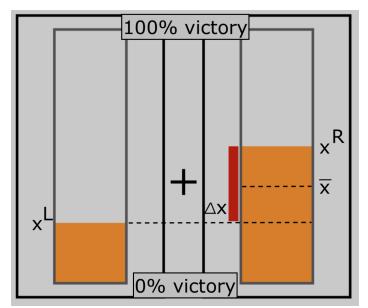
- Commonly found in trinary choices when a decoy is introduced (Huber et al. 1982, Heat and Chatterjee 1995)
- ► But also with **binary choices**, if they have multiple dimensions (Tsetsos et al. 2016)
- Stochastic transitivity violation would not occur if information was encoded in isolation

Experimental Design

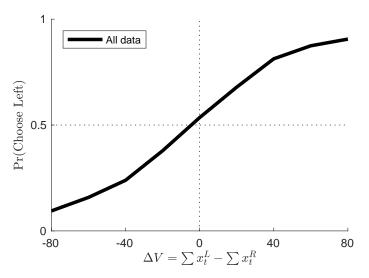
Experimental Design

- Binary choice: compound lottery L(eft) vs R(ight)
- Six simple lotteries (dimensions) equally likely to be selected
- ► Each sub-lottery is a 10-90% probability of winning one point
- Lab experiment at CELSS (Columbia University)
- \blacktriangleright 800 trials in a session (\sim 75 min), including 2 ancillary tasks
- Incentive: collect number of points across the experiment
- ► Payment: (# points 300) · 20 ¢ Avg. payment \$24.20

Experimental Design

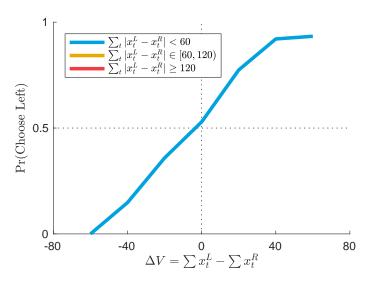


Result 0. Randomness



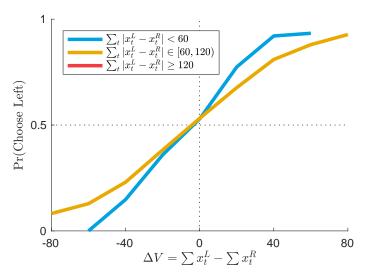
Choice probability in trials with different difficulty

Result 1. Similarity improves Accuracy



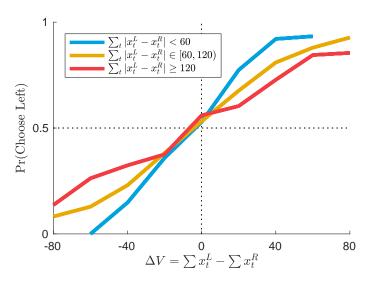
Choice probability, after controlling for similarity

Result 1. Similarity improves Accuracy

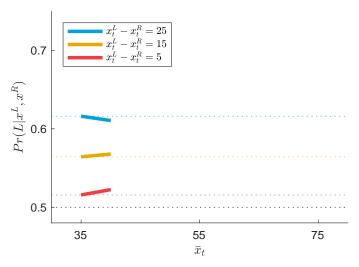


Choice probability, after controlling for similarity

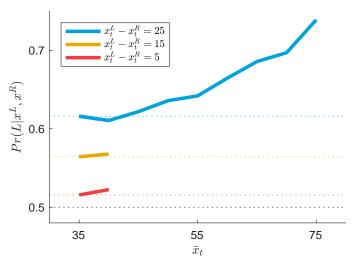
Result 1. Similarity improves Accuracy



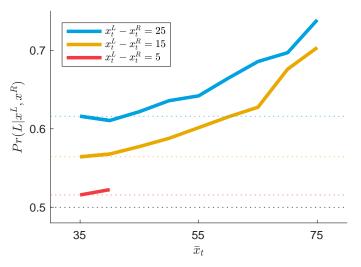
Choice probability, after controlling for similarity



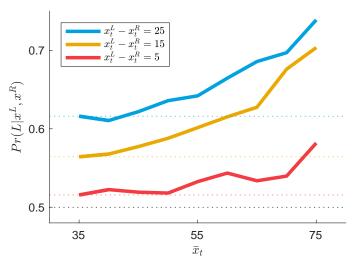
Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx



Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx



Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx

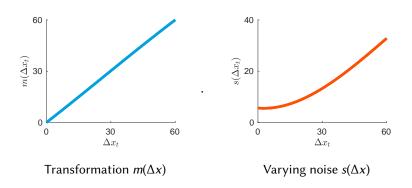


Decision weight $Pr(L|x^L, x^R)$ for different magnitudes \bar{x} and differences Δx

Model Selection (the last mile)

- ▶ At time $t \in 1, ..., 6$ two values x_t^L and x_t^R are observed
- ► Mental representation of the difference $\Delta x_t := x_t^L x_t^R$
 - ► Noisy representation $\hat{\Delta x} \sim N(m(\Delta x), s(\Delta x))$
 - ► Transformation $m(\Delta x)$, degree 3 polynomial
 - ▶ Varying noise $s(\Delta x)$, degree 3 polynomial
- ► Choice based on $\Delta V := \sum_{t=1}^{T} \delta^{T-t} \cdot \Delta \hat{x}_t \cdot \bar{x}_t^{\alpha}$
- Focus towards higher values ("good news"): $\alpha > 0$
- Leaking memory: $\delta < 1$

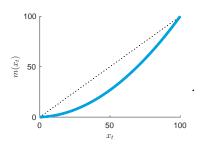
Model Fit - Noisy integration of value differences



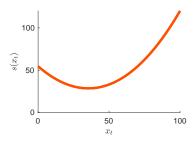
- Leaking memory $\hat{\delta}$ = 0.81 < 1 (recency effect)
- ► High-value focusing $\hat{\alpha}$ = 1.19 > 0 (magnitude effect)

Model Fit - Noisy integration of individual values

- ▶ Noisy representation of individual values $\hat{x} \sim N(m(x), s(x))$
 - ▶ Transformation m(x), degree 3 polynomial
 - ▶ Varying noise s(x), degree 3 polynomial
- ► Choice based on $\Delta V := \sum_{t=1}^{T} \delta^{T-t} \cdot (\hat{x}_t^L \hat{x}_t^R)$
- ▶ Worse fit of data: BIC 12,954 [>10,969 noisy integration of Δx]



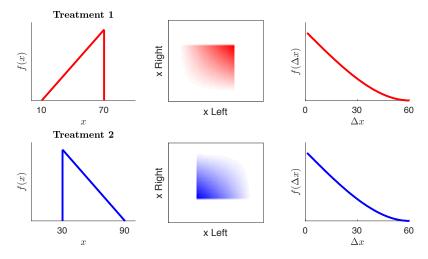
Transformation m(x)



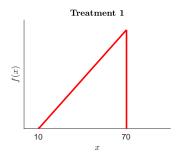
Varying noise s(x)

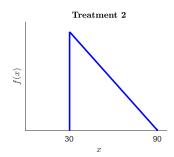
Treatments - Upward/Downward distributions

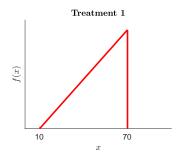
Upward and Downward triangular distributions

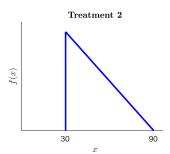


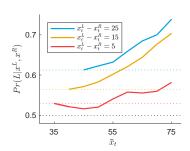
Value distributions used to generate data in the two treatments

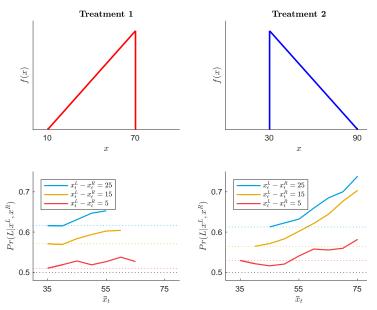


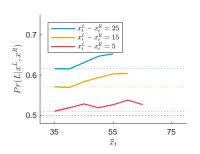


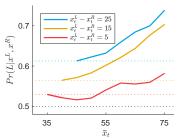


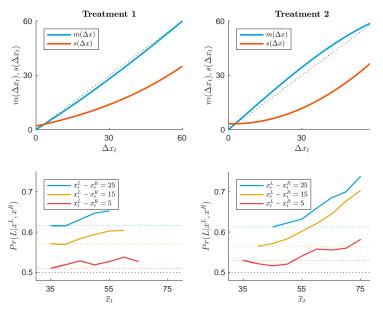


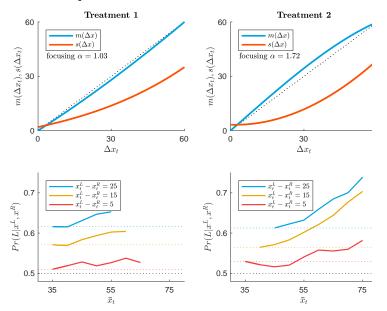












Next Steps

- ► Treatments: effect of different underlying distributions
- Learning during the session
- Explore individual-level heterogeneity
- Connect results in main and ancillary tasks
- Model comparison

Noisy Integration of Value Differences

Silvio Ravaioli Columbia University

Sloan-Nomis Workshop on the Cognitive Foundations of Economic Behavior

February 23, 2019